ALGORITHMIC ASPECTS OF ELLIPTIC CURVES

22. 5. 2007.
1. Let x_{1}, x_{2}, x_{3} be the zeros of the polynomial $f(x)=x^{3}+a x+b$. Prove that

$$
\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2}=-4 a^{3}-27 b^{2} .
$$

2. Find the order of the point $P=(3,8)$ on the elliptic curve $y^{2}=x^{3}-43 x+166$ over \mathbb{Q}.
3. Find all points of finite order and describe the structure of the torsion group for the following curves over \mathbb{Q} :
a) $y^{2}=x^{3}-x$,
b) $y^{2}=x^{3}+4$,
c) $y^{2}=x^{3}+x+2$,
d) $y^{2}=x^{3}-43 x+166$.
4. For the polynomial
$p(x)=(x-18)(x-16)(x-15)(x-13)(x-12)(x-11)(x-10)(x-9)(x+15)(x+16)(x+17)(x+18)$,
find polynomials $q(x), r(x) \in \mathbb{Q}[x]$ such that $p(x)=q^{2}(x)-r(x)$ and $\operatorname{deg} r \leq 4$.
5. For each $n \in\{2,3,4,5,6,7,8,9,10\}$, find an elliptic curve E_{n} over \mathbb{F}_{5} such that $\# E_{n}\left(\mathbb{F}_{5}\right)=n$.
6. For the point $P=(0,376)$ on the elliptic curve $y^{2}=x^{3}-x+188$ over \mathbb{F}_{751}, compute [100]P.
7. The elliptic curve E over \mathbb{F}_{151} is given by the equation $y^{2}=x^{3}+x+4$. Compute $\# E\left(\mathbb{F}_{151}\right)$ by Shanks-Mestre method, using the point $P=(0,2)$.
8. The elliptic curve E over \mathbb{F}_{11} is given by the equation $y^{2}=x^{3}+x+6$.
a) Prove that $\alpha=(2,7)$ is a generator of the group $E\left(\mathbb{F}_{11}\right)$.
b) Using Menezes-Vanstone cryptosystem with public keys E, α and $\beta=(7,2)$, encrypt the plaintext $\left(x_{1}, x_{2}\right)=(9,1)$, using $k=6$.
