
Representations of some affine vertex algebras at
negative integer levels

Ozren Peřse
(joint work with Dražen Adamović)

supported by CSF, grant 2634



References:

O. P., A note on representations of some affine vertex algebras of
type D, Glasnik Matematički 48 (2013) 81–90.
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Vertex operator algebras associated to affine Lie algebras

For a simple Lie algebra g over C and k ∈ C, k 6= −h∨, denote by
Ng(k , 0) the universal affine vertex operator algebra of level k and
by Lg(k, 0) the associated simple quotient.

We are interested in constructing ideals in Ng(k , 0) for negative
integer k and study the representation theory of Lg(k, 0) in that
case.
In particular, we will consider the case of orthogonal Lie algebra of
type D.
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Vertex operator algebra associated to D` of level n − ` + 1

Theorem

Vector

vn =
(∑̀

i=2

eε1−εi (−1)eε1+εi (−1)
)n

1

is a singular vector in ND`
(n − `+ 1, 0), for any n ∈ Z>0.

In the case n = 1, we obtain the singular vector

v =
∑̀
i=2

eε1−εi (−1)eε1+εi (−1)1

in ND`
(−`+ 2, 0).



Vertex operator algebra associated to D` of level n − ` + 1

Theorem

Vector

vn =
(∑̀

i=2

eε1−εi (−1)eε1+εi (−1)
)n

1

is a singular vector in ND`
(n − `+ 1, 0), for any n ∈ Z>0.

In the case n = 1, we obtain the singular vector

v =
∑̀
i=2

eε1−εi (−1)eε1+εi (−1)1

in ND`
(−`+ 2, 0).



Vertex operator algebra associated to D` of level −` + 2

We will consider representations of quotient vertex operator algebra

VD`
(−`+ 2, 0) =

ND`
(−`+ 2, 0)

< v >
.

Using Zhu’s theory, we obtain the following classification result:

Theorem

The set

{LD`
(−`+ 2, tω`−1), LD`

(−`+ 2, tω`) | t ∈ Z≥0}

provides the complete list of irreducible ordinary
VD`

(−`+ 2, 0)–modules.
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Thus, the set of irreducible ordinary LD`
(−`+ 2, 0)–modules is a

subset of the set

{LD`
(−`+ 2, tω`−1), LD`

(−`+ 2, tω`) | t ∈ Z≥0} .

Remark: More generally, we can obtain the classification of
irreducible weak VD`

(−`+ 2, 0)–modules from the category O.
Natural questions:
1. Is < v > a maximal submodule in ND`

(−`+ 2, 0)?
2. Representation theory of LD`

(−`+ 2, 0)?
We give an answer in some special cases.
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Case ` = 4

Denote by θ the automorphism of ND4(−2, 0) induced by the
automorphism of the Dynkin diagram of D4 of order three.

Since
(v =)
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and (θ2(v) =)

(eε3+ε4(−1)eε1+ε2(−1)−eε2+ε4(−1)eε1+ε3(−1)+eε1+ε4(−1)eε2+ε3(−1))1

are also singular vectors in ND4(−2, 0). We consider the associated
quotient vertex operator algebra

L̃D4(−2, 0) =
ND4(−2, 0)

< v , θ(v), θ2(v) >
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Case ` odd

Top components of irreducible VD`
(−`+ 2, 0)–modules are

irreducible modules for the simple Lie algebra of type D.

So we get
an interesting series of modules:

VD`
(tω`−1), VD`

(tω`) (t ∈ Z≥0).

Let

UD`
(t) :=

{
VD`

(tω`−1), for t ≥ 0
VD`

(−tω`), for t < 0.

Tensor products of these modules have been described by S.
Okada:

Theorem

Assume that ` ≥ 3 is an odd natural number. Assume that
r , s ∈ Z. Then UD`

(t) appears in the tensor product
UD`

(r)⊗ UD`
(s) if and only if t = r + s. The multiplicity is one.
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Case ` odd

These tensor product decompositions give upper bounds for the
associated fusion rules for vertex operator algebra:

Theorem

Assume that ` ≥ 3 is an odd natural number and that π̃r , r ∈ Z
are Z≥0–graded VD`

((−`+ 2)Λ0)-modules such that top
component of π̃r is isomorphic to the irreducible gD`

–module
UD`

(r). Let πr denote the associated simple quotient. Assume
that there is a non-trivial intertwining operator of type(

πt
π̃r πs

)
.

Then t = r + s.
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Conformal embedding of LD5
(−3, 0)⊗M(1) into

LE6
(−3, 0)

Let gE6 be the simple Lie algebra of type E6.

The subalgebra of
gE6 generated by positive root vectors

e(5) = e 1
2
(ε8−ε7−ε6+ε5−ε4−ε3−ε2−ε1), eα2 = eε2+ε1 ,

eα4 = eε3−ε2 , eα3 = eε2−ε1 , eα5 = eε4−ε3

and associated negative root vectors is a simple Lie algebra gD5 of
type D5. Thus, gE6 has a reductive subalgebra gD5 ⊕ h, where
h = CH, and

H =
1

3
(h8 − h7 − h6 − 3h5)

(where hi are determined by εi (hj) = δij).
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It follows that we have an embedding ND5(−3, 0)⊗M(1) into
NE6(−3, 0), where M(1) denotes the Heisenberg vertex subalgebra
generated by H.

Moreover, the singular vector in this copy of
ND5(−3, 0):
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Denote by L̃D5(−3, 0) the subalgebra of LE6(−3, 0) generated by
gD5 .



Conformal embedding of LD5
(−3, 0)⊗M(1) into

LE6
(−3, 0)

It follows that we have an embedding ND5(−3, 0)⊗M(1) into
NE6(−3, 0), where M(1) denotes the Heisenberg vertex subalgebra
generated by H. Moreover, the singular vector in this copy of
ND5(−3, 0):

v = (e(5)(−1)e(12345)(−1) + e(125)(−1)e(345)(−1)

+e(135)(−1)e(245)(−1) + e(235)(−1)e(145)(−1))1

is also a singular vector for ĝE6 in NE6(−3, 0).

Denote by L̃D5(−3, 0) the subalgebra of LE6(−3, 0) generated by
gD5 .



Conformal embedding of LD5
(−3, 0)⊗M(1) into

LE6
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The criterion for conformal embeddings from D. Adamović, O. P.,
Algebr. Represent. Theory (2013) gives:
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Vertex operator algebra L̃
D

(1)
5

(−3, 0)⊗M(1) is conformally

embedded in L
E

(1)
6

(−3, 0).
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e(234)(−1)t1 generates
LD5(−3, tω4)⊗M(1, t), and eε5+ε4(−1)−t1 generates
LD5(−3,−tω5)⊗M(1, t).



Conformal embedding of LD5
(−3, 0)⊗M(1) into

LE6
(−3, 0)

Now, the results on fusion rules give the following decomposition:

Theorem

We have:

LE6(−3, 0) ∼=
⊕
t∈Z≥0

LD5(−3, tω4)⊗M(1, t)

⊕
⊕
t∈Z<0

LD5(−3,−tω5)⊗M(1, t).

Modules appearing in the decomposition are generated by the
following singular vectors for ĝD5 : e(234)(−1)t1 generates
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Corollary

As a consequence of this decomposition, one also obtains the
following result.

Using conformal embeddings of LF4(−3, 0) into
LE6(−3, 0) and LB4(−3, 0) into LD5(−3, 0) from ART (2013), one
can easily obtain that LB4(−3, 0)⊗M(1)+ is a vertex subalgebra
of LF4(−3, 0) with the same conformal vector. Here, M(1)+

denotes the Z2-orbifold of M(1) (Dong-Nagatomo).
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Corollary

We have:

LF4(−3, 0) ∼= LB4(−3, 0)⊗M(1)+ ⊕ LB4(−3, ω1)⊗M(1)−

⊕
⊕
t∈Z>0

LB4(−3, tω4)⊗M(1, t).



Corollary

As a consequence of this decomposition, one also obtains the
following result. Using conformal embeddings of LF4(−3, 0) into
LE6(−3, 0) and LB4(−3, 0) into LD5(−3, 0) from ART (2013), one
can easily obtain that LB4(−3, 0)⊗M(1)+ is a vertex subalgebra
of LF4(−3, 0) with the same conformal vector. Here, M(1)+

denotes the Z2-orbifold of M(1) (Dong-Nagatomo).

We obtain the following decomposition:

Corollary

We have:

LF4(−3, 0) ∼= LB4(−3, 0)⊗M(1)+ ⊕ LB4(−3, ω1)⊗M(1)−

⊕
⊕
t∈Z>0

LB4(−3, tω4)⊗M(1, t).



Corollary

As a consequence of this decomposition, one also obtains the
following result. Using conformal embeddings of LF4(−3, 0) into
LE6(−3, 0) and LB4(−3, 0) into LD5(−3, 0) from ART (2013), one
can easily obtain that LB4(−3, 0)⊗M(1)+ is a vertex subalgebra
of LF4(−3, 0) with the same conformal vector. Here, M(1)+

denotes the Z2-orbifold of M(1) (Dong-Nagatomo).
We obtain the following decomposition:

Corollary

We have:

LF4(−3, 0) ∼= LB4(−3, 0)⊗M(1)+ ⊕ LB4(−3, ω1)⊗M(1)−

⊕
⊕
t∈Z>0

LB4(−3, tω4)⊗M(1, t).


