Explicit realization of certain affine and superconformal vertex algebras

Dražen Adamović

Supported by CSF, grant. no. 2634

Dubrovnik, June 26, 2015.

Let \mathfrak{g} be a finite-dimensional simple Lie algebra over \mathbb{C} and let (\cdot, \cdot) be a nondegenerate symmetric bilinear form on \mathfrak{g} . The affine Kac-Moody Lie algebra $\hat{\mathfrak{g}}$ associated with \mathfrak{g} is defined as

$$\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}K$$

where K is the canonical central element and the Lie algebra structure is given by

$$[x \otimes t^n, y \otimes t^m] = [x, y] \otimes t^{n+m} + n(x, y)\delta_{n+m,0}K.$$

We will say that *M* is a \hat{g} -module of level *k* if the central element *K* acts on *M* as a multiplication with *k*.

Set $x(n) = x \otimes t^n$, for $x \in \mathfrak{g}$, $n \in \mathbb{Z}$, and identify \mathfrak{g} as the subalgebra $\mathfrak{g} \otimes t^0$.

Define the field $x(z) = \sum_{n \in \mathbb{Z}} x(n) z^{-n-1}$ which acts on restricted \hat{g} -modules of level *k*.

Let $V^k(\mathfrak{g})$ be the universal vertex algebra generated by fields $x(z), x \in \mathfrak{g}$.

As a $\hat{\mathfrak{g}}$ -module, $V^k(\mathfrak{g})$ can be realized as a generalized Verma module.

For every $k \in \mathbb{C}$, the irreducible $\hat{\mathfrak{g}}$ -module $L_k(\mathfrak{g})$ carries the structure of a simple vertex algebra.

Let now $\mathfrak{g} = sl_2(\mathbb{C})$ with generators e, f, hand relations [h, e] = 2e, [h, f] = -2f, [e, f] = h. The corresponding affine Lie algebra $\hat{\mathfrak{g}}$ is of type $A_1^{(1)}$.

The level k = -2 is called **critical level**.

N = 2 superconformal algebra

N = 2 superconformal algebra (SCA) is the infinite-dimensional Lie superalgebra with basis $\mathcal{L}(n)$, $\mathcal{H}(n)$, $\mathcal{G}^{\pm}(r)$, C, $n \in \mathbb{Z}$, $r \in \frac{1}{2} + \mathbb{Z}$ and (anti)commutation relations given by

$$\begin{split} [\mathcal{L}(m), \mathcal{L}(n)] &= (m-n)\mathcal{L}(m+n) + \frac{C}{12}(m^3 - m)\delta_{m+n,0}, \\ [\mathcal{H}(m), \mathcal{H}(n)] &= \frac{C}{3}m\delta_{m+n,0}, \quad [\mathcal{L}(m), \mathcal{G}^{\pm}(r)] = (\frac{1}{2}m - r)\mathcal{G}^{\pm}(m+r), \\ [\mathcal{L}(m), \mathcal{H}(n)] &= -n\mathcal{H}(n+m), \quad [\mathcal{H}(m), \mathcal{G}^{\pm}(r)] = \pm \mathcal{G}^{\pm}(m+r), \\ \{\mathcal{G}^{+}(r), \mathcal{G}^{-}(s)\} &= 2\mathcal{L}(r+s) + (r-s)\mathcal{H}(r+s) + \frac{C}{3}(r^2 - \frac{1}{4})\delta_{r+s,0}, \\ [\mathcal{L}(m), C] &= [\mathcal{H}(n), C] = [\mathcal{G}^{\pm}(r), C] = 0, \\ \{\mathcal{G}^{+}(r), \mathcal{G}^{+}(s)\} &= \{\mathcal{G}^{-}(r), \mathcal{G}^{-}(s)\} = 0 \end{split}$$

for all $m, n \in \mathbb{Z}$, $r, s \in \frac{1}{2} + \mathbb{Z}$.

When $k \neq -2$, the representation theory of the affine Lie algebra $A_1^{(1)}$ is related with the representation theory of the N = 2 superconformal algebra.

The correspondence is given by Kazama-Suzuki mappings.

We shall extend this correspondence to representations at the critical level by introducing a new infinite-dimensional Lie superalgebra \mathcal{A} .

Clifford vertex superalgebras

The Clifford vertex superalgebra F is generated by fields

$$\Psi^+(z) = \sum_{n \in \mathbb{Z}} \Psi^+(n + \frac{1}{2}) z^{-n-1}, \quad \Psi^-(z) = \sum_{n \in \mathbb{Z}} \Psi^-(n + \frac{1}{2}) z^{-n-1}.$$

whose components satisfy the (anti)commutation relations for the infinite dimensional Clifford algebra *CL*:

$$\{\Psi^{\pm}(r),\Psi^{\mp}(s)\} = \delta_{r+s,0}; \quad \{\Psi^{\pm}(r),\Psi^{\pm}(s)\} = 0$$

where $r, s \in \frac{1}{2} + \mathbb{Z}$.

As a vector space,

$$F \cong \bigwedge \left(\Psi^{\pm}(-n-\frac{1}{2}) \mid n \leq 0 \right)$$

N = 2 superconformal vertex algebra

Let $\mathfrak{g} = sl_2$. Consider the vertex superalgebra $V^k(\mathfrak{g}) \otimes F$. Define

$$au^+ = e(-1)\mathbf{1} \otimes \Psi^+(-\frac{1}{2}), \quad au^- = f(-1)\mathbf{1} \otimes \Psi^-(-\frac{1}{2}).$$

Then the vertex subalgebra of $V^k(\mathfrak{g}) \otimes F$

generated by τ^+ and τ^- carries the structure of a highest weight module for of the N = 2 SCA:

$$\mathcal{G}^{\pm}(z) = \sqrt{rac{2}{k+2}} Y(\tau^{\pm}, z) = \sum_{n \in \mathbb{Z}} \mathcal{G}^{\pm}(n + rac{1}{2}) z^{-n-2}$$

Introduced by Fegin, Semikhatov and Tipunin (1997) Assume that *M* is a $V^k(\mathfrak{g})$ -module. Then $M \otimes F$ is a module for N = 2 supereconformal algebra.

Let F_{-1} be the lattice vertex superalgebra associated to the lattice $\mathbb{Z}\sqrt{-1}$.

Assume that *N* is a (restricted) module for the N = 2 SCA. Then $N \otimes F_{-1}$ is a module for the affine Lie algebra $A_1^{(1)}$. This enables a classification of irreducible modules for simple vertex superalgebras associated to N=2 SCA (D.Adamović, IMRN (1998)) \mathcal{A} is infinite-dimensional Lie superalgebra with generators $S(n), T(n), G^{\pm}(r), C, n \in \mathbb{Z}, r \in \frac{1}{2} + \mathbb{Z}$, which satisfy the following relations

$$S(n), T(n), C \text{ are in the center of } \mathcal{A}, \\ \{G^+(r), G^-(s)\} = 2S(r+s) + (r-s)T(r+s) + \frac{C}{3}(r^2 - \frac{1}{4})\delta_{r+s,0}, \\ \{G^+(r), G^+(s)\} = \{G^-(r), G^-(s)\} = 0$$

for all $n \in \mathbb{Z}$, $r, s \in \frac{1}{2} + \mathbb{Z}$.

Then the vertex superalgebra structure on $\ensuremath{\mathcal{V}}$ is strongly generated by the fields

$$egin{aligned} G^{\pm}(z) &= Y(au^{\pm},z) = \sum_{n \in \mathbb{Z}} G^{\pm}(n+rac{1}{2}) z^{-n-2}, \ S(z) &= Y(
u,z) = \sum_{n \in \mathbb{Z}} S(n) z^{-n-2}, \ T(z) &= Y(j,z) = \sum_{n \in \mathbb{Z}} T(n) z^{-n-1}. \end{aligned}$$

The components of these fields satisfy the (anti)commutation relations for the Lie superalgebra A.

Theorem (A, CMP 2007)

Assume that U is an irreducible \mathcal{V} -module such that U admits the following \mathbb{Z} -gradation

$$U = \bigoplus_{j \in \mathbb{Z}} U^j, \quad \mathcal{V}^i. U^j \subset U^{i+j}.$$

Let F_{-1} be the vertex superalgebra associated to lattice $\mathbb{Z}\sqrt{-1}$. Then

$$U\otimes F_{-1}=igoplus_{s\in\mathbb{Z}}\mathcal{L}_s(U), \hspace{1em} extsf{where} \hspace{1em} \mathcal{L}_s(U):=igoplus_{i\in\mathbb{Z}}U^i\otimes F_{-1}^{-s+i}$$

and for every $s \in \mathbb{Z} \mathcal{L}_s(U)$ is an irreducible $A_1^{(1)}$ -module at the critical level.

The Weyl vertex algebra W is generated by the fields

$$a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \ a^*(z) = \sum_{n \in \mathbb{Z}} a^*(n) z^{-n},$$

whose components satisfy the commutation relations for infinite-dimensional Weyl algebra

 $[a(n), a(m)] = [a^*(n), a^*(m)] = 0, \quad [a(n), a^*(m)] = \delta_{n+m,0}.$

Assume that $\chi(z) \in \mathbb{C}((z))$.

On the vertex algebra W exists the structure of the $A_1^{(1)}$ -module at the critical level defined by

$$\begin{array}{lll} e(z) &=& a(z), \\ h(z) &=& -2: a^*(z)a(z): -\chi(z) \\ f(z) &=& -: a^*(z)^2a(z): -2\partial_z a^*(z) - a^*(z)\chi(z). \end{array}$$

This module is called the Wakimoto module and it is denoted by $W_{-\chi(z)}$.

Theorem (D.A., CMP 2007, Contemp. Math. 2014)

The Wakimoto module $W_{-\chi}$ is irreducible if and only if $\chi(z)$ satisfies one of the following conditions:

(i) There is $p \in \mathbf{Z}_{>0}$, $p \ge 1$ such that

$$\chi(z) = \sum_{n=-p}^{\infty} \chi_{-n} z^{n-1} \in \mathbb{C}((z)) \quad and \quad \chi_p \neq 0.$$

(ii) $\chi(z) = \sum_{n=0}^{\infty} \chi_{-n} z^{n-1} \in \mathbb{C}((z))$ and $\chi_0 \in \{1\} \cup (\mathbb{C} \setminus \mathbb{Z})$. (iii) There is $\ell \in \mathbb{Z}_{\geq 0}$ such that

$$\chi(z) = \frac{\ell+1}{z} + \sum_{n=1}^{\infty} \chi_{-n} z^{n-1} \in \mathbb{C}((z))$$

and $S_{\ell}(-\chi) \neq 0$, where $S_{\ell}(-\chi) = S_{\ell}(-\chi_{-1}, -\chi_{-2}, ...)$ is a Schur polynomial.

Every restricted module for the Weyl algebra is a module for Weyl vertex algebra W.

For $(\lambda, \mu) \in \mathbb{C}^2$ let $M_1(\lambda, \mu)$ be the module for the Weyl algebra generated by the Whittaker vector v_1 such that

 $a(0)v_1 = \lambda v_1, \ a^*(1)v_1 = \mu v_1, \ a(n+1)v_1 = a^*(n+2)v_1 = 0 \ (n \ge 0)$

 $M_1(\lambda, \mu)$ is a *W*-module.

Theorem (D.A; R. Lu, K. Z., 2014)

For every $\chi(z) \in \mathbb{C}((z))$, $(\lambda, \mu) \in \mathbb{C}^2$, $\lambda \neq 0$ there exists irreducible $\widehat{sl_2}$ -module $\overline{M_{Wak}}(\lambda, \mu, -2, \chi(z))$ realized on the *W*-module $M_1(\lambda, \mu)$ such that

$$e(z) = a(z);$$

$$h(z) = -2: a^{*}(z)a(z): +\chi(z);$$

$$f(z) = -: a^{*}(z)^{2}a(z): -2\partial_{z}a^{*}(z) + a^{*}(z)\chi(z)$$

- We see that Whittaker modules from previous theorem are realized using same formulas.
- Wakimoto modules are realized on vertex algebra W, but Whittaker are realized on W–module M₁(λ, μ).
- Whitteker modules are always irreducible, but for Wakimoto modules we have non-trivial criteria.

As a special case, the previous theorem provides a realization of degenerate Whittaker modules at the critical level.

But it does not cover non-degenerate Whittaker modules at the critical level.

We need to modify construction of Wakimoto modules. Method: Use vertex algebra $\Pi(0)$, a localization of Weyl vertex algebra.

The vertex algebra $\Pi(0)$

Let $\Pi(0)$ be the localization of the Weyl vertex algebra with respect to a(-1), $\Pi(0) = M[(a(-1)^{-1}]]$. We have the expansion

$$a^{-1}(z) = Y(a^{-1}, z) = \sum_{n \in \mathbb{Z}} a^{-1}(n) z^{-n+1}.$$

$$a^{-1}(z)a(z)=Id.$$

.

Theorem

Assume that $\lambda \neq 0$. There is a $\Pi(0)$ -module Π_{λ} generated by the cyclic vector w_{λ} such that

$$a(0)w_{\lambda} = \lambda w_{\lambda}, \quad a^{-1}(0)w_{\lambda} = \frac{1}{\lambda}w_{\lambda}, \quad a(n)w_{\lambda} = a^{-1}(n)w_{\lambda} = 0 (n \ge 1)$$

Modified Wakimoto construction

There is an embedding of vertex algebras

$$V^{-2}(sl_2) \rightarrow M_T(0) \otimes \Pi(0)$$

such that

$$e = a, \tag{1}$$

$$h = -2\beta(-1) = -2a^*(0)a(-1)\mathbf{1}$$
 (2)

$$f = \left[T(-2) - (\alpha(-1)^2 + \alpha(-2)) \right] a^{-1}$$
(3)

$$= -a^{*}(0)^{2}a(-1)\mathbf{1} - 2a^{*}(-1)\mathbf{1} + T(-2)a^{-1}$$
(4)

Non-degenerate Whittaker modules at the critical level

For any $\chi(z) = \sum_{n \in \mathbb{Z}} \chi(n) z^{-n-2} \in \mathbb{C}((z))$ let $M_T(\chi(z))$ be 1-dimensional $M_T(0)$ -module such that T(n) acts as multiplication with $\chi(n) \in \mathbb{C}$.

Theorem (ALZ)

Let $\lambda \neq 0$. Let $\chi(z) = rac{\lambda \mu}{z^3} + c(z), \quad c(z) = \sum_{n \leq 0} \chi(n) z^{-n-2} \in \mathbb{C}((z)).$

Then we have:

$$V_{\widehat{sl_2}}(\lambda,\mu,-2,c(z))\cong M_T(\chi(z))\otimes \Pi_\lambda.$$

N=4 superconformal vertex algebra $V_c^{N=4}$

 $V_c^{N=4}$ is generated by the Virasoro field *L*, three primary fields of conformal weight 1, J^0 , J^+ and J^- (even part) and four primary fields of conformal weight $\frac{3}{2}$, G^{\pm} and \overline{G}^{\pm} (odd part). The remaining (non-vanishing) λ -brackets are

$$\begin{split} & [J^0_{\lambda}, J^{\pm}] = \pm 2J^{\pm} \qquad [J^0_{\lambda}J^0] = \frac{c}{3} \\ & [J^+_{\lambda}J^-] = J^0 + \frac{c}{6}\lambda \quad [J^0_{\lambda}G^{\pm}] = \pm G^{\pm} \\ & [J^0\overline{G}^{\pm}] = \pm \overline{G}^{\pm} \qquad [J^+_{\lambda}G^-] = G^+ \\ & [J^-_{\lambda}G^+] = G^- \qquad [J^+_{\lambda}\overline{G}^-] = -\overline{G}^+ \\ & [J^-_{\lambda}\overline{G}^+] = -\overline{G}^- \qquad [G^\pm_{\lambda}\overline{G}^{\pm}] = (T+2\lambda)J^{\pm} \\ & [G^\pm_{\lambda}\overline{G}^{\pm}] = \qquad L \pm \frac{1}{2}TJ^0 \pm \lambda J^0 + \frac{c}{6}\lambda^2 \end{split}$$

Let $L_c^{N=4}$ be its simple quotient.

We shall present some results from D.Adamović, arXiv:1407.1527. (to appear in Transformation Groups)

Theorem

(i) The simple affine vertex algebra $L_k(sl_2)$ with k = -3/2 is conformally embedded into $L_c^{N=4}$ with c = -9. (ii)

$$L_c^{N=4} \cong (M \otimes F)^{int}$$

where $M \otimes F$ is a maximal sl_2 -integrable submodule of the Weyl-Clifford vertex algebra $M \otimes F$.

 $L_c^{N=4}$ with c = -9 is completely reducible \widehat{sl}_2 -module and the following decomposition holds:

$$L_c^{N=4} \cong \bigoplus_{m=0}^{\infty} (m+1)L_{A_1}(-(\frac{3}{2}+n)\Lambda_0+n\Lambda_1).$$

 $L_c^{N=4}$ is a completely reducible $sl_2 \times \widehat{sl_2}$ -modules. sl_2 action is obtained using screening operators for Wakimoto realization of $\widehat{sl_2}$ -modules at level -3/2.

The affine vertex algebra $L_k(sl_3)$ with k = -3/2.

Theorem

(i) The simple affine vertex algebra $L_k(sl_3)$ with k = -3/2 is realized as a subalgebra of $L_c^{N=4} \otimes F_{-1}$ with c = -9. In particular $L_k(sl_3)$ can be realized as subalgebra of

 $M \otimes F \otimes F_{-1}$.

(ii) $L_c^{N=4} \otimes F_{-1}$ is a completely reducible $A_2^{(1)}$ -module at level k = -3/2.

On representation theory of $L_c^{N=4}$ with c = -9

- L_c^{N=4} has only one irreducible module in the category of strong modules. Every Z_{>0}-graded L_c^{N=4}-module with finite-dimensional weight spaces (with respect to L(0)) is semisimple ("Rationality in the category of strong modules")
- $L_c^{N=4}$ has two irreducible module in the category \mathcal{O} . There are non-semisimple $L_c^{N=4}$ -modules from the category \mathcal{O} .
- $L_c^{N=4}$ has infinitely many irreducible modules in the category of weight modules.
- L_c^{N=4} admits logarithmic modules on which L(0) does not act semi-simply.

Theorem (D.A, 2014)

Assume that U is an irreducible $L_c^{N=4}$ -module with c = -9 such that $U = \bigoplus_{j \in \mathbb{Z}} U^j$ is \mathbb{Z} -graded (in a suitable sense). Let F_{-1} be the vertex superalgebra associated to lattice $\mathbb{Z}\sqrt{-1}$. Then

$$U\otimes \mathcal{F}_{-1}=igoplus_{s\in\mathbb{Z}}\mathcal{L}_s(U), \quad \textit{where } \mathcal{L}_s(U):=igoplus_{i\in\mathbb{Z}}U^i\otimes \mathcal{F}_{-1}^{-s+i}$$

and for every $s \in \mathbb{Z}$ $\mathcal{L}_s(U)$ is an irreducible $A_2^{(1)}$ -module at level -3/2.

Drinfeld-Sokolov reduction maps:

 $L_c^{N=4}$ to doublet vertex algebra $\mathcal{A}(p)$ and even part $(L_c^{N=4})^{even}$ to triplet vertex algebra $\mathcal{W}(p)$ with p = 2 (symplectic-fermion case)

Vacuum space of $L_k(sl_3)$ with k = -3/2 contains the vertex algebra $W_{A_2}(p)$ with p = 2 (which is conjecturally C_2 -cofinite).

Connection with C_2 —cofinite vertex algebras appearing in LCFT:

Vacuum space of $L_k(sl_3)$ with k = -3/2 contains the vertex algebra $\mathcal{W}_{A_2}(p)$ with p = 2 (which is conjecturally C_2 -cofinite).

Affine vertex algebra $L_k(sl_2)$ for $k + 2 = \frac{1}{p}$, $p \ge 2$ can be conformally embedded into the vertex algebra $\mathcal{V}^{(p)}$ generated by $L_k(sl_2)$ and 4 primary vectors $\tau_{(p)}^{\pm}, \overline{\tau}_{(p)}^{\pm}$. $\mathcal{V}^{(p)} \cong L_c^{N=4}$ for p = 2.

Drinfeld-Sokolov reduction maps $\mathcal{V}^{(p)}$ to the doublet vertex algebra $\mathcal{A}(p)$ and even part $(\mathcal{V}^{(p)})^{even}$ to the triplet vertex algebra $\mathcal{W}(p)$. (C_2 -cofiniteness and RT of these vertex algebras were obtain in a work of D.A and A. Milas)

The Vertex algebra $\mathcal{W}_{A_2}(p)$: Definition

We consider the lattice

$$\sqrt{p}A_2 = \mathbb{Z}\gamma_1 + \mathbb{Z}\gamma_2, \quad \langle \gamma_1, \gamma_1 \rangle = \langle \gamma_2, \gamma_2 \rangle = 2p, \ \langle \gamma_1, \gamma_2 \rangle = -p.$$

Let $M_{\gamma_1,\gamma_2}(1)$ be the s Heisenberg vertex subalgebra of $V_{\sqrt{p}A_2}$ generated by the Heisenberg fields $\gamma_1(z)$ and $\gamma_2(z)$.

$$\mathcal{W}_{A_2}(\rho) = \operatorname{Ker}_{V_{\sqrt{\rho}A_2}} e_0^{-\gamma_1/\rho} \bigcap \operatorname{Ker}_{V_{\sqrt{\rho}A_2}} e_0^{-\gamma_2/\rho}.$$

We also have its subalgebra:

$$\mathcal{W}^{0}_{A_{2}}(\rho) = \operatorname{Ker}_{M_{\gamma_{1},\gamma_{2}}(1)} e_{0}^{-\gamma_{1}/\rho} \bigcap \operatorname{Ker}_{M_{\gamma_{1},\gamma_{2}}(1)} e_{0}^{-\gamma_{2}/\rho}$$

 $\mathcal{W}_{A_2}(p)$ and $\mathcal{W}^0_{A_2}(p)$ have vertex subalgebra isomorphic to the simple $\mathcal{W}(2,3)$ -algebra with central charge $c_p = 2 - 24 \frac{(p-1)^2}{p}$.

The Vertex algebra $\mathcal{W}_{A_2}(\rho)$: Conjecture

- (i) $\mathcal{W}_{A_2}(p)$ is a C_2 -cofinite vertex algebra for $p \ge 2$ and that it is a completely reducible $\mathcal{W}(2,3) \times sl_3$ -module.
- (ii) $\mathcal{W}_{A_2}(p)$ is strongly generated by $\mathcal{W}(2,3)$ generators and by $sl_3.e^{-\gamma_1-\gamma_2}$, so by 8 primary fields for the $\mathcal{W}(2,3)$ -algebra.

Note that $\mathcal{W}_{A_2}(p)$ is a generalization of the triplet vertex algebra $\mathcal{W}(p)$ and $\mathcal{W}^0_{A_2}(p)$ is a generalization of the singlet vertex subalgebra of $\mathcal{W}(p)$.

- (i) Let K(sl₃, k) be the parafermion vertex subalgebra of L_k(sl₃).
- (ii) Creutzig-Linshaw proved that generically $K(sl_3, k)$ is \mathcal{W} -algebra of type $\mathcal{W}(2^3, 3^5, 4^7, ...)$

(iii) For k = -3/2 we have

$$K(sl_3,k)=\mathcal{W}^0_{A_2}(p).$$

Realization of simple W-algebras

Let $F_{-p/2}$ denotes the generalized lattice vertex algebra associated to the lattice $\mathbb{Z}(\frac{p}{2}\varphi)$ such that

$$\langle \varphi, \varphi \rangle = -\frac{2}{p}$$

Let $\mathcal{R}^{(p)}$ by the subalgebra of $\mathcal{V}^{(p)} \otimes \mathcal{F}_{-p/2}$ generated by $x = x(-1)\mathbf{1} \otimes 1, x \in \{e, f, h\}, \mathbf{1} \otimes \varphi(-1)\mathbf{1}$ and

$$e_{\alpha_{1},p} := \frac{1}{\sqrt{2}} \tau_{(p)}^{+} \otimes e^{\frac{p}{2}\varphi}$$

$$f_{\alpha_{1},p} := \frac{1}{\sqrt{2}} \overline{\tau}_{(p)}^{-} \otimes e^{-\frac{p}{2}\varphi}$$

$$e_{\alpha_{2},p} := \frac{1}{\sqrt{2}} \overline{\tau}_{(p)}^{+} \otimes e^{-\frac{p}{2}\varphi}$$

$$f_{\alpha_{2},p} := \frac{1}{\sqrt{2}} \tau_{(p)}^{-} \otimes e^{\frac{p}{2}\varphi}$$

$$(5)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$\mathcal{R}^{(2)} \cong L_{A_2}(-\frac{3}{2}\Lambda_0).$$

 $\mathcal{R}^{(3)} \cong \mathcal{W}_k(sl_4, f_\theta) \text{ with } k = -8/3.$

(Conjecture) $\mathcal{R}^{(p)}$ and $\mathcal{V}^{(p)}$ have finitely many irreducible modules in the category \mathcal{O} .

 $\mathcal{R}^{(p)}$ and $\mathcal{V}^{(p)}$ have infinitely many irreducible modules outside of the category \mathcal{O} and admit logarithmic modules.

Thank you