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Affine Lie algebras

Let g be a finite-dimensional simple Lie algebra over C and
let (-, -) be a nondegenerate symmetric bilinear form on g.
The affine Kac-Moody Lie algebra g associated with g is
defined as

d=goCltt'|eCK

where K is the canonical central element and the Lie
algebra structure is given by

[X® tn7y® tm] = [Xay] ® thrm + n(X7}/)5n+m,0K-

We will say that M is a g—module of level k if the central
element K acts on M as a multiplication with k.



Affine vertex algebras

Set x(n) = x® t", for x € g, n € Z, and identify g as the
subalgebra g ® t°.

Define the field x(z) = Y~ ., x(n)z="~" which acts on
restricted g—modules of level k.

Let VX(g) be the universal vertex algebra generated by
fields x(z), x € g.

As a g—-module, V¥(g) can be realized as a generalized
Verma module.

For every k € C, the irreducible g—module Lx(g) carries the
structure of a simple vertex algebra.



Affine Lie algebra A}

Let now g = sh(C)

with generators e, f, h

and relations [h, e] = 2e, [h, f] = —-2f, [e, f] = h.

The corresponding affine Lie algebra § is of type AS”.

The level k = —2 is called critical level.



N = 2 superconformal algebra

N = 2 superconformal algebra (SCA) is the infinite-dimensional
Lie superalgebra with basis £(n), #(n),G*(r),C, n€ Z,
re % + Z and (anti)commutation relations given by

[£(m), £(n)] = (m — n)L(m + n) + 3(mM° — M)dmsno,
[H(m), H(n)] = §Mbmino, [L(M),GH(N] = (3m —r)G=(m+r),
[C(m), H(n)] = —nH(n+m), [H(m),GF(r)] =+G=(m+r),

);
{G7(n).G7(s)} =2L(r+s)+(r— S) (r+s)+ §(r* = 1)dr+s0,
[£(m), C] = [#(n), C] = [G*(r), C] =

{G7(r),G7(8)} ={G7(r). G (8)} =0

forall mnez,rsel+z.



Correspondence

When k # —2, the representation theory of the affine Lie
algebra AS” is related with the representation theory of the
N = 2 superconformal algebra.

The correspondence is given by Kazama-Suzuki
mappings.

We shall extend this correspondence to representations at
the critical level by introducing a new infinite-dimensional
Lie superalgebra A.



Clifford vertex superalgebras

The Clifford vertex superalgebra F is generated by fields

Vt(z) =) wh(ntd)z ", =Y W (nmz "

nez nez

whose components satisfy the (anti)commutation relations
for the infinite dimensional Clifford algebra CL:

{WH(r), W7 (8)} = dris0; {WH(r), W (8)} =0

where r, s € § + Z.
As a vector space,

F= N\ (V5(-n-3})|n<0)



N = 2 superconformal vertex algebra

Let g = sh. Consider the vertex superalgebra V#(g) @ F.
Define

Th=e(-1)1@VT(-}), 77 =f(-1)1oVv (-}).

Then the vertex subalgebra of VA(g) @ F

generated by 7+ and 7~ carries the structure of a highest
weight module for of the N = 2 SCA:

G5(2) =\ 152 Y (7, 2) = L pep G5 (n+ )22



Kazama-Suzuki and "anti" Kazama-Suzuki mappings

Introduced by Fegin, Semikhatov and Tipunin (1997)

Assume that M is a V¥(g)-module. Then M F is a
module for N = 2 supereconformal algebra.

Let F_4 be the lattice vertex superalgebra associated to
the lattice Z+/—1.

Assume that N is a (restricted) module for the N = 2 SCA.
Then N ® F_4 is a module for the affine Lie algebra AS”.
This enables a classification of irreducible modules for

simple vertex superalgebras associated to N=2 SCA
(D.Adamovi¢, IMRN (1998) )



Lie superalgebra A

A is infinite-dimensional Lie superalgebra with generators
S(n), T(n), G=(r),C, n€ Z, r € } + Z, which satisfy the
following relations

S(n), T(n),C arein the center of A,
{G™(r),G(8)} =2S(r+8) + (r — 8)T(r +8) + $(r* — 1)dr1s0,
{G"(r).G"(s)} ={G ().G (s)} =0

foralnez,r,se}+2.
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The vertex algebra V

Then the vertex superalgebra structure on V is strongly
generated by the fields

G*(2) = =Y G*(n+ )z "2
nez
S(z2)=Y(,2)=>_ Sz "?,
nez
T(2)=Y(,z)=) T(nz "
nez

The components of these fields satisfy the
(anti)commutation relations for the Lie superalgebra A.
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Theorem (A, CMP 2007)

Assume that U is an irreducible V—module such that U admits
the following Z—gradation

u=gpu, v.ucu.

jez

Let F_4 be the vertex superalgebra associated to lattice Z~/—1.
Then

U Fq =@ Ls(U), where Ls(U):=PU & F"
SEZL i€Z

and for every s € 7 Ls(U) is an irreducible A$1)—modu/e at the
critical level.

12



Weyl vertex algebra

The Weyl vertex algebra W is generated by the fields

a(z)=> a(mz ", a(z)=> a(nz ",

nez nez

whose components satisfy the commutation relations for
infinite-dimensional Weyl algebra

[a(n), a(m)] = [a"(n),a"(m)] = 0, [a(n), & (M)] = dnymo-
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Wakimoto modules

Assume that x(z) € C((2)).
On the vertex algebra W exists the structure of the
Aﬁ”—module at the critical level defined by

e(z) = a(2),
h(z) = -2:a'(z)a(z): —x(2)
f(z) = —:a'(z2)?a(z): —28.a*(z) — a*(z)x(2).

This module is called the Wakimoto module and it is
denoted by W_, ().
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Theorem (D.A., CMP 2007, Contemp. Math. 2014)

The Wakimoto module W_,, is irreducible if and only if x(z)
satisfies one of the following conditions:

(i) Thereisp € Z-q, p > 1 such that

Z x-n2" ' €C((2)) and xp+#0.

n=—p

(i) x(2) = Xplox-nZ"" €C((2)) and xo € {1}U(C\Z).
(i) Thereis t € Z=q such that

x@)= L a2 e (@)
n=1

and Sy(—x) # 0, where Sy(—x) = Si(—x-1,—Xx_2,...) isa
Schur polynomial.

v

15



Whittaker modules for Weyl vertex algebra

Every restricted module for the Weyl algebra is a module
for Weyl vertex algebra W.

For (), 1) € C? let My (), ) be the module for the Weyl
algebra generated by the Whittaker vector vy such that

3(0)V1 = \Vy, a*(1)v1 = uvy, a(n+1)v1 = a*(n+2)v1 =0 (n > 0)

My (X, 1) is a W-module.
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Theorem (D.A; R. Lu, K. Z., 2014)
For every x(z) € C((2)), (\, ) € C2, X # 0 there exists

—

irreducible shh—module My (A, 11, —2, x(2)) realized on the
W-module M; (X, ) such that

e(z) = a(z);
h(z) = -2:a'(z)a(z):+x(2);
fz) = —:a'(z2)?a(z): —20,a"(z) + a*(2)x(2)
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Whittaker vs. Wakimoto modules

@ We see that Whittaker modules from previous theorem are
realized using same formulas.

@ Wakimoto modules are realized on vertex algebra W, but
Whittaker are realized on W—module M; (A, p).

@ Whitteker modules are always irreducible, but for
Wakimoto modules we have non—trivial criteria.
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As a special case, the previous theorem provides a
realization of degenerate Whittaker modules at the critical
level.

But it does not cover non-degenerate Whittaker modules at
the critical level.

We need to modify construction of Wakimoto modules.

Method: Use vertex algebra 1(0), a localization of Weyl
vertex algebra.
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The vertex algebra M(0)

Let IN(0) be the localization of the Weyl vertex algebra with
respect to a(—1), M(0) = M[(a(—1)~"]. We have the expansion

a'(z)=Y@'z)=) a'l(nz"".

nez

a'(z)a(z) = Id.

Assume that A # 0. There is a [1(0)—module Ny generated by
the cyclic vector wy such that

al0)wy = wy,, a '(0)wy = %w,\, a(nywy = a ' (n)wy, = 0(n|> 1)

20



Modified Wakimoto construction

There is an embedding of vertex algebras

V~=2(sh) — M7(0) ® (0)

such that
e = a (1)
h = —28(—1)=—2a*(0)a(—1)1 (2)
= [T(-2) - (a(-1)? + a(-2)| &’ (3)
= —a'(0)%2a(-1)1 -2a*(-1)1+ T(-2)a’ (4)
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Non-degenerate Whittaker modules at the critical
level

For any x(2) = ez x(1)2"2 € C((2)) let Mr(x(2)) be
1-dimensional Mr(0)-module such that T(n) acts as
multiplication with x(n) € C.

Theorem (ALZ)

Let A # 0. Let

x(2)= 25 +0(2), o(2)= Y xmz"E e C((2))

n<0

Then we have:

Vi, (A 1, =2, ¢(2)) = Mr(x(2)) @ Ny
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N=4 superconformal vertex algebra V=4

VN=%is generated by the Virasoro field L, three primary fields
of conformal weight 1, J°, J* and J~ (even part) and four
primary fields of conformal weight 3, G* and G (odd part).
The remaining (non-vanishing) A\—brackets are

[, J5] = 20 (8] = ¢

[J 1=+ 8 [NGH]=+G*
LG 1=+G [JfG]=G"
A

UG l=G [JiG]=-G
Uy G 1=-G [GEG|=(T+2)\J*
G:GT] = L=+ %TJO £+ 22

Let LN=* be its simple quotient.
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N=4 superconformal vertex algebra LY=* with ¢ = —9

We shall present some results from D.Adamovi¢,
arXiv:1407.1527. (to appear in Transformation Groups)

Theorem

(i) The simple affine vertex algebra Li(sk) with k = —3/2 is
conformally embedded into LN=* with ¢ = —9.

(ii)

LY== (Mg F)™

where M ® F is a maximal sh—integrable submodule of the
Weyl-Clifford vertex algebra M & F.
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LN=% with ¢ = —9 as an sh—module

LN=% with ¢ = —9 is completely reducible EE—moduIe and
the following decomposition holds:

_ = 3
LN=4 @ (m+1)La, (— 2 + Ao + nhy).
m=0

LQ’:”' is a completely reducible sk x sAlz—moduIes. sh
action is obtained using screening operators for Wakimoto
realization of sh—modules at level —3/2.
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The affine vertex algebra L, (sk) with k = —3/2.

Theorem

(i) The simple affine vertex algebra Li(shk) with k = —3/2 is
realized as a subalgebra of LN=* @ F_y withc = —9. In
particular Li(sh) can be realized as subalgebra of

Mo F® F_4.

(i) LN=* @ F_y is a completely reducible Ag ) _module at level
k=_3/2.
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On representation theory of LN=* with ¢ = —9

@ LN=% has only one irreducible module in the category of
strong modules. Every Z-,—graded LY=4-module with
finite-dimensional weight spaces (with respect to L(0)) is
semisimple ("Rationality in the category of strong
modules")

@ LN=% has two irreducible module in the category O. There
are non-semisimple L¥Y=4—modules from the category O.

@ LN=*% has infinitely many irreducible modules in the
category of weight modules.

@ LN=% admits logarithmic modules on which L(0) does not
act semi-simply.
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Theorem (D.A, 2014)
Assume that U is an irreducible LN=4—module with ¢ = —9 such
that U = & jez U Is Z—graded (in a suitable sense).

Let F_4 be the vertex superalgebra associated to lattice Z/—1.
Then

U Fq=@DLs(U), where Ls(U):=PU & FF

SEZL i€Z

and for every s € 7Z Ls(U) is an irreducible Ag)—module at level
-3/2.

v
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Connection with Co—cofinite vertex algebras appearing

in LCFT

Drinfeld-Sokolov reduction maps:

LN=% to doublet vertex algebra .A(p) and even part
(LN=4)even 1o triplet vertex algebra W(p) with p = 2

(symplectic-fermion case)

Vacuum space of L(shk) with k = —3/2 contains the
vertex algebra Wa,(p) with p = 2 (which is conjecturally
Co—cofinite).
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Connection with Co—cofinite vertex algebras appearing

in LCFT:

Vacuum space of L(sk) with k = —3/2 contains the
vertex algebra Wa,(p) with p = 2 (which is conjecturally
Co—cofinite).

Affine vertex algebra Lx(sk) for k +2 = 1}, p > 2 can be
conformally embedded into the vertex algebra V(P)
generated by Li(sh) and 4 primary vectors Té), ?(ip).

V() = [N=4for p = 2.
Drinfeld-Sokolov reduction maps V() to the doublet vertex
algebra A(p) and even part (V(P))éve" tg the triplet vertex

algebra W(p). (Co—cofiniteness and RT of these vertex
algebras were obtain in a work of D.A and A. Milas)
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The Vertex algebra W, (p): Definition

We consider the lattice

VPA2 =Ly + Zrye,  (v1,71) = (V2,72) = 2P, (71,72) = —P-

Let M,, ,(1) be the s Heisenberg vertex subalgebra of V za,
generated by the Heisenberg fields v1(z) and ~»(z).

Wa,(p) = KerVﬁAzengﬂ KerVﬁAzeg”/p.

We also have its subalgebra:
’Y1 /p m KerM.H e )ea’Yz/P

Wa,(p) and WQ\ (p) have vertex subalgebra isomorphic to the

Wgz (p) = Kery

172 (1)

simple (2, 3)-algebra with central charge ¢, = 2 — 24 (=11 ”2.

1



The Vertex algebra Wy, (p): Conjecture

() Wa,(p) is a Co—cofinite vertex algebra for p > 2 and that it
is a completely reducible W(2, 3) x sik—module.

(i) Wa,(p) is strongly generated by WW(2, 3) generators and by
sk.e~ 11772, s0 by 8 primary fields for the W(2, 3)—algebra.

Note that Wy, (p) is a generalization of the triplet vertex
algebra W(p) and Wgz(p) is a generalization of the singlet
vertex subalgebra of W(p).

2



Relation with parafermionic vertex algebras for p = 2

(i) Let K(sh, k) be the parafermion vertex subalgebra of
Lk(sh).
(i) Creutzig-Linshaw proved that generically K(sh, k) is
W-algebra of type W(23,3%,47,..)
(i) For k = —3/2 we have

K(sh, k) = W3, (p).
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Realization of simple W-algebras

Let F_, > denotes the generalized lattice vertex algebra
associated to the lattice Z(5) such that

2

<90790> = _E'

Let R(P) by the subalgebra of V(P) @ F_,, » generated by
x=x(—1)1®1,xe{e f h},1®¢p(-1)1and

Corp = \1@ @@egg’ ()

R A LLE 6)

Copp = \1@7(;))696 2 (7)

heo = 75 T @ €F° ®)
24



Realization of simple W-algebras

RB) = Lp,(—3M0).
RG) = Wy (sly, fy) with k = —8/3.

(Conjecture) R(P) and V(P) have finitely many irreducible
modules in the category O.

R(P) and V(P) have infinitely many irreducible modules
outside of the category O and admit logarithmic modules.
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Thank you

26



