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Affine Lie algebras

Let g be a finite-dimensional simple Lie algebra over C and
let (·, ·) be a nondegenerate symmetric bilinear form on g.
The affine Kac-Moody Lie algebra ĝ associated with g is
defined as

ĝ = g⊗ C[t , t−1]⊕ CK

where K is the canonical central element and the Lie
algebra structure is given by

[x ⊗ tn, y ⊗ tm] = [x , y ]⊗ tn+m + n(x , y)δn+m,0K .

We will say that M is a ĝ–module of level k if the central
element K acts on M as a multiplication with k .
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Affine vertex algebras

Set x(n) = x ⊗ tn, for x ∈ g, n ∈ Z, and identify g as the
subalgebra g⊗ t0.
Define the field x(z) =

∑
n∈Z x(n)z−n−1 which acts on

restricted ĝ–modules of level k .
Let V k (g) be the universal vertex algebra generated by
fields x(z), x ∈ g.
As a ĝ–module, V k (g) can be realized as a generalized
Verma module.
For every k ∈ C, the irreducible ĝ–module Lk (g) carries the
structure of a simple vertex algebra.
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Affine Lie algebra A(1)
1

Let now g = sl2(C)

with generators e, f , h
and relations [h,e] = 2e, [h, f ] = −2f , [e, f ] = h.

The corresponding affine Lie algebra ĝ is of type A(1)
1 .

The level k = −2 is called critical level.
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N = 2 superconformal algebra

N = 2 superconformal algebra (SCA) is the infinite-dimensional
Lie superalgebra with basis L(n),H(n),G±(r),C, n ∈ Z,
r ∈ 1

2 + Z and (anti)commutation relations given by

[L(m),L(n)] = (m − n)L(m + n) + C
12 (m3 −m)δm+n,0,

[H(m),H(n)] = C
3 mδm+n,0, [L(m),G±(r)] = ( 1

2 m − r)G±(m + r),

[L(m),H(n)] = −nH(n + m), [H(m),G±(r)] = ±G±(m + r),

{G+(r),G−(s)} = 2L(r + s) + (r − s)H(r + s) + C
3 (r2 − 1

4 )δr+s,0,

[L(m),C] = [H(n),C] = [G±(r),C] = 0,
{G+(r),G+(s)} = {G−(r),G−(s)} = 0

for all m,n ∈ Z, r , s ∈ 1
2 + Z.
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Correspondence

When k 6= −2, the representation theory of the affine Lie
algebra A(1)

1 is related with the representation theory of the
N = 2 superconformal algebra.
The correspondence is given by Kazama-Suzuki
mappings.
We shall extend this correspondence to representations at
the critical level by introducing a new infinite-dimensional
Lie superalgebra A.
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Clifford vertex superalgebras

The Clifford vertex superalgebra F is generated by fields

Ψ+(z) =
∑
n∈Z

Ψ+(n+1
2)z−n−1, Ψ−(z) =

∑
n∈Z

Ψ−(n+1
2)z−n−1.

whose components satisfy the (anti)commutation relations
for the infinite dimensional Clifford algebra CL:

{Ψ±(r),Ψ∓(s)} = δr+s,0; {Ψ±(r),Ψ±(s)} = 0

where r , s ∈ 1
2 + Z.

As a vector space,

F ∼=
∧(

Ψ±(−n − 1
2) | n ≤ 0

)
7



N = 2 superconformal vertex algebra

Let g = sl2. Consider the vertex superalgebra V k (g)⊗ F .
Define

τ+ = e(−1)1⊗Ψ+(−1
2), τ− = f (−1)1⊗Ψ−(−1

2).

Then the vertex subalgebra of V k (g)⊗ F
generated by τ+ and τ− carries the structure of a highest
weight module for of the N = 2 SCA:

G±(z) =
√

2
k+2Y (τ±, z) =

∑
n∈Z G±(n + 1

2)z−n−2
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Kazama-Suzuki and "anti" Kazama-Suzuki mappings

Introduced by Fegin, Semikhatov and Tipunin (1997)
Assume that M is a V k (g)-module. Then M ⊗ F is a
module for N = 2 supereconformal algebra.
Let F−1 be the lattice vertex superalgebra associated to
the lattice Z

√
−1.

Assume that N is a (restricted) module for the N = 2 SCA.
Then N ⊗ F−1 is a module for the affine Lie algebra A(1)

1 .
This enables a classification of irreducible modules for
simple vertex superalgebras associated to N=2 SCA
(D.Adamović, IMRN (1998) )
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Lie superalgebra A

A is infinite-dimensional Lie superalgebra with generators
S(n),T (n),G±(r),C, n ∈ Z, r ∈ 1

2 + Z, which satisfy the
following relations

S(n),T (n),C are in the center of A,
{G+(r),G−(s)} = 2S(r + s) + (r − s)T (r + s) + C

3 (r2 − 1
4)δr+s,0,

{G+(r),G+(s)} = {G−(r),G−(s)} = 0

for all n ∈ Z, r , s ∈ 1
2 + Z.
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The vertex algebra V

Then the vertex superalgebra structure on V is strongly
generated by the fields

G±(z) = Y (τ±, z) =
∑
n∈Z

G±(n + 1
2)z−n−2,

S(z) = Y (ν, z) =
∑
n∈Z

S(n)z−n−2,

T (z) = Y (j , z) =
∑
n∈Z

T (n)z−n−1.

The components of these fields satisfy the
(anti)commutation relations for the Lie superalgebra A.
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Theorem (A, CMP 2007)
Assume that U is an irreducible V–module such that U admits
the following Z–gradation

U =
⊕
j∈Z

U j , V i .U j ⊂ U i+j .

Let F−1 be the vertex superalgebra associated to lattice Z
√
−1.

Then

U ⊗ F−1 =
⊕
s∈Z
Ls(U), where Ls(U) :=

⊕
i∈Z

U i ⊗ F−s+i
−1

and for every s ∈ Z Ls(U) is an irreducible A(1)
1 –module at the

critical level.
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Weyl vertex algebra

The Weyl vertex algebra W is generated by the fields

a(z) =
∑
n∈Z

a(n)z−n−1, a∗(z) =
∑
n∈Z

a∗(n)z−n,

whose components satisfy the commutation relations for
infinite-dimensional Weyl algebra

[a(n),a(m)] = [a∗(n),a∗(m)] = 0, [a(n),a∗(m)] = δn+m,0.
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Wakimoto modules

Assume that χ(z) ∈ C((z)).
On the vertex algebra W exists the structure of the
A(1)

1 –module at the critical level defined by

e(z) = a(z),

h(z) = −2 : a∗(z)a(z) : −χ(z)

f (z) = − : a∗(z)2a(z) : −2∂za∗(z)− a∗(z)χ(z).

This module is called the Wakimoto module and it is
denoted by W−χ(z).
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Theorem (D.A., CMP 2007, Contemp. Math. 2014)

The Wakimoto module W−χ is irreducible if and only if χ(z)
satisfies one of the following conditions:

(i) There is p ∈ Z>0, p ≥ 1 such that

χ(z) =
∞∑

n=−p

χ−nzn−1 ∈ C((z)) and χp 6= 0.

(ii) χ(z) =
∑∞

n=0 χ−nzn−1 ∈ C((z)) and χ0 ∈ {1} ∪ (C \ Z).

(iii) There is ` ∈ Z≥0 such that

χ(z) =
`+ 1

z
+
∞∑

n=1

χ−nzn−1 ∈ C((z))

and S`(−χ) 6= 0, where S`(−χ) = S`(−χ−1,−χ−2, . . . ) is a
Schur polynomial.
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Whittaker modules for Weyl vertex algebra

Every restricted module for the Weyl algebra is a module
for Weyl vertex algebra W .
For (λ, µ) ∈ C2 let M1(λ, µ) be the module for the Weyl
algebra generated by the Whittaker vector v1 such that

a(0)v1 = λv1, a∗(1)v1 = µv1, a(n+1)v1 = a∗(n+2)v1 = 0 (n ≥ 0).

M1(λ, µ) is a W -module.
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Theorem (D.A; R. Lu, K. Z., 2014)

For every χ(z) ∈ C((z)), (λ, µ) ∈ C2, λ 6= 0 there exists
irreducible ŝl2–module MWak (λ, µ,−2, χ(z)) realized on the
W–module M1(λ, µ) such that

e(z) = a(z);

h(z) = −2 : a∗(z)a(z) : +χ(z);

f (z) = − : a∗(z)2a(z) : −2∂za∗(z) + a∗(z)χ(z)
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Whittaker vs. Wakimoto modules

We see that Whittaker modules from previous theorem are
realized using same formulas.
Wakimoto modules are realized on vertex algebra W , but
Whittaker are realized on W–module M1(λ, µ).
Whitteker modules are always irreducible, but for
Wakimoto modules we have non–trivial criteria.
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As a special case, the previous theorem provides a
realization of degenerate Whittaker modules at the critical
level.
But it does not cover non-degenerate Whittaker modules at
the critical level.
We need to modify construction of Wakimoto modules.
Method: Use vertex algebra Π(0), a localization of Weyl
vertex algebra.
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The vertex algebra Π(0)

Let Π(0) be the localization of the Weyl vertex algebra with
respect to a(−1), Π(0) = M[(a(−1)−1]. We have the expansion

a−1(z) = Y (a−1, z) =
∑
n∈Z

a−1(n)z−n+1.

a−1(z)a(z) = Id .

Theorem

Assume that λ 6= 0. There is a Π(0)–module Πλ generated by
the cyclic vector wλ such that

a(0)wλ = λwλ, a−1(0)wλ =
1
λ

wλ, a(n)wλ = a−1(n)wλ = 0(n ≥ 1).
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Modified Wakimoto construction

There is an embedding of vertex algebras

V−2(sl2)→ MT (0)⊗ Π(0)

such that

e = a, (1)
h = −2β(−1) = −2a∗(0)a(−1)1 (2)

f =
[
T (−2)− (α(−1)2 + α(−2))

]
a−1 (3)

= −a∗(0)2a(−1)1− 2a∗(−1)1 + T (−2)a−1 (4)
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Non-degenerate Whittaker modules at the critical
level

For any χ(z) =
∑

n∈Z χ(n)z−n−2 ∈ C((z)) let MT (χ(z)) be
1-dimensional MT (0)–module such that T (n) acts as
multiplication with χ(n) ∈ C.

Theorem (ALZ)

Let λ 6= 0. Let

χ(z) =
λµ

z3 + c(z), c(z) =
∑
n≤0

χ(n)z−n−2 ∈ C((z)).

Then we have:

Vŝl2
(λ, µ,−2, c(z)) ∼= MT (χ(z))⊗ Πλ.
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N=4 superconformal vertex algebra V N=4
c

V N=4
c is generated by the Virasoro field L, three primary fields

of conformal weight 1, J0, J+ and J− (even part) and four
primary fields of conformal weight 3

2 , G± and G
±

(odd part).
The remaining (non-vanishing) λ–brackets are

[J0
λ, J

±] = ±2J± [J0
λJ0] =

c
3

[J+
λ J−] = J0 + c

6λ [J0
λG±] = ±G±

[J0G
±

] = ±G
±

[J+
λ G−] = G+

[J−λ G+] = G− [J+
λ G
−

] = −G
+

[J−λ G
+

] = −G
−

[G±λ G
±

] = (T + 2λ)J±

[G±λ G
∓

] = L± 1
2

TJ0 ± λJ0 +
c
6
λ2

Let LN=4
c be its simple quotient.
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N=4 superconformal vertex algebra LN=4
c with c = −9

We shall present some results from D.Adamović,
arXiv:1407.1527. (to appear in Transformation Groups)

Theorem
(i) The simple affine vertex algebra Lk (sl2) with k = −3/2 is
conformally embedded into LN=4

c with c = −9.
(ii)

LN=4
c
∼= (M ⊗ F )int

where M ⊗ F is a maximal sl2–integrable submodule of the
Weyl-Clifford vertex algebra M ⊗ F.
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LN=4
c with c = −9 as an ŝl2–module

LN=4
c with c = −9 is completely reducible ŝl2–module and

the following decomposition holds:

LN=4
c
∼=
∞⊕

m=0

(m + 1)LA1(−(
3
2

+ n)Λ0 + nΛ1).

LN=4
c is a completely reducible sl2 × ŝl2–modules. sl2

action is obtained using screening operators for Wakimoto
realization of ŝl2–modules at level −3/2.
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The affine vertex algebra Lk(sl3) with k = −3/2.

Theorem
(i) The simple affine vertex algebra Lk (sl3) with k = −3/2 is
realized as a subalgebra of LN=4

c ⊗ F−1 with c = −9. In
particular Lk (sl3) can be realized as subalgebra of

M ⊗ F ⊗ F−1.

(ii) LN=4
c ⊗ F−1 is a completely reducible A(1)

2 –module at level
k = −3/2.
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On representation theory of LN=4
c with c = −9

LN=4
c has only one irreducible module in the category of

strong modules. Every Z>0–graded LN=4
c –module with

finite-dimensional weight spaces (with respect to L(0)) is
semisimple ("Rationality in the category of strong
modules")
LN=4

c has two irreducible module in the category O. There
are non-semisimple LN=4

c –modules from the category O.
LN=4

c has infinitely many irreducible modules in the
category of weight modules.
LN=4

c admits logarithmic modules on which L(0) does not
act semi-simply.

27



Theorem (D.A, 2014)

Assume that U is an irreducible LN=4
c –module with c = −9 such

that U =
⊕

j∈Z U j is Z–graded (in a suitable sense).
Let F−1 be the vertex superalgebra associated to lattice Z

√
−1.

Then

U ⊗ F−1 =
⊕
s∈Z
Ls(U), where Ls(U) :=

⊕
i∈Z

U i ⊗ F−s+i
−1

and for every s ∈ Z Ls(U) is an irreducible A(1)
2 –module at level

−3/2.
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Connection with C2–cofinite vertex algebras appearing
in LCFT

Drinfeld-Sokolov reduction maps:
LN=4

c to doublet vertex algebra A(p) and even part
(LN=4

c )even to triplet vertex algebraW(p) with p = 2
(symplectic-fermion case)

Vacuum space of Lk (sl3) with k = −3/2 contains the
vertex algebraWA2(p) with p = 2 (which is conjecturally
C2–cofinite).
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Connection with C2–cofinite vertex algebras appearing
in LCFT:

Vacuum space of Lk (sl3) with k = −3/2 contains the
vertex algebraWA2(p) with p = 2 (which is conjecturally
C2–cofinite).
Affine vertex algebra Lk (sl2) for k + 2 = 1

p , p ≥ 2 can be
conformally embedded into the vertex algebra V(p)
generated by Lk (sl2) and 4 primary vectors τ±(p), τ

±
(p).

V(p) ∼= LN=4
c for p = 2.

Drinfeld-Sokolov reduction maps V(p) to the doublet vertex
algebra A(p) and even part (V(p))even to the triplet vertex
algebraW(p). (C2–cofiniteness and RT of these vertex
algebras were obtain in a work of D.A and A. Milas)
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The Vertex algebraWA2(p): Definition

We consider the lattice
√

pA2 = Zγ1 + Zγ2, 〈γ1, γ1〉 = 〈γ2, γ2〉 = 2p, 〈γ1, γ2〉 = −p.

Let Mγ1,γ2(1) be the s Heisenberg vertex subalgebra of V√pA2

generated by the Heisenberg fields γ1(z) and γ2(z).

WA2(p) = KerV√
pA2

e−γ1/p
0

⋂
KerV√

pA2
e−γ2/p

0 .

We also have its subalgebra:

W0
A2

(p) = KerMγ1,γ2 (1)
e−γ1/p

0

⋂
KerMγ1,γ2 (1)

e−γ2/p
0

WA2(p) andW0
A2

(p) have vertex subalgebra isomorphic to the

simpleW(2,3)–algebra with central charge cp = 2− 24 (p−1)2

p .
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The Vertex algebraWA2(p): Conjecture

(i) WA2(p) is a C2–cofinite vertex algebra for p ≥ 2 and that it
is a completely reducibleW(2,3)× sl3–module.

(ii) WA2(p) is strongly generated byW(2,3) generators and by
sl3.e−γ1−γ2 , so by 8 primary fields for theW(2,3)–algebra.

Note thatWA2(p) is a generalization of the triplet vertex
algebraW(p) andW0

A2
(p) is a generalization of the singlet

vertex subalgebra ofW(p).
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Relation with parafermionic vertex algebras for p = 2

(i) Let K (sl3, k) be the parafermion vertex subalgebra of
Lk (sl3).

(ii) Creutzig-Linshaw proved that generically K (sl3, k) is
W–algebra of typeW(23,35,47, ...)

(iii) For k = −3/2 we have

K (sl3, k) =W0
A2

(p).
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Realization of simple W–algebras

Let F−p/2 denotes the generalized lattice vertex algebra
associated to the lattice Z(p

2ϕ) such that

〈ϕ,ϕ〉 = −2
p
.

Let R(p) by the subalgebra of V(p) ⊗ F−p/2 generated by
x = x(−1)1⊗ 1, x ∈ {e, f ,h}, 1⊗ ϕ(−1)1 and

eα1,p :=
1√
2
τ+(p) ⊗ e

p
2ϕ (5)

fα1,p :=
1√
2
τ−(p) ⊗ e−

p
2ϕ (6)

eα2,p :=
1√
2
τ+(p) ⊗ e−

p
2ϕ (7)

fα2,p :=
1√
2
τ−(p) ⊗ e

p
2ϕ (8)
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Realization of simple W–algebras

R(2) ∼= LA2(−3
2Λ0).

R(3) ∼=Wk (sl4, fθ) with k = −8/3.

(Conjecture) R(p) and V(p) have finitely many irreducible
modules in the category O.

R(p) and V(p) have infinitely many irreducible modules
outside of the category O and admit logarithmic modules.
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Thank you
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