ALGORITHMIC ASPECTS OF ELLIPTIC CURVES

22. 5. 2007.

1. Let x_1, x_2, x_3 be the zeros of the polynomial $f(x) = x^3 + ax + b$. Prove that

$$(x_1 - x_2)^2 (x_1 - x_3)^2 (x_2 - x_3)^2 = -4a^3 - 27b^2.$$

- 2. Find the order of the point P = (3, 8) on the elliptic curve $y^2 = x^3 43x + 166$ over \mathbb{Q} .
- 3. Find all points of finite order and describe the structure of the torsion group for the following curves over Q:

a)
$$y^2 = x^3 - x$$
, b) $y^2 = x^3 + 4$, c) $y^2 = x^3 + x + 2$, d) $y^2 = x^3 - 43x + 166x$

4. For the polynomial

$$p(x) = (x-18)(x-16)(x-15)(x-13)(x-12)(x-11)(x-10)(x-9)(x+15)(x+16)(x+17)(x+18)$$

find polynomials $q(x), r(x) \in \mathbb{Q}[x]$ such that $p(x) = q^2(x) - r(x)$ and deg $r \le 4$.

- 5. For each $n \in \{2, 3, 4, 5, 6, 7, 8, 9, 10\}$, find an elliptic curve E_n over \mathbb{F}_5 such that $\#E_n(\mathbb{F}_5) = n$.
- 6. For the point P = (0, 376) on the elliptic curve $y^2 = x^3 x + 188$ over \mathbb{F}_{751} , compute [100]P.
- 7. The elliptic curve E over \mathbb{F}_{151} is given by the equation $y^2 = x^3 + x + 4$. Compute $\#E(\mathbb{F}_{151})$ by Shanks-Mestre method, using the point P = (0, 2).
- 8. The elliptic curve E over \mathbb{F}_{11} is given by the equation $y^2 = x^3 + x + 6$.
 - a) Prove that $\alpha = (2,7)$ is a generator of the group $E(\mathbb{F}_{11})$.
 - b) Using Menezes-Vanstone cryptosystem with public keys E, α and $\beta = (7,2)$, encrypt the plaintext $(x_1, x_2) = (9, 1)$, using k = 6.

Andrej Dujella