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Abstract. Let q be an integer. A D(q)-m-tuple is a set of m distinct positive integers

{a1, a2, . . . , am} such that aiaj + q is a perfect square for all 1 ⩽ i < j ⩽ m. By counting

integer solutions x ∈ [1, b] of congruences x2 ≡ q (mod b) with b ⩽ N , we count D(q)-pairs with

both elements up to N, and give estimates on asymptotic behaviour. We show that for prime

q, the number of such D(q)-pairs and D(q)-triples grows linearly with N . Up to a factor of 2,

the slope of this linear function is the quotient of the value of the L-function of an appropriate

Dirichlet character (usually a Kronecker symbol) and of ζ(2).

1. Introduction

A Diophantine pair is a set of two positive integers {a, b} such that ab+1 is a perfect square.
Dujella has proven that the number of Diophantine pairs with both elements less than or equal
to N asymptotically grows as 6

π2N logN in [Duj08] (while the error term was further estimated
in [Lao10]). The problem is equivalent to counting solutions of x2 ≡ 1 (mod n), where n ranges
from 1 to N . This congruence has 2ω(n) solutions for each n (where ω(n) denotes the number of

distinct prime factors of n), so the problem is reduced to estimating the sum
N∑

n=1

2ω(n).

In [Duj08], it was also shown that the number of Diophantine triples (i.e. the number of sets
of three positive integers such that the product of any two is one less than a perfect square) is
roughly half of the number of Diophantine pairs, while the number of Diophantine quadruples
was shown to have the order of magnitude of 3

√
N logN . Martin and Sitar in [MS11] have then

determined that the number of Diophantine quadruples with all elements less than or equal to

N asymptotically grows as
24/3

3Γ(2/3)3
3
√
N logN .

One natural generalization of Diophantine m-tuples is obtained by replacing 1 with a different
but fixed integer: D(q)-m-tuple is a set of m positive integers {a1, . . . , am} such that aiaj + q

is a perfect square for all 1 ⩽ i < j ⩽ m. So far, infinitely many D(q)-quadruples have been
found only for square numbers q. Therefore, we wish to estimate the number of D(q)-pairs and
D(q)-triples. Denote by Dm,q(N) := |{S ⊂ {1, 2, . . . , N} : S is a D(q)-m-tuple}|.

We often deal with quadratic congruences x2 ≡ q (mod b), where b and q are integers and
b ⩾ 2. Under the number of its solutions we mean the number of integers x ∈ [1, b] satisfying it.

Let q be any integer such that |q| is prime. In this paper we estimate D2,q(N), the number
of D(q)-pairs (a, b) such that a < b where b ranges from 1 to N . We do this by counting the
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number of solutions of congruences

(1) x2 ≡ q (mod b)

where b ranges from 1 to N . We will prove asymptotic estimates on the number of solutions to
said congruence equations, and these estimates will easily translate to D2,q(N), since the two
quantities differ by O(1).

In Section 2 we explain how the problem reduces to counting solutions of congruences (1).
We use quadratic reciprocity to characterize moduli b such that equation (1) has a solution, and
express the number of its solutions (in a complete residue system) as a function of the number of
distinct prime factors of b. Finally, we proceed to estimate the relevant weighted sums (of 2ω(n))
by analyzing their Dirichlet series and applying a tauberian theorem.

L-functions of Dirichlet characters appear in our results – we use the same notation as in
LMFDB [LMFDB], and the relevant background is stated in the Appendix of this paper to make
it self-contained.

Here we state our results for prime 2 (and −2).

Theorem 1. The number of D(2)-pairs with both elements in the set {1, 2, . . . , N} satisfies

D2,2(N) ∼ L(1, χ8,5)

ζ(2)
·N ≈ 0.37888N,

while the number of D(−2)-pairs with both elements in the set {1, 2, . . . , N} satisfies

D2,−2(N) ∼ L(1, χ8,3)

ζ(2)
·N ≈ 0.67524N.

The estimates for other primes q are more involved. The results depend on the remainder of
prime q modulo 8 (i. e. on the power of 2 dividing q − 1), and it turns out that the relevant
Dirichlet character is always the Kronecker symbol.

Theorem 2. Let q be an integer such that |q| is a prime or q = −1, and denote by D2,q(N) the
number of D(q)-pairs with both elements in the set {1, 2, . . . , N}.

a) If q ≡ 3 (mod 4), then

D2,q(N) ∼
L(1, χ4|q|,4|q|−1)

ζ(2)
·N.

b) If q ≡ 5 (mod 8), then

D2,q(N) ∼
2L(1, χ|q|,|q|−1)

ζ(2)
·N.

c) If q ≡ 1 (mod 8), then

D2,q(N) ∼
L(1, χ|q|,|q|−1)

ζ(2)
·N.

In the last section, for any integer n, we relate the number of D(n)-triples with all elements
up to N with the number of D(n)-pairs. More precisely, we show the following theorem.
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Theorem 3. Let n be an integer. The number of D(n)-triples with all elements in the set
{1, 2, . . . , N} is asymptotically equal to half the number of D(n)-pairs. More precisely,

D3,n(N) ∼ D2,n(N)

2
.

Finally, we list the estimates we obtain (by applying Theorem 1 and Theorem 2) on the number
of D(q)-triples for integers q such that |q| is prime.

2. Reducing the problem to congruences

The results of this section hold for arbitrary integer q (not necessarily prime). We estimate the
number of D(q)-pairs (a, b) such that a < b using the number of solutions x of the equation (1).
Almost all such solutions induce a D(q) pair (a, b) such that a ⩽ b, simply by setting a = x2−q

b .

The almost part comes from the fact that x2 − q can be negative, but the total amount of such
cases for all b ∈ N is finite. Also, almost all D(q) pairs (a, b) such that a < b are induced by a
solution of Equation (1). It is possible that there exist pairs (a, b), a < b such that a > x2−q

b for
all solutions of Equation (1). Then there exists some x ⩾ b+1 such that a = x2−q

b . This leads to
b ⩾ a ⩾ (b+1)2−q

b ⇐⇒ b ⩽ q−1
2 . All in all, again only finitely many cases when b runs through

N. For the sake of our calculations, we identify the number of D(q) pairs (a, b) such that a < b

with the number of solutions of Equation (1).

Lemma 4. Let q be an odd prime and b ∈ N such that gcd(b, 2q) = 1. Then the number of
solutions of the congruence

(2) x2 ≡ 1 (mod b)

such that 1 ⩽ x ⩽ b is 2ω(b). Consequently, the number of solutions of the congruence

(1) x2 ≡ q (mod b)

such that 1 ⩽ x ⩽ b is either zero or 2ω(b).

Proof. The first statement of the lemma is proved in [Vin03, Section V.4]. If there is no solution
to Equation (1), we are done. If there exists a solution xq, then every other solution x′ of
Equation (1) satisfies

(3)
(
x′

xq

)2

≡ 1 (mod b),

where division by xq corresponds to multiplying by the inverse of xq modulo b. Also, if x1 is any
solution to Equation (2), then x1xq is a solution of Equation (1) and all solutions obtained in
such a way have different residues mod b. □

We now give all the details for Theorem 1. Estimating the number of D(2)-pairs is somewhat
easier than estimating the number of D(q)-pairs for other prime q. However, as the proof of this
theorem contains all the essential steps necessary for all other q, we believe that reading this first
will make it easier for the reader to follow the more involved proofs.
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3. Estimating the number of D(2)-pairs and D(−2)-pairs

We first estimate D2,2(N), the number of D(2)-pairs up to N , by counting solutions of the
congruence (1) for q = 2, and proceed similarly for D2,−2.

3.1. Existence and the number of congruence solutions. In the next lemma, we record
when does the relevant congruence equation have a solution, as well as the number of its solutions.

Lemma 5. For odd b, the equation

(4) x2 ≡ 2 (mod b),

has a solution if and only if each prime factor p of b satisfies p ≡ ±1 (mod 8). For even b, equation
(4) has a solution if and only if 2||b and each odd prime factor p of b satisfies p ≡ ±1 (mod 8).

Analogously, the equation

(5) x2 ≡ −2 (mod b)

has a solution if and only if each prime factor p of b satisfies p ≡ 1, 3 (mod 8). For even
b, equation (5) has a solution if and only if 2||b and each odd prime factor p of b satisfies
p ≡ 1, 3 (mod 8).

When equation (4) or (5) is solvable with odd b, the number of its solutions x such that
1 ⩽ x ⩽ b is exactly 2ω(b).

Proof. Since b | x2 − 2 implies that for each prime factor p of b it holds that p | x2 − 2, we have
to check for which primes p is 2 a quadratic residue. The statement on the existence of solutions
then holds because x2 − 2 cannot be divisible by 4 and because(

2

p

)
= (−1)

p2−1
8 ,

and analogously for −2. The last statement follows from Lemma 4. □

The previous lemma motivates us to define the set of good primes as

G2 = {p ∈ P : p ≡ ±1 (mod 8)}.

The set of good primes for −2 is given by

G−2 = {p ∈ P : p ≡ 1, 3 (mod 8)}.

The sum
N∑

n=1

2ω(n) is already estimated in [Duj08], but now we have to estimate a weighted

version of this sum. The weights are binary, i.e. non-zero if n consists only of good prime factors:

λG2(n) =

1, if n = pα1
1 . . . pαk

k , pi ∈ G2 ∀i = 1, . . . , k

0, otherwise.

To begin estimating the weighted sum, we define

b2(n) = 2ω(n) · λG2(n).
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If n has only good prime factors, then b2(n) is equal to the number of solutions to congruence
x2 ≡ 2 (mod n), otherwise the value of b2(n) is zero. We want to estimate the weighted sum

B2(N) =
∑

1⩽n⩽N

2ω(n) · λG2(n) =
∑

1⩽n⩽N

b2(n).

B2(N) counts the total number of solutions x ∈ {1, . . . , n} of all congruences x2 ≡ 2 (mod n)

where n is odd and 1 ⩽ n ⩽ N. We will account for the possibility of 2||n later, so understanding
the asymptotic behavior of B2(N) will be enough to understand D2,2(N).

3.2. Dirichlet series manipulation. To understand the asymptotic behavior of B2(N), we
analyze the behavior of the Dirichlet series β2(s) = Db2(s), where

β2(s) = Db2(s) =

∞∑
n=1

b2(n)

ns
=

∞∑
n=1

2ω(n)λG2(n)

ns
.

The next lemma will be used throughout the following sections as well, so we state it in a more
general manner.

Lemma 6. Let G be a set of primes called good primes. Let λG : N → {0, 1} be the indicator
function of a multiplicative monoid in N generated by G. Then the Dirichlet series β(s) of
b(n) = 2ω(n) · λG(n) satisfies

β(s) =
ζ2G(s)

ζG(2s)
,

for ℜs > 1, where ζG(s) is

ζG(s) := DλG(s) =
∞∑
n=1

λG(n)

ns
.

Proof. Since Dirichlet series behave nicely with respect to Dirichlet convolution, we wish to
express B(N) as a convolution of two arithmetic functions. One of these functions will be the
G-modified Möbius function which we define as

µG(n) =

(−1)ω(n), if n = p1 . . . pk, pi ∈ G ∀i = 1, . . . , k, and pi ̸= pj whenever i ̸= j

0, otherwise
.

Now we can express

B(N) =
∑

1⩽n⩽N

2ω(n) · λG(n) =
∑

1⩽n⩽N

∑
d|n

µ2
G(d) · λG(n)

(∗∗)
=

∑
1⩽n⩽N

∑
d|n

µ2
G(d) · λG

(n
d

)
=

∑
1⩽n⩽N

(
µ2
G ∗ λG

)
(n)

where equality (∗∗) holds because of the following fact: If n only has good prime factors then
λG(

n
d ) = λG(n) for any d such that d|n. If n has at least one bad prime factor then λG(n) = 0,

as well as µ2
G(d) · λG(

n
d ) = 0.

Since D(µ2
G ∗ λG)(s) = Dµ2

G(s)DλG(s), we only need to calculate Dµ2
G(s). As µ2

G is multiplica-
tive, we can expand Dµ2

G(s) into an Euler product (see e.g. [MV06, Theorem 1.9] – this theorem
is also stated herein at the end of the Appendix as Theorem 28) to obtain
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D(µ2
G) =

∏
p∈G

(
1 +

1

ps

)
=

∏
p∈G

(
1− 1

p2s

)
∏

p∈G

(
1− 1

ps

) =

∏
p∈G

(
1− 1

ps

)−1

∏
p∈G

(
1− 1

p2s

)−1 =
ζG(s)

ζG(2s)
□

We obtain the following corollary by noting that our λG2 and λG−2 are indicator functions as
required by the previous lemma.

Corollary 7. The Dirichlet series β2(s) and β−2(s) satisfy

(6) β2(s) =
ζ2G2

(s)

ζG2(2s)
, β−2(s) =

ζ2G−2
(s)

ζG−2(2s)
,

where ζG2 and ζG−2 are the Dirichlet series of λG2 and λG−2.

Using the previous corollary, we show how β2 and β−2 can be expressed in terms of the classical
zeta function and the L-functions of certain Dirichlet characters.

Lemma 8. The following holds.

a) The Dirichlet series β2(s) = Db2(s) of b2(n) = 2ω(n) · λG2(n) satisfies

β2(s) =
ζ(s)

ζ(2s)
· L(s, χ8,5)

(1 + 2−s)
.

b) The Dirichlet series β−2(s) = Db−2(s) of b−2(n) = 2ω(n) · λG−2(n) satisfies

β−2(s) =
ζ(s)

ζ(2s)
· L(s, χ8,3)

(1 + 2−s)
.

Proof. We begin proving a) by complementing the Euler product of ζG2 from Corollary 7 to
obtain the usual zeta function:

ζG2(s) =
∏
p∈G2

(1− p−s)−1 = ζ(s)
∏
p/∈G2

(1− p−s)

= ζ(s)(1− 2−s)
∏
p≡3

(1− p−s)
∏
p≡5

(1− p−s),

where the products go over all primes p congruent to 3 and 5 modulo 8 (according to our
description of G2, the primes that are not in G2 include 2 and all primes of this form). The
further products will also go over congruences modulo 8.

We now rewrite

ζ2G2
(s)

ζG2(2s)
=

ζ2(s)

ζ(2s)
· (1− 2−s)2

(1− 2−2s)
·

∏
p≡3

(1− p−s)2
∏
p≡5

(1− p−s)2∏
p≡3

(1− p−2s)
∏
p≡5

(1− p−2s)

=
ζ2(s)

ζ(2s)
· (1− 2−s)

(1 + 2−s)
·

∏
p≡3

(1− p−s)
∏
p≡5

(1− p−s)∏
p≡3

(1 + ps)
∏
p≡5

(1 + p−s)
.
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We invert our products and complement them with the remaining possible remainder of an odd
prime modulo 8:

ζ2G2
(s)

ζG2(2s)
=

ζ2(s)

ζ(2s)
· (1− 2−s)

(1 + 2−s)
·

∏
p≡1

(1− p−s)−1
∏
p≡3

(1 + ps)−1
∏
p≡5

(1 + p−s)
−1∏

p≡7

(1− p−s)
−1

∏
p≡1

(1− p−s)−1
∏
p≡3

(1− ps)−1
∏
p≡5

(1− p−s)
−1∏

p≡7

(1− p−s)
−1

=
ζ2(s)

ζ(2s)
· (1− 2−s)

(1 + 2−s)
· L(s, χ8,5)

L(s, χ8,1)
=

ζ(s)

ζ(2s)
· L(s, χ8,5)

(1 + 2−s)
.

For b) part about −2, the proof is completely analogous, and the character χ8,3 appears
instead of χ8,5 due to a different set of good primes G−2. □

3.3. The total number of solutions of all congruences with odd moduli. The asymptotic
behaviour of B2(N) =

∑
1⩽n⩽N

b2(n) is a direct consequence of a corollary of a theorem by Wiener

and Ikehara.

Theorem 9 (Corollary of Wiener-Ikehara [Ike31]). Let a(n) ⩾ 0. If the Dirichlet series of the
form

∞∑
n=1

a(n)n−s

converges to an analytic function in the half-plane ℜ(s) ⩾ 1 with a simple pole of residue c at
s = 1, then

∑
n⩽N

a(n) ∼ cN.

Let us remind the reader that B2(N) counts the total number of solutions x ∈ {1, . . . , n} of
all congruences x2 ≡ 2 (mod n) where n is odd and 1 ⩽ n ⩽ N.

Proposition 10. The following holds.

a) The partial sums of b2(n) satisfy

B2(N) ∼ 2L(1, χ8,5)

3ζ(2)
·N ≈ 0.25258N.

b) The partial sums of b−2(n) satisfy

B−2(N) ∼ 2L(1, χ8,3)

3ζ(2)
·N ≈ 0.45016N.

Proof. The function B2(N) =
∑
n⩽N

b2(n) is the partial sum of the sequence (b2(n))n⩾1 with

Dirichlet series rewritten in Lemma 8 as

β2(s) =
ζ(s)

ζ(2s)
· L(s, χ8,5)

(1 + 2−s)
.

The function β2(s) is analytic on the half-plane given by ℜs > 1, and to apply the previous
theorem, we need the residue at s = 1. Among all factors, only ζ(s) is not holomorphic at
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s = 1. Factors in the denominators have no zeroes for ℜs > 1
2 . Since ζ(s) has a simple pole at

s = 1, we will multiply its residue, which is equal to 1, with the value of the remaining factors
at s = 1. Therefore the residue of β2(s) at s = 1 is 1

ζ(2) ·
2L(1,χ8,5)

3 and the claim now follows by
the Wiener-Ikehara theorem. Part b) is completely analogous. □

Remark 11. One could likely use Perron’s formula to find the explicit error term, but this would
be computationally harder than our determination of the main term.

3.4. The asymptotics of D2,2(N) and D2,−2(N). We can now finally prove that D2,2(N), the
number of D(2)-pairs up to N , grows linearly with N and determine its gradient.

Proof of Theorem 1. The number of D(2)-pairs up to N is equal to the number of congruence
solutions x2 ≡ 2 (mod n) with x ∈ {1, 2, . . . , n} and n ∈ {1, . . . , N} plus some O(1). Let us
denote the number of congruence solutions by C2(N). We now let n vary through all integers
between 1 and N , both odd and even. For even n, since 2 and n/2 are coprime (due to 2||n),
the number of solutions is 2ω(n/2) = 2ω(n)−1. The total count of congruence solutions for n ⩽ N

is hence

C2(N) =
∑

1⩽n⩽N

2ω(n) · λG(n) +
∑

1⩽n⩽N
2||n

2ω(n)−1 · λG

(n
2

)
= B2(N) +B2

(⌊
N

2

⌋)
.

Since B2(N) ∼ 2L(1,χ8,5)
3ζ(2) ·N , it follows that C2(N) ∼

(
1 + 1

2

) 2L(1,χ8,5)
3ζ(2) ·N =

L(1,χ8,5)
ζ(2) ·N , where

the error from replacing the floor of N/2 by N/2 is O(1). Part b) is again completely analogous.
□

4. Estimating the number of D(q)-pairs for odd primes q

The asymptotic estimation and its proof will have the same outline for odd primes q, with the
following differences. In Subsection 4.1, we determine whether the congruence (1) has a solution
by using quadratic reciprocity (instead of its supplement for ±2). In Subsection 4.2, we carefully
analyze the number of solutions with respect to the occurrences of primes 2 and q in n. The
usage of the Wiener-Ikehara theorem requires identifying proper characters and computing the
residue in the same manner – this is done in Subsection 4.3. Expressions for C(N), the total
count of solutions of all congruences, are going to vary according to the possible appearances of
primes 2 and q in the prime factorization of n. This final analysis is done in Subsection 4.4.

4.1. Existence of congruence solutions. We first investigate when equation (1) has a solu-
tion. Since the number of solutions is 0 or 2ω(b), in the next several lemmas we give conditions
on whether the number of solutions is non-zero, depending on the residue of q modulo 8.

Lemma 12. Let prime q ≡ 3 (mod 4). Equation (1) has a solution if and only if b = δ
∏
pi ̸=q

pαi
i

such that
(

q
pi

)
= 1 for all i, and δ ∈ {1, 2, q, 2q}. The condition

(
q
pi

)
= 1 is equivalent to(

pi
q

)
= (−1)

pi−1

2 .
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Proof. First we notice that no higher powers of 2 or q are possible in the factorization of b. The
number b is not divisible by 4 since that would imply that 4 divides x2 − 3, whereas b is not
divisible by q2 since then q2 would divide x2−q. If gcd(b, 2q) = 1 and x2 ≡ q (mod b) then exactly
one of the numbers x, x + b, x + 2b, . . . , x + (2q − 1)b will be the solution of y2 ≡ q (mod 2qb).

This means it is enough to analyze the case gcd(b, 2q) = 1.

We now focus on such b. Assume that for a fixed b, Equation (1) has a solution x0 and let p|b.
Then x2 ≡ q (mod p), which by quadratic reciprocity implies that 1 =

(
q
p

)
=
(
p
q

)
· (−1)

p−1
2 . We

call p good for q if
(
p
q

)
= (−1)

p−1
2 .

We proved that b must be of the form given in the statement of the lemma. Now we prove
that every such b works.

Assume p is good for q. We prove by induction that x2 ≡ q (mod pn) has a solution for every n ∈
N. The base case is true because from the fact that p is good for q we have that 1 =

(
p
q

)
·(−1)

p−1
2 =(

q
p

)
, that is q is a quadratic residue mod p. Let x0 be a solution for pn. If it is also a solution for

pn+1, we are done. Otherwise, look at the numbers x0, x0+pn, x0+2pn, . . . , x0+(p−1)pn, more
specifically, for i ̸= j, look at

[
(x0 + ipn)2 − q

]
−
[
(x0 + jpn)2 − q

]
= (i− j)pn(2x0 + (i+ j)pn).

Since gcd(p, 2q) = 1 we know that p ∤ 2x0 + (i + j)pn and trivially p ∤ i − j, so the numbers
(x0 + ipn)2 − q give p different residues (mod pn+1) and one of these numbers must be divisible
by pn+1.

If gcd(b1, b2) = 1 and x2i ≡ q (mod bi), then {x1, x1 + b1, . . . , x1 + (b2 − 1)b1} is the com-
plete residue system mod b2 so one of the elements must be the solution of the equation
x2 ≡ q (mod b2). As each of these numbers is also a solution to the equation x2 ≡ q (mod b1),

then there is at least one simultaneous solution (this also follows from the Chinese remainder
theorem). □

Lemma 13. Let prime q ≡ 5 (mod 8). Equation (1) has a solution if and only if b = δ
∏

pαi
i

such that
(
pi
q

)
= 1 for all i, and δ ∈ {1, 2, 4, q, 2q, 4q}.

Let prime q ≡ 1 (mod 8). Equation (1) has a solution if and only if b = δ · 2α0
∏

pαi
i such that(

pi
q

)
= 1 for all i, and δ ∈ {1, q}.

Proof. If q ≡ 5 (mod 8) the proof mimics that of Lemma 12. If q ≡ 1 (mod 8) we only need to
prove that any power of 2 is possible as a factor of b. We again do this by induction. Taking any
odd x, we have x2 ≡ q (mod 8). For any odd b such that there exists a solution to Equation (1)
we can construct a solution of x2 ≡ q (mod 8b) since gcd(8, b) = 1, so a base case follows. Let x

be such that x2 ≡ q (mod 2αb) where b is odd. If it is also true that x2 ≡ q (mod 2α+1b) we are
done, otherwise look at x+ b · 2α−1. Now we have (x+ b · 2α−1)2 − q = x2 − q + xb2α + b222α−2.

The right hand side is divisible by b, the number 22α−2 is divisible by 2α+1 since α ⩾ 3, and
both numbers x2 − q and xb2α are divisible by exactly 2α so their sum is divisible by 2α+1. □

Lemma 14. Let p, |q| be odd primes such that |q| ≠ p. Then(
q

p

)
=

(
p

|q|

)
· (−1)

p−1
2

q−1
2
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Proof. If q > 0 then this is simply quadratic reciprocity. If q < 0 we have(
q

p

)
=

(
−1

p

)(
|q|
p

)
= (−1)

p−1
2

(
p

|q|

)
· (−1)

p−1
2

|q|−1
2 =

(
p

|q|

)
· (−1)

p−1
2

|q|+1
2

=

(
p

|q|

)
· (−1)

p−1
2

−q+1
2 =

(
p

|q|

)
· (−1)

p−1
2

q−1
2

□

4.2. The number of congruence equation solutions. The following lemma counts the num-
ber of solutions when they exist. Some results in it could be written in a shorter form, but this
form was chosen to make further proofs easier to understand.

Lemma 15. (Extension of Lemma 1) Let |q| be a prime number and b ∈ N such that gcd(b, 2q) =
1, and b has only good prime factors for q.

Let q ≡ 3 (mod 4). Then the following table gives the number of solutions of the congruence
equation in the appropriate interval

equation interval the number of solutions in the interval

x2 ≡ q (mod 2b) 1 ⩽ x ⩽ 2b 2ω(2b)−1

x2 ≡ q (mod qb) 1 ⩽ x ⩽ |q|b 2ω(qb)−1

x2 ≡ q (mod 2qb) 1 ⩽ x ⩽ 2|q|b 2ω(2qb)−2

Let q ≡ 5 (mod 8). Then the following table gives the number of solutions of the congruence
equation in the appropriate interval

equation interval the number of solutions in the interval

x2 ≡ q (mod 2b) 1 ⩽ x ⩽ 2b 2ω(2b)−1

x2 ≡ q (mod 4b) 1 ⩽ x ⩽ 4b 2ω(4b)

x2 ≡ q (mod qb) 1 ⩽ x ⩽ |q|b 2ω(qb)−1

x2 ≡ q (mod 2qb) 1 ⩽ x ⩽ 2|q|b 2ω(2qb)−2

x2 ≡ q (mod 4qb) 1 ⩽ x ⩽ 4|q|b 2ω(4qb)−1

Let q ≡ 1 (mod 8) and n ∈ Z such that n ⩾ 0. Then the following table gives the number of
solutions of the congruence equation in the appropriate interval

equation interval the number of solutions in the interval

x2 ≡ q (mod 2b) 1 ⩽ x ⩽ 2b 2ω(2b)−1

x2 ≡ q (mod 4b) 1 ⩽ x ⩽ 4b 2ω(4b)

x2 ≡ q (mod 2n+3b) 1 ⩽ x ⩽ 2n+3b 2ω(2
n+3b)+1

x2 ≡ q (mod qb) 1 ⩽ x ⩽ |q|b 2ω(qb)−1

x2 ≡ q (mod 2qb) 1 ⩽ x ⩽ 2|q|b 2ω(2qb)−2

x2 ≡ q (mod 4qb) 1 ⩽ x ⩽ 4|q|b 2ω(4qb)−1

x2 ≡ q (mod 2n+3qb) 1 ⩽ x ⩽ 2n+3|q|b 2ω(2
n+3qb)
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Proof. We prove the statements (mod qb). The number of solutions (mod b) such that 1 ⩽ x ⩽ b

is 2ω(b). Take any such solution x0 and look at the numbers x0, x0+ b, x0+2b, . . . , x0+(|q|−1)b.

Exactly one of them will be divisible by q so there will be exactly 2ω(b) = 2ω(qb)−1 solutions
(mod qb) in the interval [1, |q|b].

The other cases are analogous, and the cases where the modulus and q are coprime also follow
from [Vin03, V.4.g]. □

4.3. Sets of good primes Gq for various q with accompanying arithmetic functions. As
before with Lemma 5, Lemmas 12, 13 and 14 motivate definitions of sets Gq for various residues
of q (mod 8). Let q ≡ 3 (mod 4) such that |q| is prime and denote by Gq the set of good primes
for q

G = Gq = {p ∈ P :
(

p

|q|

)
≡ (−1)

p−1
2 },

and in addition for q = −1 let

G = G−1 = {p ∈ P : p ≡ 1 (mod 4)}.

Let

λG(n) =

1, if n = pα1
1 . . . pαk

k , pi ∈ G

0, otherwise
,

along with

bq(n) = 2ω(n) · λGq(n).

We want to estimate the weighted sum

Bq(N) =
∑

1⩽n⩽N

2ω(n) · λG(n) =
∑

1⩽n⩽N

bq(n).

Bq(N) counts the total number of solutions x ∈ {1, . . . , n} of all congruences x2 ≡ q (mod n),

where gcd(n, 2q) = 1 and 1 ⩽ n ⩽ N. We can easily account for possible factors of 2 and q in n

later; understanding the asymptotic behavior of Bq(N) will be enough to understand D2,q(N).

As before, we define the following two Dirichlet series (which both depend on q):

ζG(s) := DλG(s) =
∑ λG(n)

ns
, βq(s) := Dbq(s) =

∑ bq(n)

ns
,

for which Lemma 6 holds. We rewrite βq(s) in terms of the zeta function and the L-function of
a Dirichlet character mod 4q.

Lemma 16.

βq(s) =
ζ2G(s)

ζG(2s)
=

ζ(s)

ζ(2s)
·

L(s, χ4|q|,4|q|−1)

(1 + 2−s)(1 + |q|−s)
,

β−1(s) =
ζ(s)

ζ(2s)
· L(s, χ4,3)

(1 + 2−s)
.
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Proof. As in the proof of Lemma 8 we first rewrite ζG(s):

ζG(s) =
∏
p∈G

(1− p−s)−1 = ζ(s)
∏
p ̸∈G

(1− p−s)

= ζ(s) · (1− 2−s)(1− |q|−s) ·
∏
p/∈G

p ̸=2,|q|

(1− p−s).

Plugging this in the expression for βq(s) we have

ζ2G(s)

ζG(2s)
=

ζ2(s)

ζ(2s)
· (1− 2−s)2(1− |q|−s)2

(1− 2−2s)(1− |q|−2s)
·
∏
p/∈G

p̸=2,|q|

(1− p−s)2

(1− p−2s)

=
ζ2(s)

ζ(2s)
· (1− 2−s)(1− |q|−s)

(1 + 2−s)(1 + |q|−s)
·
∏
p/∈G

p ̸=2,|q|

(1− p−s)

(1 + p−s)
·
∏
p∈G

(1− p−s)

(1− p−s)

=
ζ(s)

ζ(2s)
· 1

(1 + 2−s)(1 + |q|−s)
·
∏
p/∈G

p ̸=2,|q|

(1 + p−s)−1
∏
p∈G

(1− p−s)−1

=
ζ(s)

ζ(2s)
·

L(s, χ4|q|,4|q|−1)

(1 + 2−s)(1 + |q|−s).

The statement for β−1 follows the same proof, except there is no (1 − |q|−s) factor in ζG (and
consequently, no (1 + |q|−s)−1 in β−1). □

Proposition 17. If q ≡ 3 (mod 4) such that |q| is prime, then Bq(N) ∼ 2|q|
3(|q|+1)

L(1,χ4|q|,4|q|−1)

ζ(2) N,

while B−1(N) ∼ 2
3
L(1,χ4,3)

ζ(2) N.

Proof. Analogous to the proof of Proposition 10. □

For q ≡ 1, 5 (mod 8) we set

G = Gq =

{
p ∈ P :

(
p

|q|

)
= 1

}
and define λG , bq(n), Bq(N), ζG(s), βq(s) as in the case q ≡ 3 (mod 4) (accordingly with respect
to the appropriate set G).

Lemma 18. For q ≡ 5 (mod 8) such that |q| is prime we have

βq(s) =
ζ2G(s)

ζG(2s)
=

ζ(s)

ζ(2s)
·
L(s, χ|q|,|q|−1)

(1 + |q|−s)
,

while for q ≡ 1 (mod 8) such that |q| is prime we have

βq(s) =
ζ2G(s)

ζG(2s)
=

ζ(s)

ζ(2s)
·
(1− 2−s)L(s, χ|q|,|q|−1)

(1 + 2−s)(1 + |q|−s)
.

Proof. Analogous to the proof of Lemma 16. □

Proposition 19. If q ≡ 5 (mod 8) then

Bq(N) ∼ |q|
|q|+ 1

L(1, χ|q|,|q|−1)

ζ(2)
N,
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and if q ≡ 1 (mod 8) then

Bq(N) ∼ |q|
3(|q|+ 1)

L(1, χ|q|,|q|−1)

ζ(2)
N.

4.4. The asymptotics of D2,q(N) for prime |q|. We complete the task of calculating the
asymptotics of D2,q(N) where |q| is prime.

Proof of Theorem 2. The proofs of parts a) and b) are similar to the proof of Theorem 1. Part
c) is a bit more involved as C(N) is more complicated.

According to Lemma 15, the number of corresponding congruence solutions is

Cq(N) = Bq(N) +Bq

(⌊
N

2

⌋)
+ 2Bq

(⌊
N

4

⌋)
+ 4

∑
m⩾0

Bq

(⌊
N

2m+3

⌋)
+

+Bq

(⌊
N

|q|

⌋)
+Bq

(⌊
N

2|q|

⌋)
+ 2Bq

(⌊
N

4|q|

⌋)
+ 4

∑
m⩾0

Bq

(⌊
N

2m+3|q|

⌋)
First, we notice that both sums over m are finite, since when m is large enough the term N

2m+3 is
strictly smaller than 1, hence the function Bq is constantly equal to zero. To get a hold on the
function Cq(N), we look at the difference Cq(2N)− Cq(N). When expanding Cq(2N) we "take
out" the first term of both sums over m to obtain:

Cq(2N) =Bq(2N) +Bq(N) + 2Bq

(⌊
N

2

⌋)
+ 4Bq

(⌊
N

4

⌋)
+ 4

∑
m⩾0

Bq

(⌊
N

2m+3

⌋)
+

+Bq

(⌊
2N

|q|

⌋)
+Bq

(⌊
N

|q|

⌋)
+ 2Bq

(⌊
N

2|q|

⌋)
+ 4Bq

(⌊
N

4|q|

⌋)
+ 4

∑
m⩾0

Bq

(⌊
N

2m+3|q|

⌋)
.

This implies that

Cq(2N)− Cq(N) =Bq(2N) +Bq

(⌊
N

2

⌋)
+ 2Bq

(⌊
N

4

⌋)
+

+Bq

(⌊
2N

|q|

⌋)
+Bq

(⌊
N

2|q|

⌋)
+ 2Bq

(⌊
N

4|q|

⌋)
.

Since Bq(N) ∼ |q|
3(|q|+1)

L(1,χ|q|,|q|−1)

ζ(2) N , this implies Cq(2N) − Cq(N) ∼ L(1,χ|q|,|q|−1)

ζ(2) N . We now

apply the classical Cesàro-Stolz theorem [Ces88; Sto85] to
Cq(2N)− Cq(N)

2N −N
and conclude that

Cq(N) ∼ L(1,χ|q|,|q|−1)

ζ(2) N .

Remark 20. We conjecture that similar results hold for all positive squarefree integers q. More
precisely, we conjecture that if q ≡ 1 (mod 8), then D2,q(N) ∼ 12h(4q) log(u4q)

π2√q
N , if q ≡ 5 (mod 8),

then D2,q(N) ∼ 8h(4q) log(u4q)
π2√q

N , and D2,q(N) ∼ 6h(4q) log(u4q)
π2√q

N otherwise (i. e. if q ̸≡ 1, 5 mod 8),
where h(n) denotes the class number of a real quadratic field of discriminant n, while un denotes
the fundamental unit of the same field. By Dirichlet’s class number formula, the constants given
here are equal to the constants shown in Theorems 1 and 2.

□



14 N. ADŽAGA, G. DRAŽIĆ, A. DUJELLA, AND A. PETHŐ

5. D(n)-triples

Definition 1. Let a < b < c. A D(n)-triple {a, b, c} is called regular if c = a + b + 2r, where
r2 = ab+ n. A D(n)-triple {a, b, c} is called irregular if it is not regular.

Let Dreg
3,n(N) denote the number of regular D(n)-triples {a, b, c} such that a < b < c ⩽ N .

The following theorem holds for all integers n, and its proof is mostly concerned with showing
that different cases give at most O(1)-triples. We note here that the number of D(n2)-pairs and
D(n2)-triples grows faster than a linear function. Namely, a D(1)-pair {a, b} induces a D(n2)-
pair {na, nb}. Therefore the number of D(n2)-pairs with all elements up to N is greater or equal
than the number of D(1)-pairs with all elements up to N

n , which grows as 6
π2

N
n log N

n .

Theorem 21 (Minor refinement of Theorem 3). Let n be an integer. The number of D(n)-
triples with all elements in the set {1, 2, . . . , N} is asymptotically equal to the number of regular
D(n)-triples, which is in turn half the number of D(n)-pairs. More precisely,

D3,n(N) ∼ Dreg
3,n(N) ∼ D2,n(N)

2
.

Proof (also a proof of Theorem 3). Since {a, b, c} is a D(n)-triple, there exist positive integers
r, s, t satisfying ab+n = r2, ac+n = s2, bc+n = t2. According to [Duj02, Lemma 3], there exist
integers e, x, y, z such that

ae+ n2 = x2, be+ n2 = y2, ce+ n2 = z2,

and

(7) c = a+ b+
e

n
+

2

n2
(abe+ rxy),

We consider three cases, depending on the sign of e.

1) If e < 0, then c ⩽ n2. Hence, the number of such triples is O(1) (it is less then n6

6 , so
the implied constant in O depends on n ).

2) If e = 0, then c = a + b + 2r. Also, b = a + c − 2s, where ac + n = s2, s ⩾ 0. Every
pair {a, c}, ac + n = s2, a < c ⩽ N induces a regular D(n) triple {a, a + c − 2s, c} ⊆
{1, 2, . . . , N}, unless a+ c− 2s > N , a+ c− 2s ⩽ 0, or a+ c− 2s = a, or a+ c− 2s = c.
The inequality a + c − 2s > N implies a − 2s > N − c ⩾ 0. However, a > 2s implies
−4n > a(4c− a) > a · 3c, which can hold only if c < 4

3 |n|. Therefore the contribution of
this case is O(n) = O(1).

Before analyzing the remaining degenerate cases, let us note here that a+ c− 2s < 0

is equivalent to (c− a)2 < 4n. Assume that a+ c− 2s = 0. Then (c− a)2 = 4n. Hence,
this case is impossible if n is not a perfect square. If n is a perfect square, then we obtain
c = a+ 2

√
n, and therefore the contribution of this case is N +O(1).

The case a + c − 2s < 0, after squaring gives (c − a)2 < 4n, which is impossible for
n < 0, while for n > 0 we have c < a+2

√
n, which implies (c−

√
n)2 < ac+n < (c+

√
n)2.

If we put ac+ n = (c− α)2, we find that |α| <
√
n and c |

(
n− α2

)
. Hence, c ⩽ n, and

the contribution of this case is O(1).
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If a + c − 2s = a, then c2 − 4ac = 4n, and c ⩽ 4|n|, while if a + c − 2s = c, then
1 · 3c < a(4c− a) = 4|n|. Hence, the contribution of these both cases is O(1).

Note that every regular D(n)-triple {a, b, c} is obtained twice by this construction:
from {a, c} and from {b, c}. Thus, the total contribution of the case 2), i.e the number
of regular D(n)-triples, is

D3,n =
1

2
(D2,n(N)−N · [n is a square ] +O(1)) .

Here we use the convention that if S is any statement which can be true or false, then
the bracketed notation [S] stands for 1 if S is true, and 0 otherwise.

3) If e ⩾ 1, then

c = a+ b+
e

n
+

2abe

n2
+

2
√
(ab+ n) (ae+ n2) (be+ n2)

n2
>

2ab

n2
.

For now, let us assume that ab > n. We have N ⩾ c ⩾ 2ab
n2 > r2

n2 . Let us estimate the
number of such pairs {a, b} satisfying

ab+ n = r2, r < n
√
N.

Consider the congruence x2 ≡ n(moda). In each interval of the size a, there are at most
2ω(a)+1 solutions. Hence, the number of pairs {a, b} is bounded above by

n
√
N∑

a=1

2ω(a)+1 ·

(
n
√
N

a
+ 1

)
= 2n

√
N

n
√
N∑

a=1

2ω(a)

a
+ 2

n
√
N∑

a=1

2ω(a)

= O
(√

N log2N
)
+O(

√
N logN) by [Mur08, p. 9.3.12]

= O
(√

N log2N
)

On the other hand, if ab ⩽ n, adding at most O(n2)-pairs {a, b} to the above estimate
does not change it.

If a and b are given, then finding c is equivalent to choosing a solution of the Pellian
equation

bs2 − at2 = n(b− a).

Each solution belongs to some recursive sequence (growing exponentially). Hence, in
each sequence there are O(logN) solutions with s ⩽ N .

The number of the sequences is bounded by 2k+ω(n)+1, where k = ω(b−a) (this bound
can be found in [Duj21, p.399] and in this reference one can also find previously stated
results about Pellian equations). We have b−a ⩾ p1 · · · pk (product of first k primes) and
log b > log(b − a) > 1

2pk > 1
2k log k. The last inequalities follow by [Ros39] and [RS62,

Theorem 4, Theorem 18] for pk > 16. For products of smallest k ∈ {2, . . . , 6} primes,
one confirms it directly, while for k = 1, the intermediate inequality does not hold, but
log p1 = log 2 > 1

2 log 1 holds.
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Therefore, we can conclude that

2k < 2
2 log b
log k < b

1.4
log k .

If 2k ⩾ b0.01, then we have k < e140 and b < 2100·e
140 , hence, the number of such

sequences is O(1). If 2k < b0.01, then the number of the corresponding sequences is less
that 2 · 2ω(n) ·N0.01. Therefore, the contribution of the case 3) is

O
(√

N log2N ·N0.01 · logN
)
= O

(
N0.52

)
.

□

Remark 22. For n = 1, we can refine the estimate for the number of irregular triples. Indeed,
if {a, b, c} is an irregular D(1)-triple, then there exists 0 < c0 < c

4ab such that {a, b, c0, c} is a
regular D(1)-quadruple (c0 = d− in the notation of [Duj04]). Hence, the number of irregular
D(1)-triples is bounded by D4(N) = O( 3

√
N logN) = O

(
N0.34

)
([Duj08], Theorem 3]).

Before proceeding, let us record a gap principle for irregular D(n)-triples which we have proven
as a corollary – we believe it might be useful for studying D(n)-sets.

Corollary 23. If an irregular D(n)-triple {a, b, c} satisfies a < b < c and c > n2, then

c ⩾
2

n2
ab.

Proof. Since {a, b, c} is a D(n)-triple, there are positive integers r, s, t satisfying ab+n = r2, ac+

n = s2, bc+ n = t2. According to [Duj02, Lemma 3], there exist integers e, x, y, z such that

ae+ n2 = x2, be+ n2 = y2, ce+ n2 = z2,

and

(8) c = a+ b+
e

n
+

2

n2
(abe+ rxy),

where x = at − rs, y = bs − rt (and z = cr − st). We show that both x and y are negative.
Namely, x being negative is equivalent to at < rs, i. e. a

√
bc+ n <

√
a2bc+ n(ab+ ac) + n2.

Dividing by a and squaring gives an equivalent inequality bc + n(b+c)
a +

(
n
a

)2
> bc + n, which

holds since c > a. Analogously one shows that y is negative.
We now show that c > n2 implies e ⩾ 0. Since ce+ n2 = z2 is non-negative, this means that

e ⩾ −n2

c > −1. So e ⩾ 0 because it’s an integer.
Irregularity of our triple implies that e ̸= 0. This was already noted in [Duj02], but in the

context of quadruples, so we provide the proof. Assuming e = 0 implies x = −n, y = −n, so
c = a+ b+ 2r, which would imply that {a, b, c} is regular, contrary to our assumption.

Therefore, e ⩾ 1. Now equation (8) implies that c ⩾ 2 ab
n2 . □

Remark 24. For positive n, since (rxy)2 ⩾ (ab)2, one can improve this lower bound to c ⩾ 4
n2ab.

Theorem 21, together with Theorem 1 and Theorem 2, immediately gives the following asymp-
totics for the number of D(q)-triples.
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Corollary 25. Let q be an integer (such that |q| is prime or 1). The number of D(q)-triples is
given by the following.

a) For even q,

D3,2(N) ∼ L(1, χ8,5)

2ζ(2)
·N, while D3,−2(N) ∼ L(1, χ8,3)

2ζ(2)
·N.

b) Let q ≡ 3 (mod 4) such that |q| is prime, or q = −1. Then

D3,q(N) ∼
L(1, χ4|q|,4|q|−1)

2ζ(2)
·N.

c) Let q ≡ 5 (mod 8) such that |q| is prime. Then

D3,q(N) ∼
L(1, χ|q|,|q|−1)

ζ(2)
·N.

d) Let q ≡ 1 (mod 8) such that |q| is prime. Then

D3,q(N) ∼
L(1, χ|q|,|q|−1)

2ζ(2)
·N.
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Appendix A. Arithmetic functions and their Dirichlet series

To make the paper more self-contained, we collect the basic definitions, notations and results
here. Interested reader can find more background in books [Apo98] and [MV06].

Definition 2. A Dirichlet character of modulus m (where m is a positive integer) is a function
χ : Z → C which satisfies

1) χ(a)χ(b) = χ(ab),

2) χ(a+m) = χ(a),

3) χ(a)

{
= 0, if gcd(a,m) > 1

̸= 0, if gcd(a,m) = 1.

Our paper uses the following Dirichlet characters:

1) χ8,1, χ8,3 and χ8,5, of modulus 8, as well as χ4,3 of modulus 4 defined by
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1 3 5 7

χ8,1 1 1 1 1

χ8,3 1 1 -1 -1

χ8,5 1 -1 -1 1

χ4,3 1 -1
2) For any prime q ≡ 1 (mod 4) we denote

χq,q−1(a) =
(q
a

)
3) For any prime q ≡ 3 (mod 4) we denote

χ4q,4q−1(a) =
(q
a

)
,

where
( q
a

)
is the Kronecker symbol.

Definition 3. A Dirichlet L-series is a function of the form

L(s, χ) =

∞∑
n=1

χ(n)

ns
,

where χ is a Dirichlet character and s is a complex variable with real part greater than one. By
analytic continuation, this function can be extended to a meromorphic function on the whole
plane and is then called a Dirichlet L-function, also denoted by L(s, χ).

Dirichlet had shown that L(s, χ) is non-zero at s = 1. Moreover, the L-function is entire
whenever χ is not principal, as is the case for all the Dirichlet characters in our paper which we
evaluate at s = 1.

Lemma 26. Let G be some set of primes, and b(n) = 2ω(n) ·λG(n), where λG(n) = 1 if all prime
factors of n are in G, and 0 otherwise. Then |b(n)| = no(1).

Proof. Assume ω(n) = k for some k ∈ N. If we denote the j-th prime number by pj then b(n)
n is

at most
2k∏k
j=1 pj

, which tends to zero as k → ∞. □

Corollary 27. With notation as in Lemma 26, the Dirichlet series β of b(n) and the Dirichlet
series ζG of λG are both holomorphic in the region ℜs > 1.

Theorem 28 ([MV06, Theorem 1.9]). If f is multiplicative and
∞∑
n=1

|f(n)|
nδ

< ∞, where δ is the

real part of s, then
∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+

f(p2)

p2s
+ . . .

)
.



REFERENCES 19

References

[Apo98] T. M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in
Mathematics. Springer New York, 1998 (cit. on p. 17).

[Ces88] E. Cesàro. “Sur la convergence des séries”. In: Nouvelles annales de mathématiques
Series 3 (7 1888), pp. 49–59 (cit. on p. 13).

[Duj02] A. Dujella. “On the size of Diophantine m-tuples”. In: Math. Proc. Cambridge Philos.
Soc. 132.1 (2002), pp. 23–33 (cit. on pp. 14, 16).

[Duj04] A. Dujella. “There are only finitely many Diophantine quintuples”. In: J. Reine
Angew. Math. 566 (2004), pp. 183–214 (cit. on p. 16).

[Duj08] A. Dujella. “On the number of Diophantine m-tuples”. In: Ramanujan J. 15.1 (2008),
pp. 37–46 (cit. on pp. 1, 4, 16).

[Duj21] A. Dujella. Number theory. Školska knjiga, Zagreb, 2021, pp. x+621 (cit. on p. 15).
[Ike31] S. Ikehara. “An extension of Landau’s theorem in the analytic theory of numbers”.

In: Journal of Mathematics and Physics of the Massachusetts Institute of Technology
10 (1931), pp. 1–12 (cit. on p. 7).

[Lao10] H. Lao. “On the Number of Diophantine m-tuples”. In: Advances in Mathematics
(China) 39 (3 2010), pp. 277–282 (cit. on p. 1).

[LMFDB] T. LMFDB Collaboration. The L-functions and modular forms database. http://
www.lmfdb.org. [Online; accessed 10 November 2022]. 2022 (cit. on p. 2).

[MS11] G. Martin and S. Sitar. “Erdős-Turán with a moving target, equidistribution of roots
of reducible quadratics, and Diophantine quadruples”. In: Mathematika 57.1 (2011),
pp. 1–29 (cit. on p. 1).

[MV06] H. L. Montgomery and R. C. Vaughan. Multiplicative Number Theory I: Classical
Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press,
2006 (cit. on pp. 5, 17, 18).

[Mur08] M. R. Murty. Problems in Analytic Number Theory. Graduate Texts in Mathematics.
Springer New York, 2008 (cit. on p. 15).

[Ros39] B. Rosser. “The n-th Prime is Greater than n log n”. In: Proc. Lond. Math. Soc. (2)
S2-45.1 (1939), pp. 21–44. eprint: https://londmathsoc.onlinelibrary.wiley.
com/doi/pdf/10.1112/plms/s2-45.1.21 (cit. on p. 15).

[RS62] J. B. Rosser and L. Schoenfeld. “Approximate formulas for some functions of prime
numbers”. In: Illinois J. Math. 6 (1962), pp. 64–94 (cit. on p. 15).

[Sto85] O. Stolz. Vorlesungen über allgemeine Arithmetik: nach den Neueren Ansichten. 1885
(cit. on p. 13).

[Vin03] I. M. Vinogradov. Elements of Number Theory. Dover phoenix editions. Dover Pub-
lications, 2003 (cit. on pp. 3, 11).

http://www.lmfdb.org
http://www.lmfdb.org
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-45.1.21
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-45.1.21


20 REFERENCES

Department of Mathematics, Faculty of Civil Engineering, University of Zagreb, Croatia

Email address: nikola.adzaga@grad.unizg.hr

Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia

Email address: goran.drazic@pbf.unizg.hr

Department of Mathematics, Faculty of Science, University of Zagreb, Croatia

Email address: duje@math.hr

Department of Computer Science, University of Debrecen, Hungary

Email address: petho.attila@unideb.hu


	1. Introduction
	2. Reducing the problem to congruences
	3. Estimating the number of D(2)-pairs and D(-2)-pairs
	3.1. Existence and the number of congruence solutions
	3.2. Dirichlet series manipulation
	3.3. The total number of solutions of all congruences with odd moduli
	3.4. The asymptotics of D2,2(N) and D2,-2(N)

	4. Estimating the number of D(q)-pairs for odd primes q
	4.1. Existence of congruence solutions
	4.2. The number of congruence equation solutions
	4.3. Sets of good primes Gq for various q with accompanying arithmetic functions
	4.4. The asymptotics of D2,q(N) for prime |q|

	5. D(n)-triples
	6. Acknowledgments
	Appendix A. Arithmetic functions and their Dirichlet series
	References

