Free field realization and weight representations of the twisted Heisenberg-Virasoro algebra Croatian Science Fundation grant 2634

Gordan Radobolja

Faculty of Science, University of Split, Croatia

Jun 2015

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}, weight representations.

The twisted HeisenbergVirasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}, weight representations.
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.

The twisted Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}, weight representations.
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$.
- Free-field realization of Heisenberg-Virasoro vertex-algebra.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}, weight representations.
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
- Free-field realization of Heisenberg-Virasoro vertex-algebra.
- Explicit formulas for singular vectors.

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}, weight representations.
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
- Free-field realization of Heisenberg-Virasoro vertex-algebra.
- Explicit formulas for singular vectors.
- Irreduciblity of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ solved. Fusion rules.

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}, weight representations.
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
- Free-field realization of Heisenberg-Virasoro vertex-algebra.
- Explicit formulas for singular vectors.
- Irreduciblity of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ solved. Fusion rules.
- $W(2,2)$-structure on \mathcal{H}-modules.

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}, weight representations.
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$.
- Free-field realization of Heisenberg-Virasoro vertex-algebra.
- Explicit formulas for singular vectors.
- Irreduciblity of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ solved. Fusion rules.
- $W(2,2)$-structure on \mathcal{H}-modules.
- D. Adamović, G. R. Free fields realization of the twisted Heisenberg-Virasoro algebra at level zero and its applications, JPAA (2015)

The twisted Heisenberg-Virasoro algebra

\mathcal{H} is a complex Lie algebra with a basis $\left\{L(n), I(n), C_{L}, C_{l}, C_{L, I}: n \in \mathbb{Z}\right\}$ and a Lie bracket

$$
\begin{aligned}
& {[L(n), L(m)]=(n-m) L(n+m)+\delta_{n,-m} \frac{n^{3}-n}{12} C_{L},} \\
& {[L(n), I(m)]=-m I(n+m)-\delta_{n,-m}\left(n^{2}+n\right) C_{L I},} \\
& {[I(n), I(m)]=n \delta_{n,-m} C_{l},} \\
& {\left[\mathcal{H}, C_{L}\right]=\left[\mathcal{H}, C_{L I}\right]=\left[\mathcal{H}, C_{I}\right]=0 .}
\end{aligned}
$$

Introduction
The twisted HeisenbergVirasoro algebra

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The twisted Heisenberg-Virasoro algebra

\mathcal{H} is a complex Lie algebra with a basis $\left\{L(n), I(n), C_{L}, C_{l}, C_{L, I}: n \in \mathbb{Z}\right\}$ and a Lie bracket

$$
\begin{aligned}
& {[L(n), L(m)]=(n-m) L(n+m)+\delta_{n,-m} \frac{n^{3}-n}{12} C_{L},} \\
& {[L(n), I(m)]=-m I(n+m)-\delta_{n,-m}\left(n^{2}+n\right) C_{L I},} \\
& {[I(n), I(m)]=n \delta_{n,-m} C_{l},} \\
& {\left[\mathcal{H}, C_{L}\right]=\left[\mathcal{H}, C_{L I}\right]=\left[\mathcal{H}, C_{I}\right]=0 .}
\end{aligned}
$$

Introduction
The twisted HeisenbergVirasoro algebra

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a

Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The twisted Heisenberg-Virasoro algebra

\mathcal{H} is a complex Lie algebra with a basis $\left\{L(n), I(n), C_{L}, C_{l}, C_{L, I}: n \in \mathbb{Z}\right\}$ and a Lie bracket

$$
\begin{aligned}
& {[L(n), L(m)]=(n-m) L(n+m)+\delta_{n,-m} \frac{n^{3}-n}{12} C_{L},} \\
& {[L(n), I(m)]=-m I(n+m)-\delta_{n,-m}\left(n^{2}+n\right) C_{L I},} \\
& {[I(n), I(m)]=n \delta_{n,-m} C_{I},} \\
& {\left[\mathcal{H}, C_{L}\right]=\left[\mathcal{H}, C_{L I}\right]=\left[\mathcal{H}, C_{I}\right]=0 .}
\end{aligned}
$$

Introduction
The twisted HeisenbergVirasoro algebra

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

- $V\left(c_{L}, c_{l}, c_{L, l}, h, h_{l}\right)$ - the Verma module with highest weight $\left(h, h_{l}\right)$ and central charge ($\left.c_{L}, c_{l}, c_{L, l}\right)$.

Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

- $V\left(c_{L}, c_{l}, c_{L, I}, h, h_{l}\right)$ - the Verma module with highest weight $\left(h, h_{l}\right)$ and central charge ($\left.c_{L}, c_{l}, c_{L, l}\right)$.
- We study representation at level zero $\left(c_{l}=0\right)$.

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

- $V\left(c_{L}, c_{l}, c_{L, l}, h, h_{l}\right)$ - the Verma module with highest weight (h, h_{l}) and central charge ($c_{L}, c_{l}, c_{L, l}$).
- We study representation at level zero $\left(c_{l}=0\right)$.
- Y. Billig, Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canadian Math. Bulletin, 46 (2003)

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

- $V\left(c_{L}, c_{l}, c_{L, l}, h, h_{l}\right)$ - the Verma module with highest weight (h, h_{l}) and central charge ($c_{L}, c_{l}, c_{L, l}$).
- We study representation at level zero $\left(c_{l}=0\right)$.
- Y. Billig, Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canadian Math. Bulletin, 46 (2003)
- Appears in the representation theory of toroidal Lie algebras.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

Theorem (Y. Billig)
Assume that $c_{I}=0$ and $c_{L I} \neq 0$.
(i) If $\frac{h_{I}}{c_{L I}}-1 \notin \mathbb{Z}^{*}$, then $V\left(c_{L}, 0, c_{L I}, h, h_{l}\right)$ is irreducible.

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

Theorem (Y. Billig)
Assume that $c_{I}=0$ and $c_{L I} \neq 0$.
(i) If $\frac{h_{I}}{c_{L I}}-1 \notin \mathbb{Z}^{*}$, then $V\left(c_{L}, 0, c_{L I}, h, h_{l}\right)$ is irreducible.
(ii) If $\frac{h_{I}}{c_{L I}}-1 \in \mathbb{Z}^{*}$, then $V\left(c_{L}, 0, c_{L I}, h, h_{l}\right)$ has a singular vector u at level $p=\left|\frac{h_{1}}{c_{L I}}-1\right|$.

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

Theorem (Y. Billig)
Assume that $c_{I}=0$ and $c_{L I} \neq 0$.
(i) If $\frac{h_{I}}{c_{L I}}-1 \notin \mathbb{Z}^{*}$, then $V\left(c_{L}, 0, c_{L I}, h, h_{l}\right)$ is irreducible.
(ii) If $\frac{h_{I}}{c_{L I}}-1 \in \mathbb{Z}^{*}$, then $V\left(c_{L}, 0, c_{L I}, h, h_{l}\right)$ has a singular vector u at level $p=\left|\frac{h_{1}}{c_{L I}}-1\right|$.

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
The quotient module

$$
L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)=V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) / U(\mathcal{H}) u
$$

is irreducible.

Intermediate series

Define an \mathcal{H}-module structure on Virasoro intermediate series:

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Intermediate series

Define an \mathcal{H}-module structure on Virasoro intermediate

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Intermediate series

Define an \mathcal{H}-module structure on Virasoro intermediate

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Intermediate series

Define an \mathcal{H}-module structure on Virasoro intermediate series:
Let $\alpha, \beta, F \in \mathbb{C}$ define $V_{\alpha, \beta, F}=\bigoplus_{n \in \mathbb{Z}} \mathbb{C} v_{n}$ with Lie bracket

$$
\begin{aligned}
L(n) v_{m} & =-(m+\alpha+\beta+n \beta) v_{m+n} \\
I(n) v_{m} & =F v_{m+n} \\
C_{L} v_{m} & =C_{l} v_{m}=C_{L, I} v_{m}=0 .
\end{aligned}
$$

As usual,

- $V_{\alpha, \beta, F} \cong V_{\alpha+k, \beta, F}$ for $k \in \mathbb{Z}$,
- $V_{\alpha, \beta, F}$ is reducible if and only if $\alpha \in \mathbb{Z}, \beta \in\{0,1\}$ and $F=0$,

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Intermediate series

Define an \mathcal{H}-module structure on Virasoro intermediate series:
Let $\alpha, \beta, F \in \mathbb{C}$ define $V_{\alpha, \beta, F}=\bigoplus_{n \in \mathbb{Z}} \mathbb{C} v_{n}$ with Lie bracket

$$
\begin{aligned}
L(n) v_{m} & =-(m+\alpha+\beta+n \beta) v_{m+n} \\
I(n) v_{m} & =F v_{m+n} \\
C_{L} v_{m} & =C_{l} v_{m}=C_{L, I} v_{m}=0 .
\end{aligned}
$$

As usual,

- $V_{\alpha, \beta, F} \cong V_{\alpha+k, \beta, F}$ for $k \in \mathbb{Z}$,
- $V_{\alpha, \beta, F}$ is reducible if and only if $\alpha \in \mathbb{Z}, \beta \in\{0,1\}$ and $F=0$,
- $V_{0,0,0}^{\prime}:=V / \mathbb{C} v_{0}, V_{0,1,0}^{\prime}:=\underset{n \neq-1}{\bigoplus} \mathbb{C} v_{n}$ and $V_{\alpha, \beta, F}^{\prime}:=V_{\alpha, \beta, F}$ otherwise.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducible Harish-Chandra modules

Theorem (Lu, R., Zhao, K.)
An irreducible weight \mathcal{H}-module with finite-dimensional weight spaces is isomorphic either to a highest (or lowest) weight module, or to $V_{\alpha, \beta, F}^{\prime}$ for some $\alpha, \beta, F \in \mathbb{C}$.

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducible Harish-Chandra modules

Theorem (Lu, R., Zhao, K.)
An irreducible weight \mathcal{H}-module with finite-dimensional weight spaces is isomorphic either to a highest (or lowest) weight module, or to $V_{\alpha, \beta, F}^{\prime}$ for some $\alpha, \beta, F \in \mathbb{C}$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
What about modules with infinite-dimensional weight spaces?

Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Tensor product modules

Consider $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ module:

$$
\begin{aligned}
L(n)\left(v_{k} \otimes x\right) & =L(n) v_{k} \otimes x+v_{k} \otimes L(n) x, \\
I(m)\left(v_{k} \otimes x\right) & =F_{v_{k}} \otimes x+v_{k} \otimes I(m) x, \\
C_{L}\left(v_{k} \otimes x\right) & =c_{L}\left(v_{k} \otimes x\right), \\
C_{I}\left(v_{k} \otimes x\right) & =0 \\
C_{L, I}\left(v_{k} \otimes x\right) & =c_{L, I}\left(v_{k} \otimes x\right) .
\end{aligned}
$$

Fusion rules and

Irreducibility of a

Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Tensor product modules

Consider $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ module:

$$
\begin{aligned}
L(n)\left(v_{k} \otimes x\right) & =L(n) v_{k} \otimes x+v_{k} \otimes L(n) x, \\
I(m)\left(v_{k} \otimes x\right) & =F v_{k} \otimes x+v_{k} \otimes I(m) x, \\
C_{L}\left(v_{k} \otimes x\right) & =c_{L}\left(v_{k} \otimes x\right), \\
C_{I}\left(v_{k} \otimes x\right) & =0 \\
C_{L, I}\left(v_{k} \otimes x\right) & =c_{L, I}\left(v_{k} \otimes x\right) .
\end{aligned}
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
To classify irreducible modules $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ we need more detailed formulas for singular vectors.

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Heisenberg-Virasoro vertex-algebra

Irreducible \mathcal{H}-module $L\left(c_{L}, 0, c_{L, I}, 0,0\right)$ has the structure of vertex operator algebra which we denote by $L^{\mathcal{H}}\left(c_{L}, c_{L}, l\right)$.

The Heisenberg-Virasoro vertex-algebra

Irreducible \mathcal{H}-module $L\left(c_{L}, 0, c_{L, I}, 0,0\right)$ has the structure of vertex operator algebra which we denote by $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$.
Theorem (Y. Billig)
Let $c_{L, I} \neq 0$. Then $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ is a simpe VOA, and
$V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ and $L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ are $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules.

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Heisenberg-Virasoro vertex-algebra

Irreducible \mathcal{H}-module $L\left(c_{L}, 0, c_{L, I}, 0,0\right)$ has the structure of vertex operator algebra which we denote by $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$.
Theorem (Y. Billig)
Let $c_{L, I} \neq 0$. Then $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ is a simpe VOA, and $V\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$ and $L\left(c_{L}, 0, c_{L, I}, h, h h_{l}\right)$ are $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules.

- $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ can be realized as a subalgebra of the Heisenberg vertex algebra $M(1)$.

The Heisenberg-Virasoro vertex-algebra

Irreducible \mathcal{H}-module $L\left(c_{L}, 0, c_{L, I}, 0,0\right)$ has the structure of vertex operator algebra which we denote by $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$.
Theorem (Y. Billig)
Let $c_{L, I} \neq 0$. Then $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ is a simpe VOA, and
$V\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$ and $L\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$ are $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules.

- $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ can be realized as a subalgebra of the Heisenberg vertex algebra $M(1)$.
- $M(1)$-modules $M(1, \gamma)$ become $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules, and also \mathcal{H}-modules.

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Heisenberg-Virasoro vertex-algebra

Irreducible \mathcal{H}-module $L\left(c_{L}, 0, c_{L, I}, 0,0\right)$ has the structure of vertex operator algebra which we denote by $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$.
Theorem (Y. Billig)
Let $c_{L, I} \neq 0$. Then $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ is a simpe VOA, and $V\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$ and $L\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$ are $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules.

- $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ can be realized as a subalgebra of the Heisenberg vertex algebra $M(1)$.
- $M(1)$-modules $M(1, \gamma)$ become $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules, and also \mathcal{H}-modules.
- Construction of a screening operator will give us realization of certain irr weight modules.

Heisenberg vertex-algebra

- Let $L=\mathbb{Z} \alpha+\mathbb{Z} \beta$ be a hyperbolic lattice such that $\langle\alpha, \alpha\rangle=-\langle\beta, \beta\rangle=1,\langle\alpha, \beta\rangle=0$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg vertex-algebra

- Let $L=\mathbb{Z} \alpha+\mathbb{Z} \beta$ be a hyperbolic lattice such that $\langle\alpha, \alpha\rangle=-\langle\beta, \beta\rangle=1,\langle\alpha, \beta\rangle=0$.
- Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ be an abelian Lie algebra and $\widehat{\mathfrak{h}}=\mathbb{C}\left[t, t^{-1}\right] \otimes \mathfrak{h} \oplus \mathbb{C} c$ its affinization.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg vertex-algebra

- Let $L=\mathbb{Z} \alpha+\mathbb{Z} \beta$ be a hyperbolic lattice such that $\langle\alpha, \alpha\rangle=-\langle\beta, \beta\rangle=1,\langle\alpha, \beta\rangle=0$.
- Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ be an abelian Lie algebra and $\widehat{\mathfrak{h}}=\mathbb{C}\left[t, t^{-1}\right] \otimes \mathfrak{h} \oplus \mathbb{C} c$ its affinization.
- For $\gamma \in \mathfrak{h}$ consider $\widehat{\mathfrak{h}}$-module

$$
M(1, \gamma):=U(\widehat{\mathfrak{h}}) \otimes_{U(\mathbb{C}[t] \otimes \mathfrak{h} \oplus \mathbb{C} c)} \mathbb{C}
$$

where $t \mathbb{C}[t] \otimes \mathfrak{h}$ acts trivially on $\mathbb{C}, \delta \in \mathfrak{h}$ acts by $\langle\delta, \gamma\rangle$ and c acts as 1 .

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg vertex-algebra

- Let $L=\mathbb{Z} \alpha+\mathbb{Z} \beta$ be a hyperbolic lattice such that $\langle\alpha, \alpha\rangle=-\langle\beta, \beta\rangle=1,\langle\alpha, \beta\rangle=0$.
- Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ be an abelian Lie algebra and $\widehat{\mathfrak{h}}=\mathbb{C}\left[t, t^{-1}\right] \otimes \mathfrak{h} \oplus \mathbb{C} c$ its affinization.
- For $\gamma \in \mathfrak{h}$ consider $\widehat{\mathfrak{h}}$-module

$$
M(1, \gamma):=U(\widehat{\mathfrak{h}}) \otimes_{U(\mathbb{C}[t] \otimes \mathfrak{h} \oplus \mathbb{C} c)} \mathbb{C}
$$

where $t \mathbb{C}[t] \otimes \mathfrak{h}$ acts trivially on $\mathbb{C}, \delta \in \mathfrak{h}$ acts by $\langle\delta, \gamma\rangle$ and c acts as 1 .

- Denote by e^{γ} a highest weight vector in $M(1, \gamma)$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg vertex-algebra

- Let $L=\mathbb{Z} \alpha+\mathbb{Z} \beta$ be a hyperbolic lattice such that $\langle\alpha, \alpha\rangle=-\langle\beta, \beta\rangle=1,\langle\alpha, \beta\rangle=0$.
- Let $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ be an abelian Lie algebra and $\widehat{\mathfrak{h}}=\mathbb{C}\left[t, t^{-1}\right] \otimes \mathfrak{h} \oplus \mathbb{C} c$ its affinization.
- For $\gamma \in \mathfrak{h}$ consider $\widehat{\mathfrak{h}}$-module

$$
M(1, \gamma):=U(\widehat{\mathfrak{h}}) \otimes_{U(\mathbb{C}[t] \otimes \mathfrak{h} \oplus \mathbb{C} c)} \mathbb{C}
$$

where $t \mathbb{C}[t] \otimes \mathfrak{h}$ acts trivially on $\mathbb{C}, \delta \in \mathfrak{h}$ acts by $\langle\delta, \gamma\rangle$ and c acts as 1 .

- Denote by e^{γ} a highest weight vector in $M(1, \gamma)$.
- $M(1):=M(1,0)$ is a vertex-algebra:

$$
\begin{aligned}
& h(n)=t^{n} \otimes h, \quad \text { for } h \in \mathfrak{h}, \\
& h(z)=\sum_{n \in \mathbb{Z}} h(n) z^{-n-1}
\end{aligned}
$$

and $M(1, \gamma)$ for $\gamma \in \mathfrak{h}$, are irreducible $M(1)$-modules.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Realization of the Heisenberg-Virasoro vertex

 algebra- Define a Heisenberg vector

$$
I=\alpha(-1)+\beta(-1) \in M(1)
$$

and a Virasoro vector
$\omega=\frac{1}{2} \alpha(-1)^{2}-\frac{1}{2} \beta(-1)^{2}+\lambda \alpha(-2)+\mu \beta(-2) \in M(1)$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Realization of the Heisenberg-Virasoro vertex

 algebra- Define a Heisenberg vector

$$
I=\alpha(-1)+\beta(-1) \in M(1)
$$

and a Virasoro vector
$\omega=\frac{1}{2} \alpha(-1)^{2}-\frac{1}{2} \beta(-1)^{2}+\lambda \alpha(-2)+\mu \beta(-2) \in M(1)$

- Then

$$
\begin{aligned}
& I(z)=Y(I, z)=\sum_{n \in \mathbb{Z}} I(n) z^{-n-1} \quad \text { and } \\
& L(z)=Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-2}
\end{aligned}
$$

generate the Heisenberg-Virasoro vertex algebra $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ in $M(1)$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Realization of the twisted Heisenberg-Virasoro algebra

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
i.e.

$$
\lambda=\frac{2-c_{L}}{24 c_{L, I}}+\frac{1}{2} c_{L, I}, \quad \mu=\frac{2-c_{L}}{24 c_{L, I}}-\frac{1}{2} c_{L, I}
$$

Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Realization of the twisted Heisenberg-Virasoro algebra

We get the twisted Heisenberg-Virasoro Lie algebra \mathcal{H} such that

$$
c_{L}=2-12\left(\lambda^{2}-\mu^{2}\right), \quad c_{L, I}=\lambda-\mu
$$

i.e.

$$
\lambda=\frac{2-c_{L}}{24 c_{L, I}}+\frac{1}{2} c_{L, I}, \quad \mu=\frac{2-c_{L}}{24 c_{L, I}}-\frac{1}{2} c_{L, I}
$$

Now we may use representation theory of $M(1)$ in rep theory of \mathcal{H} !

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Realization of the twisted Heisenberg-Virasoro algebra

- For every $r, s \in \mathbb{C}, e^{r \alpha+s \beta}$ is a \mathcal{H}-singular vector and $U(\mathcal{H}) e^{r \alpha+s \beta}$ is a highest weight module with the highest weight

$$
h=\Delta_{r, s}=\frac{1}{2} r^{2}-\frac{1}{2} s^{2}-\lambda r+\mu s, \quad h_{l}=r-s
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Realization of the twisted Heisenberg-Virasoro algebra

- For every $r, s \in \mathbb{C}, e^{r \alpha+s \beta}$ is a \mathcal{H}-singular vector and $U(\mathcal{H}) e^{r \alpha+s \beta}$ is a highest weight module with the highest weight

$$
h=\Delta_{r, s}=\frac{1}{2} r^{2}-\frac{1}{2} s^{2}-\lambda r+\mu s, \quad h_{l}=r-s
$$

Proposition

(i) Let $\left(h, h_{l}\right) \in \mathbb{C}^{2}, h_{l} \neq c_{L, I}$. Then there exist unique $r, s \in \mathbb{C}$ such that $e^{r \alpha+s \beta}$ is a highest weight vector of the highest weight $\left(h, h_{l}\right)$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Realization of the twisted Heisenberg-Virasoro algebra

- For every $r, s \in \mathbb{C}, e^{r \alpha+s \beta}$ is a \mathcal{H}-singular vector and $U(\mathcal{H}) e^{r \alpha+s \beta}$ is a highest weight module with the highest weight

$$
h=\Delta_{r, s}=\frac{1}{2} r^{2}-\frac{1}{2} s^{2}-\lambda r+\mu s, \quad h_{l}=r-s
$$

Proposition

(i) Let $\left(h, h_{l}\right) \in \mathbb{C}^{2}, h_{l} \neq c_{L, I}$. Then there exist unique $r, s \in \mathbb{C}$ such that $e^{r \alpha+s \beta}$ is a highest weight vector of the highest weight $\left(h, h_{l}\right)$.
(ii) For every $r, s \in \mathbb{C}$ such that $r-s=\lambda-\mu=c_{L, I}$, $e^{r \alpha+s \beta}$ is a highest weight vector of weight

$$
\left(h, h_{l}\right)=\left(\frac{c_{L}-2}{24}, c_{L, l}\right) .
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and

Irreducibility of a

Free-field realization

- Denote by $\mathcal{F}_{r, s}$ the $M(1)$-module generated by $e^{r \alpha+s \beta}$.

Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- Denote by $\mathcal{F}_{r, s}$ the $M(1)$-module generated by $e^{r \alpha+s \beta}$.
- It is also an $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module, therefore an \mathcal{H}-module.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- Denote by $\mathcal{F}_{r, s}$ the $M(1)$-module generated by $e^{r \alpha+s \beta}$.
- It is also an $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module, therefore an \mathcal{H}-module.
- There is a surjective \mathcal{H}-homomorphism

$$
\Phi: V\left(c_{L}, 0, c_{L, l}, h, h_{l}\right) \rightarrow U(\mathcal{H}) e^{r \alpha+s \beta}
$$

such that $\Phi\left(v_{h, h_{l}}\right)=e^{r \alpha+s \beta}$.

Fusion rules and

Free-field realization

- Denote by $\mathcal{F}_{r, s}$ the $M(1)$-module generated by $e^{r \alpha+s \beta}$.
- It is also an $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module, therefore an \mathcal{H}-module.
- There is a surjective \mathcal{H}-homomorphism

$$
\Phi: V\left(c_{L}, 0, c_{L, l}, h, h_{l}\right) \rightarrow U(\mathcal{H}) e^{r \alpha+s \beta}
$$

such that $\Phi\left(v_{h, h_{l}}\right)=e^{r \alpha+s \beta}$.
Proposition
Assume that $\frac{h_{I}}{c_{L, I}}-1 \notin-\mathbb{Z}_{>0}$. Then
$\mathcal{F}_{r, s} \cong V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ as $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules.

Screening operator

- $u=e^{-\frac{\alpha+\beta}{c_{L, I}}}$ is a highest weight vector of weight $(1,0)$.

Screening operator

- $u=e^{-\frac{\alpha+\beta}{c_{L, I}}}$ is a highest weight vector of weight $(1,0)$.
- Let $Q=\operatorname{Res}_{z} Y(u, z)=u_{0}$ (well defined on $\left.M(1, \gamma)\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Screening operator

- $u=e^{-\frac{\alpha+\beta}{c_{L, I}}}$ is a highest weight vector of weight $(1,0)$.
- Let $Q=\operatorname{Res}_{z} Y(u, z)=u_{0}$ (well defined on $M(1, \gamma)$).
- Screening operator Q commutes with $L(n)$ and $I(n)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Screening operator

- $u=e^{-\frac{\alpha+\beta}{c_{L, I}}}$ is a highest weight vector of weight $(1,0)$.
- Let $Q=\operatorname{Res}_{z} Y(u, z)=u_{0}$ (well defined on $M(1, \gamma)$).
- Screening operator Q commutes with $L(n)$ and $I(n)$.
- So $Q^{j} e^{r \alpha+s \beta}$ is either 0 or a singular vector.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Screening operator

- $u=e^{-\frac{\alpha+\beta}{c_{L, I}}}$ is a highest weight vector of weight $(1,0)$.
- Let $Q=\operatorname{Res}_{z} Y(u, z)=u_{0}$ (well defined on $M(1, \gamma)$).
- Screening operator Q commutes with $L(n)$ and $I(n)$.
- So $Q^{j} e^{r \alpha+s \beta}$ is either 0 or a singular vector.

Proposition

Assume that $\frac{h_{1}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$. As a
$L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module $\mathcal{F}_{r, s}$ is generated by $e^{r \alpha+s \beta}$ and a family of subsingular vectors $\left\{v_{n, p}: n \geq 1\right\}$ such that

$$
Q^{n} v_{n, p}=e^{r \alpha+s \beta-n \frac{\alpha+\beta}{c_{L, 1}}}
$$

In particular $L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)=\operatorname{ker}_{\mathcal{F}_{r, s}} Q$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Screening operator

- $u=e^{-\frac{\alpha+\beta}{c_{L, l}}}$ is a highest weight vector of weight $(1,0)$.
- Let $Q=\operatorname{Res}_{z} Y(u, z)=u_{0}$ (well defined on $M(1, \gamma)$).
- Screening operator Q commutes with $L(n)$ and $I(n)$.
- So $Q^{j} e^{r \alpha+s \beta}$ is either 0 or a singular vector.

Proposition

Assume that $\frac{h_{1}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$. As a
$L^{\mathcal{H}}\left(c_{L}, c_{L, 1}\right)$-module $\mathcal{F}_{r, s}$ is generated by $e^{r \alpha+s \beta}$ and a family of subsingular vectors $\left\{v_{n, p}: n \geq 1\right\}$ such that

$$
Q^{n} v_{n, p}=e^{r \alpha+s \beta-n \frac{\alpha+\beta}{c_{L, 1}}}
$$

In particular $L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)=\operatorname{ker}_{\mathcal{F}_{r, S}} Q$.

- For $r=s=-\frac{1}{c_{L, l}}$ we get $L^{\mathcal{H}}\left(c_{L}, c_{L, l}\right)=\operatorname{ker}_{M(1)} Q$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Schur polynomials

- Schur polynomials $S_{r}\left(x_{1}, x_{2}, \cdots\right)$ in variables x_{1}, x_{2}, \ldots are defined by the following equation:

$$
\exp \left(\sum_{n=1}^{\infty} \frac{x_{n}}{n} y^{n}\right)=\sum_{r=0}^{\infty} S_{r}\left(x_{1}, x_{2}, \cdots\right) y^{r}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Schur polynomials

- Schur polynomials $S_{r}\left(x_{1}, x_{2}, \cdots\right)$ in variables x_{1}, x_{2}, \ldots are defined by the following equation:

$$
\exp \left(\sum_{n=1}^{\infty} \frac{x_{n}}{n} y^{n}\right)=\sum_{r=0}^{\infty} S_{r}\left(x_{1}, x_{2}, \cdots\right) y^{r}
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products

- Also

$$
S_{r}\left(x_{1}, x_{2}, \cdots\right)=\frac{1}{r!}\left|\begin{array}{ccccc}
x_{1} & x_{2} & \cdots & & x_{r} \\
-r+1 & x_{1} & x_{2} & \cdots & x_{r-1} \\
0 & -r+2 & x_{1} & \cdots & x_{r-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -1 & x_{1}
\end{array}\right|
$$

Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Schur polynomials

- Schur polynomials $S_{r}\left(x_{1}, x_{2}, \cdots\right)$ in variables x_{1}, x_{2}, \ldots are defined by the following equation:

$$
\exp \left(\sum_{n=1}^{\infty} \frac{x_{n}}{n} y^{n}\right)=\sum_{r=0}^{\infty} S_{r}\left(x_{1}, x_{2}, \cdots\right) y^{r}
$$

Structure of Verma modules

Intermediate series
Tensor products

- Also

$$
S_{r}\left(x_{1}, x_{2}, \cdots\right)=\frac{1}{r!}\left|\begin{array}{ccccc}
x_{1} & x_{2} & \cdots & & x_{r} \\
-r+1 & x_{1} & x_{2} & \cdots & x_{r-1} \\
0 & -r+2 & x_{1} & \cdots & x_{r-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -1 & x_{1}
\end{array}\right|
$$

- Schur polynomials naturally appear in formulas for vertex operator for lattice vertex algebras.

Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Schur polynomials and singular vectors

Theorem
Assume that $c_{L, I} \neq 0$ and $p=\frac{h_{l}}{c_{L, l}}-1 \in \mathbb{Z}_{>0}$. Then $\Omega v_{h, h_{l}}$ where

$$
\Omega=S_{p}\left(-\frac{I(-1)}{c_{L, I}},-\frac{I(-2)}{c_{L, I}}, \ldots,-\frac{I(-p)}{c_{L, I}}\right)
$$

is a singular vector of weight p in the Verma module $V\left(c_{L}, 0, c_{L, I}, h,(1+p) c_{L, I}\right)$.

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Schur polynomials and singular vectors

Theorem
Assume that $c_{L, I} \neq 0$ and $p=1-\frac{h_{1}}{c_{L, I}} \in \mathbb{Z}_{>0}$. Then $\Lambda v_{h, h_{l}}$ where

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

$$
\Lambda=\sum_{i=0}^{p-1} S_{i}\left(\frac{I(-1)}{c_{L, I}}, \ldots, \frac{I(-i)}{c_{L, I}}\right) L_{i-p}+
$$

$\sum_{i=0}^{p-1}\left(\frac{h}{p}+\frac{c_{L}-2}{24} \frac{(p-1)^{2}-p i}{p}\right) S_{i}\left(\frac{I(-1)}{c_{L, I}}, \ldots, \frac{I(-i)}{c_{L, I}}\right) \frac{I(i}{c_{L}}$
is a singular vector of weight p in the Verma module $V\left(c_{L}, 0, c_{L, I}, h,(1-p) c_{L, I}\right)$.

Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Intertwining operators and tensor product modules

As with Virasoro algebra, the existence of a nontrivial intertwining operator of the type

$$
\left(\begin{array}{c}
L\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right) \\
L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) \\
L\left(c_{L}, 0, c_{L, l}, h^{\prime}, h_{l}^{\prime}\right)
\end{array}\right)
$$

yields a nontrivial \mathcal{H}-homomorphism

$$
\varphi: V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right) \rightarrow L\left(c_{L}, 0, c_{L, l}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)
$$

where

$$
\alpha=h+h^{\prime}-h^{\prime}, \quad \beta=1-h, \quad F=h_{l} .
$$

Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Intertwining operators and tensor product modules

As with Virasoro algebra, the existence of a nontrivial intertwining operator of the type
yields a nontrivial \mathcal{H}-homomorphism

$$
\varphi: V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right) \rightarrow L\left(c_{L}, 0, c_{L, l}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)
$$

where

$$
\alpha=h+h^{\prime}-h^{\prime}, \quad \beta=1-h, \quad F=h_{l} .
$$

By dimension argument, we get reducibility of
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h^{\prime}, h_{l}^{\prime}\right)$.

Free-field

Fusion rules

From the standard fusion rules result for $M(1)$ we get intertwining operators in the category of \mathcal{H}-modules:

Fusion rules

From the standard fusion rules result for $M(1)$ we get intertwining operators in the category of \mathcal{H}-modules:

Theorem
$\operatorname{Let}\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$
such that $\frac{h_{1}}{c_{L, l}}-1, \frac{h_{1}^{\prime}}{c_{L, l}}-1, \frac{h_{1}+h_{1}^{\prime}}{c_{L, l}}-1 \notin \mathbb{Z}_{>0}$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

From the standard fusion rules result for $M(1)$ we get intertwining operators in the category of \mathcal{H}-modules:

Theorem
$\operatorname{Let}\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ such that $\frac{h_{1}}{c_{L, l}}-1, \frac{h_{1}^{\prime}}{c_{L, l}}-1, \frac{h_{1}+h_{1}^{\prime}}{c_{L, l}}-1 \notin \mathbb{Z}_{>0}$. Then there is a non-trivial intertwining operator of the type

$$
\left(\begin{array}{c}
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h^{\prime \prime}, h_{l}+h_{l}^{\prime}\right) \\
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)
\end{array} L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)\right) ~(~) ~
$$

where $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

From the standard fusion rules result for $M(1)$ we get intertwining operators in the category of \mathcal{H}-modules:

Theorem
$\operatorname{Let}\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ such that $\frac{h_{1}}{c_{L, l}}-1, \frac{h_{1}^{\prime}}{c_{L, l}}-1, \frac{h_{1}+h_{1}^{\prime}}{c_{L, l}}-1 \notin \mathbb{Z}_{>0}$. Then there is a non-trivial intertwining operator of the type

$$
\left(\begin{array}{c}
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h^{\prime \prime}, h_{l}+h_{l}^{\prime}\right) \\
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)
\end{array} L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)\right) ~(~) ~
$$

where $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$.
In particular, the \mathcal{H}-module $V_{\alpha, \beta, F}^{\prime} \otimes L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)$ is reducible where

$$
\alpha=h+h^{\prime}-h^{\prime \prime}, \beta=1-h, F=h_{l} .
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Corollary

Let $\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ and that there are $p, q \in \mathbb{Z}_{>0}, q \leq p$ such that

$$
\frac{h_{I}}{c_{L, l}}-1=-q, \quad \frac{h_{I}^{\prime}}{c_{L, l}}-1=p .
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product

Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Corollary

$\operatorname{Let}\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ and that there are $p, q \in \mathbb{Z}_{>0}, q \leq p$ such that

$$
\frac{h_{l}}{c_{L, l}}-1=-q, \quad \frac{h_{l}^{\prime}}{c_{L, I}}-1=p .
$$

Then there is a non-trivial intertwining operator of the type

$$
\left(\begin{array}{c}
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h^{\prime \prime}, h_{l}+h_{l}^{\prime}\right) \\
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)
\end{array} L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h^{\prime}, h_{l}^{\prime}\right) ~\right) ~
$$

where $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Corollary

$\operatorname{Let}\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ and that there are $p, q \in \mathbb{Z}_{>0}, q \leq p$ such that

$$
\frac{h_{I}}{c_{L, l}}-1=-q, \quad \frac{h_{l}^{\prime}}{c_{L, l}}-1=p
$$

Then there is a non-trivial intertwining operator of the type

$$
\left(\begin{array}{c}
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}+h_{l}^{\prime}\right) \\
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)
\end{array} L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h^{\prime}, h_{l}^{\prime}\right)\right) ~(~) ~
$$

where $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$. In particular, the \mathcal{H}-module $V_{\alpha, \beta, F}^{\prime} \otimes L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime \prime}\right)$ is reducible where

$$
\alpha=h+h^{\prime}-h^{\prime \prime}, \beta=1-h, F=h_{l} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

(Ir)reducibility of a tensor product

- Next we use formulas for Ω and Λ to get irreducibility criterion for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$.

The twisted Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

(Ir)reducibility of a tensor product

- Next we use formulas for Ω and Λ to get irreducibility criterion for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
- R. Lu and K. Zhao introduced a useful criterion:

(Ir)reducibility of a tensor product

- Next we use formulas for Ω and Λ to get irreducibility criterion for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$.
- R. Lu and K. Zhao introduced a useful criterion:
- Define a linear map $\phi_{n}: U\left(\mathcal{H}_{-}\right) \rightarrow \mathbb{C}$

$$
\begin{aligned}
& \phi_{n}(1)=1 \\
& \phi_{n}(I(-i) u)=-F \phi_{n}(u) \\
& \phi_{n}(L(-i) u)=(\alpha+\beta+k+i+n-i \beta) \phi_{n}(u)
\end{aligned}
$$

for $u \in U\left(\mathcal{H}_{-}\right)_{-k}$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

(Ir)reducibility of a tensor product

- Next we use formulas for Ω and Λ to get irreducibility criterion for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$.
- R. Lu and K. Zhao introduced a useful criterion:
- Define a linear map $\phi_{n}: U\left(\mathcal{H}_{-}\right) \rightarrow \mathbb{C}$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products

$$
\begin{aligned}
& \phi_{n}(1)=1 \\
& \phi_{n}(I(-i) u)=-F \phi_{n}(u) \\
& \phi_{n}(L(-i) u)=(\alpha+\beta+k+i+n-i \beta) \phi_{n}(u)
\end{aligned}
$$

for $u \in U\left(\mathcal{H}_{-}\right)_{-k}$.

- $V_{\alpha, \beta, F}^{\prime} \otimes L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$ is irreducible if and only if $\phi_{n}(\Omega) \neq 0$ (i.e. $\phi_{n}(\Lambda) \neq 0$) for every $n \in \mathbb{Z}$.

Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules

Irreducibility criterion

- If $p=\frac{h_{1}}{c_{L, l}}-1 \in \mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\phi_{n}(\Omega)=(-1)^{p}\binom{-\frac{F}{c_{L, I}}}{p} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibility criterion

- If $p=\frac{h_{1}}{c_{L, l}}-1 \in \mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\phi_{n}(\Omega)=(-1)^{p}\binom{-\frac{F}{c_{L, l}}}{p} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
Theorem
Let $p=\frac{h_{l}}{c_{L, l}}-1 \in \mathbb{Z}_{>0}$. Module $V_{\alpha, \beta, F}^{\prime} \otimes L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ is irreducible if and only if $F \neq(i-p) c_{L, 1}$, for $i=1, \ldots, p$.
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibility criterion

- If $p=\frac{h_{1}}{c_{L, l}}-1 \in \mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\phi_{n}(\Omega)=(-1)^{p}\binom{-\frac{F}{c_{L, l}}}{p} .
$$

Theorem
Let $p=\frac{h_{l}}{c_{L, I}}-1 \in \mathbb{Z}_{>0}$. Module $V_{\alpha, \beta, F}^{\prime} \otimes L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ is irreducible if and only if $F \neq(i-p) c_{L, 1}$, for $i=1, \ldots, p$.

Free field
realization
Heisenberg-Virasoro
VOA VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and

- This expands the list of reducible tensor products realized with intertwining operators.

Irreducibility of a

Irreducibiliy criterion

- If $\frac{h_{1}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\begin{gathered}
\phi_{n}(\Lambda)=(-1)^{p-1}\binom{F / c_{L, I}-1}{p-1}(\alpha+n+\beta)+ \\
(-1)^{p-1}(1-\beta)\binom{F / c_{L, I}-2}{p-1}+g_{p}(F)
\end{gathered}
$$

for a certain polynomial $g_{p} \in \mathbb{C}[x]$.

Introduction
The twisted Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

- If $\frac{h_{I}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\begin{gathered}
\phi_{n}(\Lambda)=(-1)^{p-1}\binom{F / c_{L, 1}-1}{p-1}(\alpha+n+\beta)+ \\
\quad(-1)^{p-1}(1-\beta)\binom{F / c_{L, 1}-2}{p-1}+g_{p}(F)
\end{gathered}
$$

for a certain polynomial $g_{p} \in \mathbb{C}[x]$.

- If $F / c_{L, I} \notin\{1, \ldots, p-1\}$, then for every $n \in \mathbb{Z}$ there is a unique $\alpha:=\alpha_{n} \in \mathbb{C}$ such that $\phi_{n}(\Lambda)=0$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

- If $\frac{h_{I}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\begin{gathered}
\phi_{n}(\Lambda)=(-1)^{p-1}\binom{F / c_{L, I}-1}{p-1}(\alpha+n+\beta)+ \\
\quad(-1)^{p-1}(1-\beta)\binom{F / c_{L, I}-2}{p-1}+g_{p}(F)
\end{gathered}
$$

for a certain polynomial $g_{p} \in \mathbb{C}[x]$.

- If $F / c_{L, I} \notin\{1, \ldots, p-1\}$, then for every $n \in \mathbb{Z}$ there is a unique $\alpha:=\alpha_{n} \in \mathbb{C}$ such that $\phi_{n}(\Lambda)=0$.
- This, along with previous results on existence of intertwining operators result with the following:

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

Theorem
Let $\frac{h_{I}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$. We write V short for
$V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$.

The twisted Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

Theorem
Let $\frac{h_{I}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$. We write V short for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$.
(i) Let $F / c_{L, I} \notin\{1, \ldots, p-1\}$ and let $\alpha_{0} \in \mathbb{C}$ be such that $\phi_{0}(\Lambda)=0$. Then V is reducible if and only if $\alpha \equiv \alpha_{0}$ $\bmod \mathbb{Z}$.

Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

Theorem

Let $\frac{h_{l}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$. We write V short for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$.
(i) Let $F / c_{L, I} \notin\{1, \ldots, p-1\}$ and let $\alpha_{0} \in \mathbb{C}$ be such that $\phi_{0}(\Lambda)=0$. Then V is reducible if and only if $\alpha \equiv \alpha_{0}$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products $\bmod \mathbb{Z}$. In this case $W^{0}=U(\mathcal{H})\left(v_{0} \otimes v\right)$ is irreducible submodule of V and V / W^{0} is a highest weight \mathcal{H}-module $\widetilde{L}\left(c_{L}, 0, c_{L, l}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)$ (not necessarily irreducible) where

$$
h^{\prime \prime}=-\alpha_{0}+h+(1-\beta), \quad h_{l}^{\prime \prime}=F+h_{l}
$$

Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

Theorem

Let $\frac{h_{I}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$. We write V short for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
(i) Let $F / c_{L, I} \notin\{1, \ldots, p-1\}$ and let $\alpha_{0} \in \mathbb{C}$ be such that $\phi_{0}(\Lambda)=0$. Then V is reducible if and only if $\alpha \equiv \alpha_{0}$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products $\bmod \mathbb{Z}$. In this case $W^{0}=U(\mathcal{H})\left(v_{0} \otimes v\right)$ is irreducible submodule of V and V / W^{0} is a highest weight \mathcal{H}-module $\widetilde{L}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)$ (not necessarily irreducible) where

$$
h^{\prime \prime}=-\alpha_{0}+h+(1-\beta), \quad h_{l}^{\prime \prime}=F+h_{l} .
$$

(ii) Let $F / c_{L, I} \in\{2, \ldots, p-1\}$. Then V is reducible.

Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product

Irreducibility of a tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

Theorem

Let $\frac{h_{I}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$. We write V short for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
(i) Let $F / c_{L, I} \notin\{1, \ldots, p-1\}$ and let $\alpha_{0} \in \mathbb{C}$ be such that $\phi_{0}(\Lambda)=0$. Then V is reducible if and only if $\alpha \equiv \alpha_{0}$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products $\bmod \mathbb{Z}$. In this case $W^{0}=U(\mathcal{H})\left(v_{0} \otimes v\right)$ is irreducible submodule of V and V / W^{0} is a highest weight \mathcal{H}-module $\widetilde{L}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)$ (not necessarily irreducible) where

$$
h^{\prime \prime}=-\alpha_{0}+h+(1-\beta), \quad h_{l}^{\prime \prime}=F+h_{l} .
$$

(ii) Let $F / c_{L, I} \in\{2, \ldots, p-1\}$. Then V is reducible.
(iii) Let $p>1$ and $F / c_{L, I}=1$. Then V is reducible if and only if $1-\beta=\frac{c_{L}-2}{24}$.

Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product

Irreducibility of a tensor product
Using Ω
Using Λ
More fusion rules

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=p, \frac{h_{1}^{\prime}}{c_{L, I}}-1=q, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem
Let $\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{I}}{c_{L, I}}-1=p, \frac{h_{I}^{\prime}}{c_{L, l}}-1=q, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

Let

$$
d=\operatorname{dim} I\binom{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)}{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) \quad L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)} .
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=p, \frac{h_{1}^{\prime}}{c_{L, l}}-1=q, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

Let

$$
d=\operatorname{dim} I\binom{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)}{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) \quad L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)} .
$$

Then $d=1$ if and only if $h_{l}^{\prime \prime}=h_{l}+h_{l}^{\prime}$ and one of the following holds:

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=p, \frac{h_{1}^{\prime}}{c_{L, l}}-1=q, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

Let

$$
d=\operatorname{dim} I\binom{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)}{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) \quad L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)} .
$$

Then $d=1$ if and only if $h_{l}^{\prime \prime}=h_{l}+h_{l}^{\prime}$ and one of the following holds:
(i) $p, q<0$ and $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=p, \frac{h_{1}^{\prime}}{c_{L, l}}-1=q, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

Let

$$
d=\operatorname{dim} I\binom{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)}{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) \quad L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)} .
$$

Then $d=1$ if and only if $h_{l}^{\prime \prime}=h_{l}+h_{l}^{\prime}$ and one of the following holds:
(i) $p, q<0$ and $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$
(ii) $1 \leq-p \leq q$ and $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=p, \frac{h_{1}^{\prime}}{c_{L, l}}-1=q, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

Let

$$
d=\operatorname{dim} I\binom{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)}{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) \quad L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)} .
$$

Then $d=1$ if and only if $h_{l}^{\prime \prime}=h_{l}+h_{l}^{\prime}$ and one of the following holds:
(i) $p, q<0$ and $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$
(ii) $1 \leq-p \leq q$ and $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$
(iii) $1 \leq-q \leq p$ and $h^{\prime \prime}=\Delta_{r_{1}-r_{2}, s_{1}-s_{2}}$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=p, \frac{h_{1}^{\prime}}{c_{L, l}}-1=q, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

Let

$$
d=\operatorname{dim} I\binom{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)}{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) \quad L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)} .
$$

Then $d=1$ if and only if $h_{l}^{\prime \prime}=h_{l}+h_{l}^{\prime}$ and one of the following holds:
(i) $p, q<0$ and $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$
(ii) $1 \leq-p \leq q$ and $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$
(iii) $1 \leq-q \leq p$ and $h^{\prime \prime}=\Delta_{r_{1}-r_{2}, s_{1}-s_{2}}$
$d=0$ otherwise.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Nontrivial intertwining operators

$$
\begin{gathered}
\binom{\left(\Delta_{r_{1}+r_{2}, s_{1}+s_{2}},(1-(p+q-1)) c_{L, I}\right)}{\left(\Delta_{r_{1}, s_{1}},(1-p) c_{L, I}\right) \quad\left(\Delta_{r_{2}, s_{2}},(1-q) c_{L, I}\right)} \\
\text { for } p, q \geq 1 \\
\binom{\left(\Delta_{r_{2}-r_{1}, s_{2}-s_{1}},(1+(q-p+1)) c_{L, I}\right)}{\left(\Delta_{r_{1}, s_{1}},(1-p) c_{L, I}\right) \quad\left(\Delta_{r_{2}, s_{2}},(1+q) c_{L, I}\right)} \\
\text { for } 1 \leq-p \leq q \\
\binom{\left(\Delta_{r_{1}-r_{2}, s_{1}-s_{2}},(1+(p-q+1)) c_{L, I}\right)}{\left(\Delta_{r_{1}, s_{1}},(1+p) c_{L, I}\right) \quad\left(\Delta_{r_{2}, s_{2}},(1-q) c_{L, I}\right)} \\
\text { for } 1 \leq-q \leq p
\end{gathered}
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

- Vertex-algebra $L^{W}\left(c_{L}, c_{W}\right)$ is generated by fields

$$
\begin{aligned}
Y(L(-2), z) & =\sum_{n \in \mathbb{Z}} L(n) z^{-n-2} \\
Y(W(-2), z) & =\sum_{n \in \mathbb{Z}} W(n) z^{-n-2}
\end{aligned}
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

Theorem

There is a non-trivial homomorphism of vertex algebras

$$
\begin{aligned}
\Psi: L^{W}\left(c_{L}, c_{W}\right) & \rightarrow L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right) \\
L(-2) & \mapsto L(-2) \mathbf{1} \\
W(-2) & \mapsto\left(I^{2}(-1)+2 c_{L, I} I(-2)\right) \mathbf{1}
\end{aligned}
$$

where

$$
c_{W}=-24 c_{L, I}^{2}
$$

Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

- Every $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module becomes a $L^{W}\left(c_{L}, c_{W}\right)$-module.

The twisted Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

- Every $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module becomes a $L^{W}\left(c_{L}, c_{W}\right)$-module.
- $V^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ is a $L^{W}\left(c_{L}, c_{W}\right)$-module and $v_{h, h_{l}}$ is a $W(2,2)$ highest weight vector such that

$$
L(0) v_{h, h_{l}}=h v_{h, h_{l}}, \quad W(0) v_{h, h_{l}}=h_{W} v_{h, h_{l}}
$$

where $h_{W}=h_{l}\left(h_{I}-2 c_{L, I}\right)$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

- Every $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module becomes a $L^{W}\left(c_{L}, c_{W}\right)$-module.
- $V^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ is a $L^{W}\left(c_{L}, c_{W}\right)$-module and $v_{h, h_{l}}$ is a $W(2,2)$ highest weight vector such that

$$
L(0) v_{h, h_{l}}=h v_{h, h_{l}}, \quad W(0) v_{h, h_{l}}=h_{W} v_{h, h_{l}}
$$

where $h_{W}=h_{l}\left(h_{I}-2 c_{L, I}\right)$.

- There is a nontrivial $W(2,2)$-homomorphism

$$
\Psi: V^{W(2,2)}\left(c, c_{W}, h, h_{W}\right) \rightarrow V^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Highest weight H -modules as $\mathrm{W}(2,2)$-modules

Example

Let $h_{W}=\frac{1-p^{2}}{24} c_{W}=\left(p^{2}-1\right) c_{L, I}^{2}=h_{I}\left(h_{I}-2 c_{L, I}\right)$ as above. Then there are nontrivial $W(2,2)$-homomorphisms

$$
\begin{gathered}
V^{W(2,2)}\left(c, c_{W}, h, \frac{1-p^{2}}{24} c_{W}\right) \\
\Psi_{+} \swarrow \\
V^{\Psi_{-}} \\
V^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h,(1+p) c_{L, I}\right) \\
V^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h,(1-p) c_{L, I}\right)
\end{gathered}
$$

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using \wedge
More fusion rules
Free-field
realization of
W $(2,2)$

Highest weight H -modules as $\mathrm{W}(2,2)$-modules

Theorem
(i) Let $\frac{h_{1}}{c_{L, l}}-1 \notin-\mathbb{Z}_{>0}$. Then Ψ is an isomorphism of $W(2,2)$-modules.

Highest weight H -modules as $\mathrm{W}(2,2)$-modules

Theorem

(i) Let $\frac{h_{1}}{c_{L, l}}-1 \notin-\mathbb{Z}_{>0}$. Then Ψ is an isomorphism of $W(2,2)$-modules.
(ii) If $\frac{h_{1}}{c_{L, l}}-1=p \in \mathbb{Z}_{>0}$ then

$$
\Psi^{-1}\left(S_{p}\left(-\frac{I(-1)}{c_{L, I}},-\frac{I(-2)}{c_{L, I}}, \cdots\right) v_{h, h_{l}}\right)=u^{\prime}
$$

is a singular vector in $V^{W(2,2)}\left(c_{L}, c_{W}, h, h_{W}\right)_{h+p}$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Highest weight H -modules as $\mathrm{W}(2,2)$-modules

Theorem

(i) Let $\frac{h_{1}}{c_{L, l}}-1 \notin-\mathbb{Z}_{>0}$. Then Ψ is an isomorphism of $W(2,2)$-modules.
(ii) If $\frac{h_{1}}{c_{L, l}}-1=p \in \mathbb{Z}_{>0}$ then

$$
\Psi^{-1}\left(S_{p}\left(-\frac{I(-1)}{c_{L, I}},-\frac{I(-2)}{c_{L, I}}, \cdots\right) v_{h, h_{l}}\right)=u^{\prime}
$$

is a singular vector in $V^{W(2,2)}\left(c_{L}, c_{W}, h, h_{W}\right)_{h+p}$.
(iii) If $\frac{h_{I}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$ then $\Psi\left(u^{\prime}\right)=0$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Highest weight H -modules as $\mathrm{W}(2,2)$-modules

Theorem

(i) Let $\frac{h_{1}}{c_{L, l}}-1 \notin-\mathbb{Z}_{>0}$. Then Ψ is an isomorphism of $W(2,2)$-modules.
(ii) If $\frac{h_{1}}{c_{L, l}}-1=p \in \mathbb{Z}_{>0}$ then

$$
\Psi^{-1}\left(S_{p}\left(-\frac{I(-1)}{c_{L, I}},-\frac{I(-2)}{c_{L, I}}, \cdots\right) v_{h, h_{l}}\right)=u^{\prime}
$$

is a singular vector in $V^{W(2,2)}\left(c_{L}, c_{W}, h, h_{W}\right)_{h+p}$.
(iii) If $\frac{h_{1}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$ then $\Psi\left(u^{\prime}\right)=0$.
(iv) Let $\frac{h_{1}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$ and let u be a subsingular vector in $V^{W(2,2)}\left(c_{L}, c_{W}, h_{p q}, h_{W}\right)_{h+p q}$. Then $\Psi(u)$ is a singular vector in $V^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h,(1-p) c_{L, I}\right)$.

Introduction
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor products
Free field
realization
Heisenberg-Virasoro
VOA
VOA
Heisenberg VOA
Realization of HV
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

