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Introduction

» The twisted Heisenberg-Virasoro Lie algebra H, weight
representations.

» Irreducibiliy problem of Vé’ﬁ’F ® L(c.,0,¢cp,h, hy).

> Free-field realization of Heisenberg-Virasoro
vertex-algebra.

» Explicit formulas for singular vectors.

» Irreduciblity of V;’ﬁ’F ® L(cy,0,¢cpy, h, hy) solved.
Fusion rules.

» W(2,2)-structure on H-modules.

» D. Adamovi¢, G. R. Free fields realization of the twisted
Heisenberg-Virasoro algebra at level zero and its
applications, JPAA (2015)




The twisted Heisenberg-Virasoro algebra

The twisted
‘H is a complex Lie algebra with a basis \I;Igisetnbetrg»
{L(n),I(n),C.,C;,CLy:n€Z} and a Lie bracket algebra
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The twisted Heisenberg-Virasoro algebra

‘H is a complex Lie algebra with a basis Ezwesetmseid
{L(n),I(n),C.,C;,Cpy:n€Z} and a Lie bracket e
n—n
[L(n),L(m)] = (n—m)L(n+ m) —HS"’_mTCL'
[L(n),1(m)]=—ml(n+m)—26,_m(n*+n)Cy,
[ (n),I(m)]=ndp_mC,
[H

)] =
G =[H,Cul=[H.C] =

{L(n),Cr,: n € Z} spans a copy of the Virasoro algebra.

{I(n), C; : n € Z} spans a copy of the Heisenberg algebra.
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The Verma module

» V(cy, ¢, ¢y, h, hy) - the Verma module with highest Srueme o Veme

modules

weight (h, h;) and central charge (¢, ¢, cL).
» We study representation at level zero (¢; = 0).

» Y. Billig, Representations of the twisted
Heisenberg-Virasoro algebra at level zero, Canadian
Math. Bulletin, 46 (2003)

> Appears in the representation theory of toroidal Lie
algebras.
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The Verma module

Theorem (Y. Billig)

Assume that ¢; = 0 and ¢, # 0.
(i) /fcth, —1¢ Z*, then V(c.,0, ¢y, h, hy) is irreducible.

Structure of Verma
modules

(i) If i —1 ¢ Z* then V(c.,0, ¢y, h, hy) has a singular

CLI
vector u at level p = ]Ch—L’I —1.

The quotient module

L(CL,O, CL,1 h, h/) = V(CL,O, CL Iy h, h/)/U(H)u

is irreducible.
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Define an 'H—module structure on Virasoro intermediate
series:
Let o, B, F € C define V, g r = @ Cv, with Lie bracket

neZ
L(m)vm = —(m+a+ B+ nB) vimen, L
I(n)vim = Fvpin,
CLVm = C/Vm:CLv/VmZO.

As usual,

> Va,ﬁ,F = Vuc-i—k,ﬁ,F for k € Z,
> V,X,ﬁ,,c is reducible if and only if « € Z, B € {0,1} and
=0,
n#—1
Véﬁ = VipF otherwise.
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Irreducible Harish-Chandra modules

Theorem (Lu, R., Zhao, K.)

An irreducible weight H—module with finite-dimensional
weight spaces is isomorphic either to a highest (or lowest)
weight module, or to V! B.F for some o, B, F € C. Intermediate series

What about modules with infinite-dimensional weight
spaces?




Tensor product modules

Consider VDZ%F ® L(ct,0,¢p,,h, hy) module:
L(n)(vk®x L(n)vk®@x+ v ®L(n)x,
I(m) (v ®x Fvk @ x + v @ I (m) x,

0

)
( ) =
CLvik ®x) = c(vik ®x),
( )
( ) cLr(vk ® x).

Tensor products




Tensor product modules

Consider V! . - ® L (c;,0, ¢, 4, h, h;) module:
«,B,F ,

L(n) (vk ® x) L(n)vk®@x+ v ®L(n)x,
I'(m) (vk @ x) Fvk @ x + v @ I (m) x,
vk ®x) = c(w®x), Tensor products
Ci(v ® x) 0
Cri(vk ® x) e (vk ® x).

To classify irreducible modules Voi,ﬁ,F ® L(ct,0,¢cr, h, hy)
we need more detailed formulas for singular vectors.
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The Heisenberg-Virasoro vertex-algebra

Irreducible H—module L(¢;,0, ¢, ,0,0) has the structure of
vertex operator algebra which we denote by L*(c/, c; /).
Theorem (Y. Billig)

Let c;; # 0. Then L™(cy, ¢ ) is a simpe VOA, and
V(c.,0,¢cpy,h hy) and L(c,0,¢c 4, h, hy) are
LM (¢, c.1)-modules.

Heisenberg-Virasoro
VOA

» LM(cy, c1 ) can be realized as a subalgebra of the
Heisenberg vertex algebra M(1).

» M (1)-modules M (1,v) become L*(c;, ¢, ;)-modules,
and also H-modules.

» Construction of a screening operator will give us
realization of certain irr weight modules.
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Heisenberg vertex-algebra

> Let L = Za + Zp be a hyperbolic lattice such that

(v, 0) = — (B, B) =1, (&, ) = 0.
> Let h = C®z L be an abelian Lie algebra and
h=C [t, til] ® b & Cc its affinization.

» For v € h consider H—module

M (1,7) == U(b) ®@y(clgepace) C

where tC[t] ® b acts trivially on C, § € b acts by (4, y)
and c acts as 1.

» Denote by e” a highest weight vector in M(1, ).
» M (1) := M(1,0) is a vertex-algebra:

h(n) = t"®Hh, for h € b,
h(z) = Y h(nz"!
neZ

and M(1,y) for v € b, are irreducible M(1)-modules.



Realization of the Heisenberg-Virasoro vertex
algebra

» Define a Heisenberg vector
I =a(-1)+B(—1) € M(1)
and a Virasoro vector

B(—1)* + Aa(—=2) +up(—2) € M(1)

Realization of HV




Realization of the Heisenberg-Virasoro vertex
algebra

» Define a Heisenberg vector
I =a(-1)+B(—1) € M(1)

and a Virasoro vector

w = %uc(—l)2 - %ﬁ(—1>2+w(—2)+yﬁ(—2) e M(1)
> Then
I(z) = Y(,2)= H;Z/(n) z7"! and
L(z) = Y(wz)= neZzL(n) z "2

generate the Heisenberg-Virasoro vertex algebra
LH(CL, CL,I) in M (]_)




Realization of the twisted Heisenberg-Virasoro
algebra

We get the twisted Heisenberg-Virasoro Lie algebra H such
that
CL:2—12(A2—‘M2), CL,I:A_V

2—¢ N 1 2—¢ 1
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Realization of the twisted Heisenberg-Virasoro
algebra

We get the twisted Heisenberg-Virasoro Lie algebra H such
that

CL:2—12(A2—‘M2), CL,I:A_V

2— CL 1 2— CL 1
/\ = —_ , = - = .
24C1_,/ + 2CL'I # 24CL,/ 2CL'I

Now we may use representation theory of M (1) in rep
theory of H!

Realization of HV
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Realization of the twisted Heisenberg-Virasoro
algebra

> For every r,s € C, %P is a H-singular vector and
U(H)e™* P is a highest weight module with the
highest weight

1 1
h:A,yszirZ—ESZ—}\r—l—ys, hy=r—s

Proposition

(i) Let (h, h)) € C%, h; # cL. Then there exist unique
r.s € C such that e"*P js a highest weight vector of the
highest weight (h, h;).

(ii) Foreveryr,s € C suchthatr—s=A—pu=cry,
e3P js a highest weight vector of weight

CL—2
24

(h, h/) = ( ,CL'/).

Realization of HV
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Free-field realization

» Denote by F, s the M(1)-module generated by e™*<h.

» It is also an L7 (c;, ¢, ;)-module, therefore an
H-module.

> There is a surjective H—homomorphism
D \/(CL, 0, CL.I, h, h/) — U(H)em+sﬁ

such that ®(vj p, ) = e™+sP.

Proposition
Assume that 2. —1 ¢ —Zo. Then
Frs 2 V(c,0,cry,h hy) as L (cr, ¢, j)-modules.

Realization of HV
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» u=e I is a highest weight vector of weight (1,0).
> Let @ =Res, Y (u,z) = uy (well defined on M (1,7)).
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Screening operator

_atp
u=e ‘I is a highest weight vector of weight (1,0).
Let Q =Res; Y (u,z) = up (well defined on M (1,7)).

Screening operator Q commutes with L (n) and / (n).

vV V. v Vv

So QiertsP is either 0 or a singular vector.

Realization of HV




Screening operator

> u= e_% is a highest weight vector of weight (1,0).
> Let @ =Res, Y (u,z) = uy (well defined on M (1,7)).
» Screening operator @ commutes with L (n) and / (n).
» So Qe tsh is either 0 or a singular vector.
Proposition
Assume that 1o — 1 = —p € —Z~y. As a

CL,l
L (¢, c1./)-module F, ¢ is generated by e™*+*F and a
family of subsingular vectors {v, , : n > 1} such that

a+p

ra+sp—n e

Q"vpp=e

In particular L™ (c;,0,cp, h, hy) = kerr, . Q.
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Screening operator

> u= e_% is a highest weight vector of weight (1,0).
> Let @ =Res, Y (u,z) = uy (well defined on M (1,7)).
» Screening operator @ commutes with L (n) and / (n).
» So Qe tsh is either 0 or a singular vector.
Proposition
Assume that 1o — 1 = —p € —Z~y. As a

CL,l
L (¢, c1./)-module F, ¢ is generated by e™*+*F and a
family of subsingular vectors {v, , : n > 1} such that

a+p

ra+sp—n e

Q"vpp=e

In particular L™ (c;,0,cp, h, hy) = kerr, . Q.

» Forr=s5= —% we get LH(CL, CL,/) = kerM(l) Q.

Realization of HV
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Schur polynomials

» Schur polynomials S, (x1, x2, - -+ ) in variables x1, x2, . . .
are defined by the following equation:

» Also
X]_ X2 RS Xr
1 —r+1 X1 Xo o Xp—1
Singular vectors
Sr(XLXZV"'):F 0 r+2 > o X2
0 o 0 -1 x

» Schur polynomials naturally appear in formulas for
vertex operator for lattice vertex algebras.




Schur polynomials and singular vectors

Theorem
Assume that ¢, ; # 0 and p = % —1€ Z-g. Then Qvpp,

where ams, ((1CD 1CD 1)

CL,I CL,I CL,I

is a singular vector of weight p in the Verma module
V(c,0,cp,h, (14 p)cy).




Schur polynomials and singular vectors

Theorem

Assume that ¢, #0 and p=1— % € Z~o. Then Avyp,
where '

A= Zs </( Do ’(_Ii)>L,_,,+

- cL—2( —1)°—pi\ o (1(-1) I(—i)
;( p )5’( cys T e >

is a singular vector of weight p in the Verma module
V(ce,0, ¢, h (1 —p) ).




Intertwining operators and tensor product
modules

As with Virasoro algebra, the existence of a nontrivial
intertwining operator of the type

( L(ct,0, ¢ ' H)) >
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yields a nontrivial H-homomorphism
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where
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Intertwining operators and tensor product
modules

As with Virasoro algebra, the existence of a nontrivial
intertwining operator of the type

( L(ct,0, ¢ ' H)) >

L(ct,0,¢,0,h, hy) L(ct,0,cop H\H)
yields a nontrivial H-homomorphism
@ Vogr®L(cr,0,c00, 0 h) — L(cr,0,c0, b, h)
where
a=h+h—-H, B=1—h F=h.

By dimension argument, we get reducibility of
V‘)iquF ® L(CL' Ov CL Iy h,, h;)

Fusion rules and
tensor product
modules
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Fusion rules

From the standard fusion rules result for M(1) we get
intertwining operators in the category of H—modules:

Theorem
Mﬂhhﬂ—(AmPn— 1), (W, ) = (Ar, 5, n—52) € C2
such that b g 1, h’fh’ 1¢ Z~o. Then thereis a

' cL
non- tr/wal /ntertwmmg operator of the type

LH(CL, 0, CL.I, h//, h/ + h;)
LH<C1_, 0, CL,I, h, h/) LH(CL, 0, CL Iy h/, h;)

where h// = Ar1+r2 s1+sp- Fusion rules and

tensor product

In particular, the H—module V| wpF ® L"(cp,0, ¢, 1, h)is R
reducible where

x=h+H—H B=1—h F=h.




Fusion rules

Corollary
Let (h, h/) = (Afl.slv n— 51), (h/, h;) = (AQ'SQ, rp — 52) € C?
and that there are p, q € Z~g, q < p such that
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Fusion rules

Corollary

Let (h, h/) = (Afl.slv n— 51), (h/, h;) = (AQ'SQ, rp — 52) € C?
and that there are p, q € Z~g, q < p such that

Then there is a non-trivial intertwining operator of the type

LH(CL, 0, CL.I h”, h/ —+ h;)
LH(CL, 0, CL,1I, h, h[) LH(CL, 0, CL,I, h/, h;)

Fusion rules and
tensor product
modules

/o
where ' = Ay, 5y




Fusion rules

Corollary

Let (h, h/) = (Afl.slv n— 51), (h/, h;) = (AQ'SQ, rp — 52) € C?
and that there are p, q € Z~g, q < p such that

- 1 f— _q, _—
CL,1 CL,I
Then there is a non-trivial intertwining operator of the type
LH(CL, 0, CL.I h”, hy + h;)
LH(CL,O, CL'/,h, h[) LH(CL,O, CLV/,h/,h;)

Fusion rules and

tensor product
modules

where W' = A,/ s,—s, -
In particular, the H-module V, 5 p ® L™ (c;, 0, cLp, ', hy) is
reducible where

a=h+H—-H, 6 B=1—h F=h.
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> Next we use formulas for () and A to get irreducibility
criterion for Vé’ﬁ’F ® L(c,0,¢cpy, h, hy).

» R. Lu and K. Zhao introduced a useful criterion:

» Define a linear map ¢, : U(H_) — C
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(Ir)reducibility of a tensor product

> Next we use formulas for () and A to get irreducibility
criterion for Vé’ﬁ’F ® L(c,0,¢cpy, h, hy).

» R. Lu and K. Zhao introduced a useful criterion:
» Define a linear map ¢, : U(H_) — C

(Pn(l(_l)u) = _F(Pn(u)
(Pn(L(_I)u) = (‘X+ﬁ+ k+i+n— I;B)(Pn(u)
forue U(H )_k.

> VI B.F X " ( c.0, ¢y, h, h/) is irreducible if and only if Irreducibi\i(:y ofa
( ) # 0 (i.e. ¢,(A) #0) for every n € Z. ¥
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> If p= B 1 e Z-y, then for every n € Z we have

cLi

$,(Q) = (—1)P<_cf/>,
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Theorem
Let p = % — 1€ Z+g. Module Voi,ﬁ,F & LH(CL, 0, CL.I h, h/)
is irreducible if and only if F # (i — p)cyy, fori=1,..., p.




Irreducibility criterion

> If p= B 1 e Z-y, then for every n € Z we have

cLi

$,(Q) = (—1)P<_cf/>,

p

Theorem
Let p = % — 1€ Z+g. Module Voi,ﬁ,F & LH(CL, 0, CL.I h, h/)
is irreducible if and only if F # (i — p)cyy, fori=1,..., p.

» This expands the list of reducible tensor products
realized with intertwining operators.
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Irreducibiliy criterion

> If % —1=—p & —Z-y, then for every n € Z we have

0,80 = (<17 (7 T
o= (7 ) )

for a certain polynomial g, € C[x].
» If F/e ¢ {1,..., p — 1}, then for every n € Z there
is a unique & := &, € C such that ¢ _(A) = 0.

» This, along with previous results on existence of
intertwining operators result with the following:
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(i) Let F/c s ¢{1,..., p—1} and let ag € C be such
that ¢o(A) = 0. Then V is reducible if and only if & = g
mod Z.
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Let b —1 = —p € —Z~q. We write V short for

CL,i
Vﬂi,ﬁu‘: &® L(CL, 0, CLI h, h/).
(i) Let F/c s ¢{1,..., p—1} and let ag € C be such
that ¢o(A) = 0. Then V is reducible if and only if & = g
mod Z. In this case W = U(H) (v ® v) is irreducible
submodule of V and V/W? is a highest weight H-module
L(ct,0,cy, b, h) (not necessarily irreducible) where

' =—ag+h+(1-pB), h = F+h.
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(i) Let F/c s ¢{1,..., p—1} and let ag € C be such
that ¢o(A) = 0. Then V is reducible if and only if & = g
mod Z. In this case W = U(H) (v ® v) is irreducible
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L(ct,0,cy, b, h) (not necessarily irreducible) where
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Irreducibiliy criterion

Theorem
Let b —1 = —p € —Z~q. We write V short for

CL,i
Vﬂi,ﬁu‘: &® L(CL, 0, CLI h, h/).
(i) Let F/c s ¢{1,..., p—1} and let ag € C be such
that ¢o(A) = 0. Then V is reducible if and only if & = g
mod Z. In this case W = U(H) (v ® v) is irreducible
submodule of V and V/W? is a highest weight H-module

L(ct,0,¢, ", h}) (not necessarily irreducible) where
' =—ag+h+(1-pB), h = F+h.

(i) Let F/cy€{2,...,p—1}. Then V is reducible.
(i) Letp>1and F/c,; =1. Then V is reducible if and

only if 1 — g = %2
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Theorem

Let (h,h;) = (An sy, 1 —s1), (W, h)) = (A5, 12 — 52) such
that

p ———1=gq, pqecZ\{0}.
Let

H Ny
d =dim/ L™ (cr, 0, i W, ) |
L(e O, erihihi) L7 (er,0 e b hp)

Then d =1 if and only if h} = h; + h) and one of the
following holds:

(i) p.q <0 and n = Ar1-i-r2.51-i-52
(i) 1< —-p<gand h" = Ap—ns—s
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Fusion rules

Theorem

Let (h,h;) = (An sy, 1 —s1), (W, h)) = (A5, 12 — 52) such
that

p ———1=gq, pqecZ\{0}.
Let

H Ny
d =dim/ L™ (cr, 0, i W, ) |
L(e O, erihihi) L7 (er,0 e b hp)

Then d =1 if and only if h} = h; + h) and one of the
following holds:

(i) pg<0and h' = Ay 5+
(i) 1< —-p<gand h" = Ap—ns—s
(iii) 1<—qg<p and h’ = Arl—f’zysl—sz

More fusion rules




Fusion rules

Theorem

Let (h,h;) = (An sy, 1 —s1), (W, h)) = (A5, 12 — 52) such
that

p ———1=gq, pqecZ\{0}.
Let

H Ny
d =dim/ L™ (cr, 0, i W, ) |
L(e O, erihihi) L7 (er,0 e b hp)

Then d =1 if and only if h} = h; + h) and one of the
following holds:

(i) p,q < 0 and h'" = AI’1+I’2,S1+52
(i 1<—p<gand i =N} 55
(i) 1< —g<pand i =A,_1, 55
d = 0 otherwise.

More fusion rules




Nontrivial intertwining operators

( (Af1+f2,51+52’ (1 - (P +q-— 1))CL,/) >
(Ar s (L=p)ers) (Brs, (1—q)cr)
for p,g>1

( (Ar27r1,52751r (1 + (q —p+ 1))CL,I) >
(Ar s (L=p)ery) (Brs,, (L+q)cr)
for1<—-p<gq

( (Af1*f2,51*52’ (1+(p—q—|—1))cL,,) >
(A,le, (1 + P)CL.I) (Arz,52v (1 - q)CL,I)
for1<—qg<p

More fusion rules




Vertex-algebra homomorphism

» Vertex-algebra L (c;, cyy) is generated by fields

Y(L(=2),z) = Y L(n)z7"72,

neZ
Y(W(-2),2z) = ZZW(n)z*H.

Free-field
realization of
W(2,2)




Vertex-algebra homomorphism

» Vertex-algebra L (c;, cyy) is generated by fields

Y(L(=2),z) = Y L(n)z7"72,

neZ
Y(W(-2),2z) = ZZW(n)z*H.

» Vertex-algebra L7 (c;, c; /) is generated by fields

Y(L(-2),2) = Y L(mz"2

neZ

Y(I(-1),z) = Y I(nz """

nezZ

Free-field
realization of
W(2,2)




Vertex-algebra homomorphism

Theorem
There is a non-trivial homomorphism of vertex algebras

YW, ew) — LM(e,cy)
L(=2)— L(-2)1
W (=2) — (12 (=1) 4+ 2¢c 41 (—=2))1

where

Free-field
realization of
W(2,2)




Vertex-algebra homomorphism

» Every L™ (¢, ¢, /)-module becomes a
LY (cy, cw )-module.
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» V(¢ ,0,cp,h hy)is a LY (cp, c)—module and vy, j,
is a W(2,2) highest weight vector such that
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Free-field
realization of
W(2,2)




Vertex-algebra homomorphism

» Every L™ (¢, ¢, /)-module becomes a
LY (cy, cw )-module.

» V(¢ ,0,cp,h hy)is a LY (cp, c)—module and vy, j,
is a W(2,2) highest weight vector such that

L(O)Vh'h/ = th.h/' W(O)Vh,h/ = hWVh,h/

where hW = h/(h/ - 2CL,I)-
» There is a nontrivial W(2, 2)-homomorphism

¥ VW2 (e e, b hw) — V(e 0,c0y, b hy)

Free-field
realization of
W(2,2)




Highest weight H-modules as W(2,2)-modules

Example
Let hw = 52 cw = (P> — 1), = hi(hy —2c1/) as
above. Then there are nontrivial W(2,2)-homomorphisms

VW2 (¢ ¢y, h A cW)
111+1/ \Y,

VH(CL,O, CLI, h, (1 + p) CL'/) VH(CL,O, CLI h, (1 — p) CLI

Free-field
realization of
W(2,2)




Highest weight H-modules as W(2,2)-modules

Theorem
(i) Let % —1¢ —Z~y. Then Y is an isomorphism of
W (2, 2)-modules.
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(i) Let % —1¢ —Z~y. Then Y is an isomorphism of
W (2, 2)-modules.

(i) If 2 —1=peZs.g then

(s () )

is a singular vector in VW(M)(CL, cw, h, hW)h+p-
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Highest weight H-modules as W(2,2)-modules

Theorem
(i) Let % —1¢ —Z~y. Then Y is an isomorphism of
W (2, 2)-modules.

(i) If 2 —1=peZs.g then

CL

(s () )

is a singular vector in VW(2'2)(CL, cw, h, hW)h+p-

(iii) /fﬂ —1=-—p&€ —Z-gthen¥ (u') = 0.

(iv) Let 'L — 1= —pec —Z-¢ and let u be a subsingular

CLI
vector in VW (2 )(CL,Cw,hpq,hw)h+pq Then¥ (u) is a

singular vector in VM (c;,0,cpy, h, (1 —p)cy). ey

realization of
W(2,2)
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