Representations of some affine vertex algebras at negative integer levels

Ozren Perše
(joint work with Dražen Adamović)

supported by CSF, grant 2634

References:

O. P., A note on representations of some affine vertex algebras of type D, Glasnik Matematički 48 (2013) 81-90.
D. Adamović, O. P., Fusion rules and complete reducibility of certain modules for affine Lie algebras, Journal of Algebra and Its Applications 13 (2014) 18pp.

Vertex operator algebras associated to affine Lie algebras

For a simple Lie algebra \mathfrak{g} over \mathbb{C} and $k \in \mathbb{C}, k \neq-h^{\vee}$, denote by $N_{\mathfrak{g}}(k, 0)$ the universal affine vertex operator algebra of level k and by $L_{\mathfrak{g}}(k, 0)$ the associated simple quotient.

Vertex operator algebras associated to affine Lie algebras

For a simple Lie algebra \mathfrak{g} over \mathbb{C} and $k \in \mathbb{C}, k \neq-h^{\vee}$, denote by $N_{\mathfrak{g}}(k, 0)$ the universal affine vertex operator algebra of level k and by $L_{\mathfrak{g}}(k, 0)$ the associated simple quotient.
We are interested in constructing ideals in $N_{\mathfrak{g}}(k, 0)$ for negative integer k and study the representation theory of $L_{\mathfrak{g}}(k, 0)$ in that case.

Vertex operator algebras associated to affine Lie algebras

For a simple Lie algebra \mathfrak{g} over \mathbb{C} and $k \in \mathbb{C}, k \neq-h^{\vee}$, denote by $N_{\mathfrak{g}}(k, 0)$ the universal affine vertex operator algebra of level k and by $L_{\mathfrak{g}}(k, 0)$ the associated simple quotient.
We are interested in constructing ideals in $N_{\mathfrak{g}}(k, 0)$ for negative integer k and study the representation theory of $L_{\mathfrak{g}}(k, 0)$ in that case.
In particular, we will consider the case of orthogonal Lie algebra of type D.

Vertex operator algebra associated to D_{ℓ} of level $n-\ell+1$

Theorem

Vector

$$
v_{n}=\left(\sum_{i=2}^{\ell} e_{\epsilon_{1}-\epsilon_{i}}(-1) e_{\epsilon_{1}+\epsilon_{i}}(-1)\right)^{n} \mathbf{1}
$$

is a singular vector in $N_{D_{\ell}}(n-\ell+1,0)$, for any $n \in \mathbb{Z}_{>0}$.

Vertex operator algebra associated to D_{ℓ} of level $n-\ell+1$

Theorem

Vector

$$
v_{n}=\left(\sum_{i=2}^{\ell} e_{\epsilon_{1}-\epsilon_{i}}(-1) e_{\epsilon_{1}+\epsilon_{i}}(-1)\right)^{n} \mathbf{1}
$$

is a singular vector in $N_{D_{\ell}}(n-\ell+1,0)$, for any $n \in \mathbb{Z}_{>0}$.
In the case $n=1$, we obtain the singular vector

$$
v=\sum_{i=2}^{\ell} e_{\epsilon_{1}-\epsilon_{i}}(-1) e_{\epsilon_{1}+\epsilon_{i}}(-1) \mathbf{1}
$$

in $N_{D_{\ell}}(-\ell+2,0)$.

Vertex operator algebra associated to D_{ℓ} of level $-\ell+2$

We will consider representations of quotient vertex operator algebra

$$
\mathcal{V}_{D_{\ell}}(-\ell+2,0)=\frac{N_{D_{\ell}}(-\ell+2,0)}{<v>}
$$

Vertex operator algebra associated to D_{ℓ} of level $-\ell+2$

We will consider representations of quotient vertex operator algebra

$$
\mathcal{V}_{D_{\ell}}(-\ell+2,0)=\frac{N_{D_{\ell}}(-\ell+2,0)}{\langle v>}
$$

Using Zhu's theory, we obtain the following classification result:

Theorem

The set

$$
\left\{L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell-1}\right), L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

provides the complete list of irreducible ordinary $\mathcal{V}_{D_{\ell}}(-\ell+2,0)$-modules.

Vertex operator algebra associated to D_{ℓ} of level $-\ell+2$

Thus, the set of irreducible ordinary $L_{D_{\ell}}(-\ell+2,0)$-modules is a subset of the set

$$
\left\{L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell-1}\right), L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

Vertex operator algebra associated to D_{ℓ} of level $-\ell+2$

Thus, the set of irreducible ordinary $L_{D_{\ell}}(-\ell+2,0)$-modules is a subset of the set

$$
\left\{L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell-1}\right), L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

Remark: More generally, we can obtain the classification of irreducible weak $\mathcal{V}_{D_{\ell}}(-\ell+2,0)$-modules from the category \mathcal{O}.

Vertex operator algebra associated to D_{ℓ} of level $-\ell+2$

Thus, the set of irreducible ordinary $L_{D_{\ell}}(-\ell+2,0)$-modules is a subset of the set

$$
\left\{L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell-1}\right), L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

Remark: More generally, we can obtain the classification of irreducible weak $\mathcal{V}_{D_{\ell}}(-\ell+2,0)$-modules from the category \mathcal{O}. Natural questions:

1. Is $\langle v\rangle$ a maximal submodule in $N_{D_{\ell}}(-\ell+2,0)$?
2. Representation theory of $L_{D_{\ell}}(-\ell+2,0)$?

Vertex operator algebra associated to D_{ℓ} of level $-\ell+2$

Thus, the set of irreducible ordinary $L_{D_{\ell}}(-\ell+2,0)$-modules is a subset of the set

$$
\left\{L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell-1}\right), L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

Remark: More generally, we can obtain the classification of irreducible weak $\mathcal{V}_{D_{\ell}}(-\ell+2,0)$-modules from the category \mathcal{O}.

Natural questions:

1. Is $\langle v\rangle$ a maximal submodule in $N_{D_{\ell}}(-\ell+2,0)$?
2. Representation theory of $L_{D_{\ell}}(-\ell+2,0)$?

We give an answer in some special cases.

Case $\ell=4$

Denote by θ the automorphism of $N_{D_{4}}(-2,0)$ induced by the automorphism of the Dynkin diagram of D_{4} of order three.

Case $\ell=4$

Denote by θ the automorphism of $N_{D_{4}}(-2,0)$ induced by the automorphism of the Dynkin diagram of D_{4} of order three. Since ($v=$)
$\left(e_{\epsilon_{1}-\epsilon_{2}}(-1) e_{\epsilon_{1}+\epsilon_{2}}(-1)+e_{\epsilon_{1}-\epsilon_{3}}(-1) e_{\epsilon_{1}+\epsilon_{3}}(-1)+e_{\epsilon_{1}-\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{4}}(-1)\right) 1$
is a singular vector in $N_{D_{4}}(-2,0)$,

Case $\ell=4$

Denote by θ the automorphism of $N_{D_{4}}(-2,0)$ induced by the automorphism of the Dynkin diagram of D_{4} of order three. Since ($v=$)
$\left(e_{\epsilon_{1}-\epsilon_{2}}(-1) e_{\epsilon_{1}+\epsilon_{2}}(-1)+e_{\epsilon_{1}-\epsilon_{3}}(-1) e_{\epsilon_{1}+\epsilon_{3}}(-1)+e_{\epsilon_{1}-\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{4}}(-1)\right) 1$
is a singular vector in $N_{D_{4}}(-2,0)$, it follows that $(\theta(v)=)$
$\left(e_{\epsilon_{3}-\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{2}}(-1)-e_{\epsilon_{2}-\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{3}}(-1)+e_{\epsilon_{2}+\epsilon_{3}}(-1) e_{\epsilon_{1}-\epsilon_{4}}(-1)\right) \mathbf{1}$,

Case $\ell=4$

Denote by θ the automorphism of $N_{D_{4}}(-2,0)$ induced by the automorphism of the Dynkin diagram of D_{4} of order three. Since ($v=$)
$\left(e_{\epsilon_{1}-\epsilon_{2}}(-1) e_{\epsilon_{1}+\epsilon_{2}}(-1)+e_{\epsilon_{1}-\epsilon_{3}}(-1) e_{\epsilon_{1}+\epsilon_{3}}(-1)+e_{\epsilon_{1}-\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{4}}(-1)\right) \mathbf{1}$ is a singular vector in $N_{D_{4}}(-2,0)$, it follows that $(\theta(v)=)$
$\left(e_{\epsilon_{3}-\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{2}}(-1)-e_{\epsilon_{2}-\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{3}}(-1)+e_{\epsilon_{2}+\epsilon_{3}}(-1) e_{\epsilon_{1}-\epsilon_{4}}(-1)\right) \mathbf{1}$, and $\left(\theta^{2}(v)=\right)$
$\left(e_{\epsilon_{3}+\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{2}}(-1)-e_{\epsilon_{2}+\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{3}}(-1)+e_{\epsilon_{1}+\epsilon_{4}}(-1) e_{\epsilon_{2}+\epsilon_{3}}(-1)\right) 1$ are also singular vectors in $N_{D_{4}}(-2,0)$.

Case $\ell=4$

Denote by θ the automorphism of $N_{D_{4}}(-2,0)$ induced by the automorphism of the Dynkin diagram of D_{4} of order three. Since ($v=$)
$\left(e_{\epsilon_{1}-\epsilon_{2}}(-1) e_{\epsilon_{1}+\epsilon_{2}}(-1)+e_{\epsilon_{1}-\epsilon_{3}}(-1) e_{\epsilon_{1}+\epsilon_{3}}(-1)+e_{\epsilon_{1}-\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{4}}(-1)\right) \mathbf{1}$ is a singular vector in $N_{D_{4}}(-2,0)$, it follows that $(\theta(v)=)$
$\left(e_{\epsilon_{3}-\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{2}}(-1)-e_{\epsilon_{2}-\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{3}}(-1)+e_{\epsilon_{2}+\epsilon_{3}}(-1) e_{\epsilon_{1}-\epsilon_{4}}(-1)\right) \mathbf{1}$, and $\left(\theta^{2}(v)=\right)$
$\left(e_{\epsilon_{3}+\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{2}}(-1)-e_{\epsilon_{2}+\epsilon_{4}}(-1) e_{\epsilon_{1}+\epsilon_{3}}(-1)+e_{\epsilon_{1}+\epsilon_{4}}(-1) e_{\epsilon_{2}+\epsilon_{3}}(-1)\right) 1$
are also singular vectors in $N_{D_{4}}(-2,0)$. We consider the associated quotient vertex operator algebra

$$
\widetilde{L}_{D_{4}}(-2,0)=\frac{N_{D_{4}}(-2,0)}{\left\langle v, \theta(v), \theta^{2}(v)\right\rangle} .
$$

Case $\ell=4$

Using Zhu's theory, we obtain the following classification result:

Case $\ell=4$

Using Zhu's theory, we obtain the following classification result:

Theorem

The set

$$
\begin{aligned}
& \left\{L_{D_{4}}(-2,0), L_{D_{4}}\left(-2,-2 \omega_{1}\right), L_{D_{4}}\left(-2,-2 \omega_{3}\right)\right. \\
& \left.L_{D_{4}}\left(-2,-2 \omega_{4}\right), L_{D_{4}}\left(-2,-\omega_{2}\right)\right\}
\end{aligned}
$$

provides a complete list of irreducible weak $\tilde{L}_{D_{4}}(-2,0)$-modules from the category \mathcal{O}.
In particular, $L_{D_{4}}(-2,0)$ is the unique irreducible ordinary module for $\widetilde{L}_{D_{4}}(-2,0)$.

Case $\ell=4$

It follows immediately that:

Case $\ell=4$

It follows immediately that:

Theorem

Vertex operator algebra $\widetilde{L}_{D_{4}}(-2,0)$ is simple, i.e.

$$
L_{D_{4}}(-2,0)=\frac{N_{D_{4}}(-2,0)}{\left\langle v, \theta(v), \theta^{2}(v)>\right.}
$$

These results were recently generalized by Arakawa and Moreau.

Case ℓ odd

Top components of irreducible $\mathcal{V}_{D_{\ell}}(-\ell+2,0)$-modules are irreducible modules for the simple Lie algebra of type D.

Case ℓ odd

Top components of irreducible $\mathcal{V}_{D_{\ell}}(-\ell+2,0)$-modules are irreducible modules for the simple Lie algebra of type D. So we get an interesting series of modules:

$$
V_{D_{\ell}}\left(t \omega_{\ell-1}\right), V_{D_{\ell}}\left(t \omega_{\ell}\right) \quad\left(t \in \mathbb{Z}_{\geq 0}\right)
$$

Case ℓ odd

Top components of irreducible $\mathcal{V}_{D_{\ell}}(-\ell+2,0)$-modules are irreducible modules for the simple Lie algebra of type D. So we get an interesting series of modules:

$$
V_{D_{\ell}}\left(t \omega_{\ell-1}\right), V_{D_{\ell}}\left(t \omega_{\ell}\right) \quad\left(t \in \mathbb{Z}_{\geq 0}\right) .
$$

Let

$$
U_{D_{\ell}}(t):= \begin{cases}V_{D_{\ell}}\left(t \omega_{\ell-1}\right), & \text { for } t \geq 0 \\ V_{D_{\ell}}\left(-t \omega_{\ell}\right), & \text { for } t<0 .\end{cases}
$$

Case ℓ odd

Top components of irreducible $\mathcal{V}_{D_{\ell}}(-\ell+2,0)$-modules are irreducible modules for the simple Lie algebra of type D. So we get an interesting series of modules:

$$
V_{D_{\ell}}\left(t \omega_{\ell-1}\right), V_{D_{\ell}}\left(t \omega_{\ell}\right) \quad\left(t \in \mathbb{Z}_{\geq 0}\right)
$$

Let

$$
U_{D_{\ell}}(t):= \begin{cases}V_{D_{\ell}}\left(t \omega_{\ell-1}\right), & \text { for } t \geq 0 \\ V_{D_{\ell}}\left(-t \omega_{\ell}\right), & \text { for } t<0 .\end{cases}
$$

Tensor products of these modules have been described by S . Okada:

Theorem

Assume that $\ell \geq 3$ is an odd natural number. Assume that $r, s \in \mathbb{Z}$. Then $U_{D_{\ell}}(t)$ appears in the tensor product $U_{D_{\ell}}(r) \otimes U_{D_{\ell}}(s)$ if and only if $t=r+s$. The multiplicity is one.

Case ℓ odd

These tensor product decompositions give upper bounds for the associated fusion rules for vertex operator algebra:

Case ℓ odd

These tensor product decompositions give upper bounds for the associated fusion rules for vertex operator algebra:

Theorem

Assume that $\ell \geq 3$ is an odd natural number and that $\widetilde{\pi}_{r}, r \in \mathbb{Z}$ are $\mathbb{Z}_{\geq 0}$-graded $\mathcal{V}_{D_{\ell}}\left((-\ell+2) \Lambda_{0}\right)$-modules such that top component of $\widetilde{\pi}_{r}$ is isomorphic to the irreducible $\mathfrak{g}_{D_{\ell}}$-module $U_{D_{\ell}}(r)$. Let π_{r} denote the associated simple quotient. Assume that there is a non-trivial intertwining operator of type

$$
\left(\begin{array}{c}
\pi_{t} \\
\widetilde{\pi}_{r} \\
\pi_{s}
\end{array}\right)
$$

Then $t=r+s$.

Case ℓ odd

It follows immediately that:

Case ℓ odd

It follows immediately that:

Theorem

Assume that $\ell \geq 3$ is an odd natural number. The set

$$
\left\{L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell-1}\right), L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

provides the complete list of irreducible ordinary $L_{D_{\ell}}(-\ell+2,0)$-modules.

Case ℓ odd

It follows immediately that:

Theorem

Assume that $\ell \geq 3$ is an odd natural number. The set

$$
\left\{L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell-1}\right), L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

provides the complete list of irreducible ordinary
$L_{D_{\ell}}(-\ell+2,0)$-modules.
Question: Can we construct nontrivial intertwining operators?

Case ℓ odd

It follows immediately that:

Theorem

Assume that $\ell \geq 3$ is an odd natural number. The set

$$
\left\{L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell-1}\right), L_{D_{\ell}}\left(-\ell+2, t \omega_{\ell}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

provides the complete list of irreducible ordinary
$L_{D_{\ell}}(-\ell+2,0)$-modules.
Question: Can we construct nontrivial intertwining operators? We give an answer in the case $\ell=5$.

Conformal embedding of $L_{D_{5}}(-3,0) \otimes M(1)$ into

 $L_{E_{6}}(-3,0)$Let $\mathfrak{g}_{E_{6}}$ be the simple Lie algebra of type E_{6}.

Conformal embedding of $L_{D_{5}}(-3,0) \otimes M(1)$ into $L_{E_{6}}(-3,0)$

Let $\mathfrak{g}_{E_{6}}$ be the simple Lie algebra of type E_{6}. The subalgebra of $\mathfrak{g}_{E_{6}}$ generated by positive root vectors

$$
\begin{aligned}
& e_{(5)}=e_{\frac{1}{2}\left(\epsilon_{8}-\epsilon_{7}-\epsilon_{6}+\epsilon_{5}-\epsilon_{4}-\epsilon_{3}-\epsilon_{2}-\epsilon_{1}\right)}, e_{\alpha_{2}}=e_{\epsilon_{2}+\epsilon_{1}}, \\
& e_{\alpha_{4}}=e_{\epsilon_{3}-\epsilon_{2}}, e_{\alpha_{3}}=e_{\epsilon_{2}-\epsilon_{1}}, e_{\alpha_{5}}=e_{\epsilon_{4}-\epsilon_{3}}
\end{aligned}
$$

and associated negative root vectors is a simple Lie algebra $\mathfrak{g}_{D_{5}}$ of type D_{5}.

Conformal embedding of $L_{D_{5}}(-3,0) \otimes M(1)$ into $L_{E_{6}}(-3,0)$

Let $\mathfrak{g}_{E_{6}}$ be the simple Lie algebra of type E_{6}. The subalgebra of $\mathfrak{g}_{E_{6}}$ generated by positive root vectors

$$
\begin{aligned}
& e_{(5)}=e_{\frac{1}{2}\left(\epsilon_{8}-\epsilon_{7}-\epsilon_{6}+\epsilon_{5}-\epsilon_{4}-\epsilon_{3}-\epsilon_{2}-\epsilon_{1}\right)}, e_{\alpha_{2}}=e_{\epsilon_{2}+\epsilon_{1}}, \\
& e_{\alpha_{4}}=e_{\epsilon_{3}-\epsilon_{2}}, e_{\alpha_{3}}=e_{\epsilon_{2}-\epsilon_{1}}, e_{\alpha_{5}}=e_{\epsilon_{4}-\epsilon_{3}}
\end{aligned}
$$

and associated negative root vectors is a simple Lie algebra $\mathfrak{g}_{D_{5}}$ of type D_{5}. Thus, $\mathfrak{g}_{E_{6}}$ has a reductive subalgebra $\mathfrak{g}_{D_{5}} \oplus \mathfrak{h}$, where $\mathfrak{h}=\mathbb{C} H$, and

$$
H=\frac{1}{3}\left(h_{8}-h_{7}-h_{6}-3 h_{5}\right)
$$

(where h_{i} are determined by $\epsilon_{i}\left(h_{j}\right)=\delta_{i j}$).

Conformal embedding of $L_{D_{5}}(-3,0) \otimes M(1)$ into $L_{E_{6}}(-3,0)$

It follows that we have an embedding $N_{D_{5}}(-3,0) \otimes M(1)$ into $N_{E_{6}}(-3,0)$, where $M(1)$ denotes the Heisenberg vertex subalgebra generated by H.

Conformal embedding of $L_{D_{5}}(-3,0) \otimes M(1)$ into $L_{E_{6}}(-3,0)$

It follows that we have an embedding $N_{D_{5}}(-3,0) \otimes M(1)$ into $N_{E_{6}}(-3,0)$, where $M(1)$ denotes the Heisenberg vertex subalgebra generated by H. Moreover, the singular vector in this copy of $N_{D_{5}}(-3,0)$:

$$
\begin{aligned}
v= & \left(e_{(5)}(-1) e_{(12345)}(-1)+e_{(125)}(-1) e_{(345)}(-1)\right. \\
& \left.+e_{(135)}(-1) e_{(245)}(-1)+e_{(235)}(-1) e_{(145)}(-1)\right) \mathbf{1}
\end{aligned}
$$

is also a singular vector for $\hat{\mathfrak{g}}_{E_{6}}$ in $N_{E_{6}}(-3,0)$.

Conformal embedding of $L_{D_{5}}(-3,0) \otimes M(1)$ into $L_{E_{6}}(-3,0)$

It follows that we have an embedding $N_{D_{5}}(-3,0) \otimes M(1)$ into $N_{E_{6}}(-3,0)$, where $M(1)$ denotes the Heisenberg vertex subalgebra generated by H. Moreover, the singular vector in this copy of $N_{D_{5}}(-3,0)$:

$$
\begin{aligned}
v= & \left(e_{(5)}(-1) e_{(12345)}(-1)+e_{(125)}(-1) e_{(345)}(-1)\right. \\
& \left.+e_{(135)}(-1) e_{(245)}(-1)+e_{(235)}(-1) e_{(145)}(-1)\right) \mathbf{1}
\end{aligned}
$$

is also a singular vector for $\hat{\mathfrak{g}}_{E_{6}}$ in $N_{E_{6}}(-3,0)$.
Denote by $\widetilde{L}_{D_{5}}(-3,0)$ the subalgebra of $L_{E_{6}}(-3,0)$ generated by $\mathfrak{g}_{D_{5}}$.

Conformal embedding of $L_{D_{5}}(-3,0) \otimes M(1)$ into $L_{E_{6}}(-3,0)$

The criterion for conformal embeddings from D. Adamović, O. P., Algebr. Represent. Theory (2013) gives:

Theorem

Vertex operator algebra $\widetilde{L}_{D_{5}^{(1)}}(-3,0) \otimes M(1)$ is conformally embedded in $L_{E_{6}^{(1)}}(-3,0)$.

Conformal embedding of $L_{D_{5}}(-3,0) \otimes M(1)$ into $L_{E_{6}}(-3,0)$

Now, the results on fusion rules give the following decomposition:

Theorem

We have:

$$
\begin{aligned}
& L_{E_{6}}(-3,0) \cong \bigoplus_{t \in \mathbb{Z}_{\geq 0}} L_{D_{5}}\left(-3, t \omega_{4}\right) \otimes M(1, t) \\
& \oplus \bigoplus_{t \in \mathbb{Z}_{<0}} L_{D_{5}}\left(-3,-t \omega_{5}\right) \otimes M(1, t)
\end{aligned}
$$

Conformal embedding of $L_{D_{5}}(-3,0) \otimes M(1)$ into $L_{E_{6}}(-3,0)$

Now, the results on fusion rules give the following decomposition:

Theorem

We have:

$$
\begin{aligned}
& L_{E_{6}}(-3,0) \cong \bigoplus_{t \in \mathbb{Z}_{\geq 0}} L_{D_{5}}\left(-3, t \omega_{4}\right) \otimes M(1, t) \\
& \oplus \bigoplus_{t \in \mathbb{Z}_{<0}} L_{D_{5}}\left(-3,-t \omega_{5}\right) \otimes M(1, t)
\end{aligned}
$$

Modules appearing in the decomposition are generated by the following singular vectors for $\hat{\mathfrak{g}}_{D_{5}}$:

Conformal embedding of $L_{D_{5}}(-3,0) \otimes M(1)$ into $L_{E_{6}}(-3,0)$

Now, the results on fusion rules give the following decomposition:

Theorem

We have:

$$
\begin{aligned}
& L_{E_{6}}(-3,0) \cong \bigoplus_{t \in \mathbb{Z}_{\geq 0}} L_{D_{5}}\left(-3, t \omega_{4}\right) \otimes M(1, t) \\
& \oplus \bigoplus_{t \in \mathbb{Z}_{<0}} L_{D_{5}}\left(-3,-t \omega_{5}\right) \otimes M(1, t)
\end{aligned}
$$

Modules appearing in the decomposition are generated by the following singular vectors for $\hat{\mathfrak{g}}_{D_{5}}: e_{(234)}(-1)^{t} \mathbf{1}$ generates $L_{D_{5}}\left(-3, t \omega_{4}\right) \otimes M(1, t)$, and $e_{\epsilon_{5}+\epsilon_{4}}(-1)^{-t} \mathbf{1}$ generates $L_{D_{5}}\left(-3,-t \omega_{5}\right) \otimes M(1, t)$.

Corollary

As a consequence of this decomposition, one also obtains the following result.

Corollary

As a consequence of this decomposition, one also obtains the following result. Using conformal embeddings of $L_{F_{4}}(-3,0)$ into $L_{E_{6}}(-3,0)$ and $L_{B_{4}}(-3,0)$ into $L_{D_{5}}(-3,0)$ from ART (2013), one can easily obtain that $L_{B_{4}}(-3,0) \otimes M(1)^{+}$is a vertex subalgebra of $L_{F_{4}}(-3,0)$ with the same conformal vector. Here, $M(1)^{+}$ denotes the \mathbb{Z}_{2}-orbifold of $M(1)$ (Dong-Nagatomo).

Corollary

As a consequence of this decomposition, one also obtains the following result. Using conformal embeddings of $L_{F_{4}}(-3,0)$ into $L_{E_{6}}(-3,0)$ and $L_{B_{4}}(-3,0)$ into $L_{D_{5}}(-3,0)$ from ART (2013), one can easily obtain that $L_{B_{4}}(-3,0) \otimes M(1)^{+}$is a vertex subalgebra of $L_{F_{4}}(-3,0)$ with the same conformal vector. Here, $M(1)^{+}$ denotes the \mathbb{Z}_{2}-orbifold of $M(1)$ (Dong-Nagatomo).
We obtain the following decomposition:

Corollary

We have:

$$
\begin{aligned}
& L_{F_{4}}(-3,0) \cong L_{B_{4}}(-3,0) \otimes M(1)^{+} \oplus L_{B_{4}}\left(-3, \omega_{1}\right) \otimes M(1)^{-} \\
& \quad \oplus \bigoplus_{t \in \mathbb{Z}>0} L_{B_{4}}\left(-3, t \omega_{4}\right) \otimes M(1, t)
\end{aligned}
$$

