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1 Definition and basic properties

Definition 1.1 Let µ be a measure on [0,∞). The Laplace transform Lµ of µ
is defined by

Lµ(λ) =
∫

[0,∞)

e−λxµ(dx) for λ > σ0 ,

where σ0 = inf{λ ∈ R :
∫

[0,∞) e
−λxµ(dx) < ∞} .

Remark 1.2 (i) If µ is a finite measure, then σ0 ≤ 0 .

(ii) Assume that Lµ(a) < ∞ for some a ∈ R. Then

ν(dx) =
e−ax

Lµ(a)µ(dx)

defines a probability measure on [0,∞) with the Laplace transform

∫

[0,∞)

e−λxν(dx) =
1

Lµ(a)

∫

[0,∞)

e−(λ+a)x µ(dx) =
Lµ(λ+ a)

Lµ(a) .

(iii) Some special cases:

(iiia) µ(dx) = f(x) dx

Lµ(λ) = Lf(λ) =
∫ ∞

0

e−λxf(x) dx .

(iiib) let X be a non-negative random variable on a probability space
(Ω,F ,P) and denote by µ the law of X; that is µ(B) = P(X ∈ B).
Then

Lµ(λ) = E[e−λX ] for λ > σ0 .
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1 Definition and basic properties

Example 1.3 (a) f(x) = xα, α > 0

Lf(λ) =
∫ ∞

0

e−x
(x

λ

)α dx

λ
=

Γ(α+ 1)

λ1+α
, σ0 = 0 .

(b) f(x) = e−ax, a ∈ R

Lf(λ) =
∫ ∞

0

e−(a+λ)x dx =
1

a+ λ
, σ0 = −a .

(c) f(x) = e−x2

, σ0 = −∞, since
∫ ∞

0

e−λx−x2

dx converges for any λ ∈ R .

(d) f(x) = ex
2

, σ0 = +∞, since
∫ ∞

0

e−λx+x2

dx does not converge for any λ ∈ R .

Proposition 1.4 (Properties of LT) Let µ be a measure on [0,∞) ans assume
that Lµ is finite (0,∞) (i.e. σ0 ≤ 0) .

(i) Then Lµ ∈ C∞((0,∞)) and for all n ∈ N

(Lµ)(n)(λ) = (−1)n
∫

[0,∞)

xne−λx µ(dx) .

(ii) µ has finite n-th moment if and only if (Lµ)(n)(0+) exists and it is finite.
In particular, µ is finite if and only if Lµ(0+) exists and it is finite.

(iii) If γ : [0,∞) → [0,∞) is defined by γ(x) = ax, a > 0, then

L(µ ◦ γ−1)(λ) = Lµ(aλ), λ > 0 .

(iv) If ν is a measure such that Lν(λ) exists for λ > 0, then

L(µ ⋆ ν) = LµLν ,
where the convolution of measures µ and ν is defined by

(µ ⋆ ν)(B) :=

∫ ∫

[0,∞)×[0,∞)

1B(x+ y)µ(dx)ν(dy)

for a Borel measurable set B ⊂ [0,∞) .
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Proof. (i)

Lµ(λ + h)−Lµ(λ)
h

=

∫

[0,∞)

e−hx − 1

h
e−λx µ(dx) .

Since ∣
∣
∣
∣

e−hx − 1

h

∣
∣
∣
∣
≤ |hx|e|hx|

|h| ≤ xe
λ
4x ≤ ce

λ
2x for |h| ≤ λ

4

for some constant c > 0 depending only on λ > 0, we can use dominated
convergence theorem to conclude that

(Lµ)′(λ) =
∫

[0,∞)

e−hx − 1

h
e−λx µ(dx) = −

∫

[0,∞)

xe−λxµ(dx) .

For higher derivatives we proceed in a similar manner.
(ii) An application of monotone convergence theorem yields

(−1)n(Lµ)(n)(0+) = lim
λ→0+

∫

[0,∞)

xne−λxµ(dx) =

∫

[0,∞)

xnµ(dx)

and the claim follows.
(iii)

L(µ ◦ γ−1)(λ) =

∫

[0,∞)

e−λx(µ ◦ γ−1)(dx) =

∫

[0,∞)

e−λ

=ax
︷︸︸︷

γ(x)µ(dx) = Lµ(ax) .

(iv)

L(µ ⋆ ν)(λ) =

∫

[0,∞)

e−λx(µ ⋆ ν)(dx) =

∫

[0,∞)

∫

[0,∞)

e−λ(x+y)µ(dx)ν(dy)

= Lµ(λ)Lν(λ) .

✷

Definition 1.5 For a measure µ on R its distribution function F : R → [0,∞)
is defined by

F (x) = µ((−∞, x]), x ∈ R .

We call x ∈ R a continuity point of µ (or F ) if F is continuous at x .
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1 Definition and basic properties

Remark 1.6 Note that F is always right continuous with left limits and non-
decreasing function and it has at most countable number of discontinuities. If µ
is a measure on [0,∞), then F (x) = 0 for x < 0 and F (x) = µ([0, x]) for x ≥ 0 .

Proposition 1.7 Let µ be a measure on [0,∞) with the distribution function
F . Then for any λ > σ0 ∨ 0 and x > 0 following integration by parts formula
holds ∫

[0,x]

e−λyµ(dy) = e−λxF (x) +

∫

[0,x]

λe−λyF (y) dy .

In particular,
∫ ∞

0

e−λyF (y) dy =
Lµ(λ)

λ
.

If µ is a probability measure, then

∫ ∞

0

e−λx(1− F (x)) dx =
1− Lµ(λ)

λ
for all λ > 0 .

Proof. By Fubini theorem

∫

[0,x]

e−λyµ(dy) =

∫

[0,∞)

∫ ∞

0

1[0,x∧z](y)
︷ ︸︸ ︷

1[0,x](y)1[y,∞)(z) λe
−λz dzµ(dy)

=

∫ ∞

0

λe−λzµ([0, x ∧ z]) dz

= e−λxµ([0, x]) +

∫ x

0

λe−λzµ([0, z]) dz

= e−λxF (x) +

∫ x

0

λe−λzF (z) dz .

Second claim follows by letting x −→ ∞ and using monotone convergence
theorem, since we can find ε > 0 so that λ− ε > σ0 ∨ 0 and hence

∞ > Lµ(λ− ε) ≥
∫

[0,x]

e−(λ−ε)yµ(dy) ≥ eεxe−λxF (x)

yielding e−λxF (x) −→
x→∞

0 . The last claim follows directly from the previous. ✷
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Proposition 1.8 (Uniqueness and inversion of LT) A finite measure µ on
[0,∞) is uniquely determined by its Laplace transform. More precisely, for any
x ≥ 0 we have

µ([0, x])− 1

2
µ({x}) = lim

n→∞

∑

k≤nx

(−1)k
nk

k!
(Lµ)(k)(n) . (1.1)

In particular, at every continuity point x ≥ 0 of µ we have

µ([0, x]) = lim
n→∞

∑

k≤nx

(−1)k
nk

k!
(Lµ)(k)(n) . (1.2)

Proof. By Proposition 1.4 (a), for any x > 0 and n ∈ N,

∑

k≤nx

(−1)k
nk

k!
(Lµ)(k)(λ) =

∫

[0,∞)

∑

k≤nx

(nt)k

k!
e−ntµ(dt) .

Note,
∑

k≤nx

(nt)k

k!
e−nt = P(X ≤ nx) ,

where X has Poisson distribution with mean nt . First we consider case x = t.
Let {Yi : i ≥ 1} be a sequence of independent Poisson random variables with
mean t. By the central limit theorem,

P(X ≤ nt) = P

(
Y1 + . . .+ Yn − nt√

nt
≤ 0

)

−→
n→∞

∫ 0

−∞

1√
2π

e−
y2

2 dy =
1

2
.

For x < t,

P(X ≤ nx) = P(n(t− x) ≤ nt−X) ≤ P(n(t− x) ≤ |X − nt|)

≤ VarX

n2(t− x)2
=

t

n(t− x)2
−→
n→∞

0 .

and, similarly, for x > t,

P(X ≤ nx) = 1− P(X − nt > n(x− t)) ≥ 1− P(|X − nt| ≥ n(x− t))

≥ 1− t

n(t− x)2
−→
n→∞

1 .
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1 Definition and basic properties

The last three displays show that

∑

k≤nx

(nt)k

k!
e−nt −→

n→∞
1[0,x)(t) +

1

2
1{x}(t)

and, thus by the dominated convergence theorem

lim
n→∞

(−1)k
nk

k!
(Lµ)(k)(n) =

∫

[0,∞)

(

1[0,x)(t) +
1

2
1{x}(t)

)

µ(dt)

= µ([0, x])− 1

2
µ({x}) .

✷

Remark 1.9 If f : [0,∞) → R is a continuous function such that for some
b ∈ R

sup
x≥0

e−bxf(x) < ∞ ,

then the Post-Widder inversion formula holds

f(x) = lim
n→∞

(−1)n

n!

(
n
x

)n+1
(Lf)(n)(nx), x > 0 .
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2 Continuity theorem and applications

Theorem 2.1 (Continuity theorem) Let (µn) be a sequence of measures on
[0,∞) and denote by Fn their distribution functions.

(i) If µ is a measure on [0,∞) with the distribution function F such that
Fn −→

n→∞
F at continuity points of F and if there is a ≥ 0 such that

sup
n≥1

Lµn(a) < ∞, then

Lµn(λ) −→
n→∞

Lµ(λ) for all λ > a .

(ii) If there is a ∈ R such that φ(λ) = lim
n→∞

Lµn(λ) exists for all λ > a, then

φ is the Laplace transform of a measure µ and if F is its distribution
function, then Fn −→

n→∞
F at all continuity points of F .

Proof. (i) Let A := sup
n≥1

Lµn(a) < ∞ . Using Proposition 1.7 and dominated

convergence theorem, for any λ > a and point of continuity x > 0,
∫

[0,x]

e−λyµn(dy) =

∫ x

0

λe−λyFn(y) ds+ e−λxFn(x) −→
n→∞

∫

[0,x]

e−λyµ(dy) ,

since Fn(y) ≤ eaxLµn(a) ≤ Aeax for all 0 ≤ y ≤ x .

Let λ > a and ε > 0. For any point of continuity x > 0 of F satisfying
Ae−(λ−a)x ≤ ε we have
∫

[0,x]

e−λyµn(dy) ≤ Lµn(λ) ≤

≤
∫

[0,x]

e−λyµn(dy) + e−(λ−a)x

∫

(x,∞)

e−ayµn(dy) ≤
∫

[0,x]

e−λyµn(dy) + ε .

This implies
∫

[0,x]

e−λyµ(dy) ≤ lim inf
n→∞

Lµn(λ) ≤ lim sup
n→∞

Lµn(λ) ≤
∫

[0,x]

e−λyµ(dy) + ε
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2 Continuity theorem and applications

and, letting x → ∞ (along points of continuity of F ) we obtain

Lµ(λ) ≤ lim inf
n→∞

Lµn(λ) ≤ lim sup
n→∞

Lµn(λ) ≤ Lµ(λ) + ε.

Since ε > 0 was arbitrary we conclude that lim
n→∞

Lµn(λ) exists and equals Lµ(λ)
for any λ > a .
(ii) Take λ0 > a. By Remark 1.2 (ii),

νn(dx) =
e−λ0x

Lµn(λ0)
µn(dx)

are probability measures with the Laplace transforms

Lµn(λ0 + λ)

Lµn(λ0)
for n ∈ N .

Denoting by Gn the distribution function of νn for n ∈ N, we can apply Helly’s
selection theorem to obtain a right-continuous non-decreasing function G and
a subsequence such that Gnk

−→
k→∞

G at all continuity points of G. Let ν be the

measure on [0,∞) corresponding to G (such that G is the distribution function
of ν) . Since Lνn(0) = 1 for all n ∈ N, we can apply (i) to conclude that

φ(λ0 + λ)

φ(λ0)
= lim

k→∞

Lµnk
(λ0 + λ)

Lµnk
(λ0)

= Lν(λ0 + λ) .

In the same way, we obtain that any subsequence (Gnk
) of (Gn) has a subse-

quence (Gnkl
) converging to G at all continuity points of G. This implies that

(Gn) converges to G at all continuity points of G(see 1) . Define µ by

µ(dx) = φ(λ0)e
λ0xν(dx) ,

Note that it has the same continuity points as ν since, by Proposition 1.7,

µ([0, x]) = φ(λ0)

[

eλ0xG(x) +

∫ x

0

λ0e
λ0tG(t) dt

]

.

1Here we use the following reasoning from analysis. If (an) is a sequence of real numbers such that every
sequence has a subsequence converging to some fixed number L ∈ R, then (an) converges to L as well. If
this were not true, we could find ε > 0 and a subsequence (ank

) such that

|ank
− L| ≥ ε for all k ∈ N

which would lead to a contradiction, since we could not find any further subsequence of (ank
) converging to

L .
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2.1 Completely monotone functions

Also, for any λ > λ0

Lµ(λ) = φ(λ)

∫

[0,∞)

e−(λ−λ0)xν(dx) = φ(λ0)
φ(λ0 + (λ− λ0))

φ(λ0)
= φ(λ) .

Then for any continuity point x > 0 of the distribution function F of µ, by the
dominated convergence theorem and Proposition 1.7, it follows that

Fn(x) =

∫

[0,x]

Lµn(λ0)e
λ0yνn(dy) = Lµn(λ0)e

λ0xGn(x)−
∫

[0,x]

Lµn(λ0)λ0e
λ0yGn(y) dy

−→
n→∞

φ(λ0)e
λ0xG(x)−

∫

[0,x]

φ(λ0)λ0e
λ0yG(y) dy =

∫

[0,x]

φ(λ0)e
λ0yν(dy)

= µ([0, x]) = F (x) .

✷

Corollary 2.2 Let (µn)n be a sequence of probability measures such that

Lµn(λ) −→
n→∞

φ(λ) for all λ > 0 .

If φ(0+) = 1, then there exists a probability measure µ on [0,∞) such that

Lµ = φ and µn([0, x]) −→
n→∞

µ([0, x]) at continuity points x > 0 of µ .

Proof. Since sup
n≥1

Lµn(0) = sup
n≥1

µn([0,∞) = 1, Theorem 2.1 (ii) yiedls a measure

µ on [0,∞) such that µn([0, x]) −→
n→∞

µ([0, x]) at continuity points of µ satisfying

Lµ(λ) = φ(λ) for all λ > 0 .

Using Proposition 1.4 (i) we get that 1 = φ(0+) = µ([0,∞)) . ✷

2.1 Completely monotone functions

In this section we explore range of the Laplace transform.
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2 Continuity theorem and applications

Definition 2.3 A function f : (0,∞) → (0,∞) is completely monotone function

if it has derivatives of all orders and satisfies

(−1)nf (n)(λ) ≥ 0 for all λ > 0 and n ∈ N ∪ {0} .

Theorem 2.4 (Bernstein-Hausdorff-Widder) A function f : (0,∞) → (0,∞)
is completely monotone if and only if there exists a measure µ on [0,∞) such
that

f(λ) = Lµ(λ) =
∫

[0,∞)

e−λxµ(dx) for all λ > 0 .

Proof. ⇐ By Proposition 1.4 (i), for any n ∈ N and λ > 0 we have

(−1)nf (n)(λ) =

∫

[0,∞)

xne−λxµ(dx) ≥ 0 .

⇒ Let f be a completely monotone function such that f(0+) < ∞ . Since
(−1)nf (n) is nonincreasing for any n ∈ N, we have

(−1)nf (n) ≤ 2

λ

∫ λ

2/λ

(−1)nf (n)(y) dy ≤ 2

λ
(−1)n−1f (n−1)(λ2) .

Iterating this inequality we obtain

(−1)nf (n)(y) ≤ 2
n(n+1)

2

yn
f( y

2n) ≤
2

n(n+1)
2

yn
f(0+), y > 0 .

Having this inequality we can use integration by parts and change of variable
y = n

t to get

f(λ)− f(∞) = −
∫ ∞

λ

f ′(y) dy =

∫ ∞

λ

(y − λ)f ′′(y) dy

= ... =
(−1)n

(n− 1)!

∫ ∞

λ

(y − λ)n−1f (n)(y) dy

=

∫ ∞

n/λ

(n
t
− λ)n−1(−1)nf (n)(nt )

(n− 1)!

n dt

t2

=

∫ ∞

0

(

1− λt

n

)n−1

1[0,n](λt)
(−1)nf (n)(nt )(

n
t )

n+1

n!
dt .
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2.1 Completely monotone functions

Define

µn(dt) =
(−1)nf (n)(nt )(

n
t )

n+1

n!
dt .

By monotone convergence theorem

µn([0,∞)) = lim
λ→0+

∫ ∞

0

(

1− λt

n

)n−1

1[0,n](λt)µn(dt) = f(0+)− f(∞)

for all n ∈ N and so we may use Helly’s selection principle to obtain a nonde-
creasing right continuous function F and a subsequence (µnk

) such that

µnk
([0, x]) −→

k→∞
F (x)

at continuity points x of F . Let µ be the measure corresponding to µ0 . By the
continuity theorem (Theorem 2.1),

Lµnk
(λ) −→

k→∞
Lµ(λ)

It can be shown that
(

1− x

n

)n−1

1[0,n](x) −→
n→∞

e−λx uniformly in x > 0 ,

hence,

Lµnk
(λ)−

∫ ∞

0

(

1− λt

nk

)nk−1

1[0,nk](λt)µnk
(dt) −→

k→∞
0

implying that
f(λ)− f(∞) = Lµ0(λ) .

Therefore, in this case it is enough to put

µ = µ0 + f(∞)δ0 ,

where δ0 is point mass at 0 . In general case we set fa(λ) := f(a+ λ) for a > 0
and note that fa is also a completely monotone function such that fa(0+) < ∞
and so there is a measure µa such that fa = Lµa . Since it is possible do this
for any a > 0, uniqueness theorem for the Laplace transform (Proposition 1.8)
implies that for 0 < a < b from

Lµb(λ) = f(a+ (λ+ b− a)) =

∫

[0,∞)

e−λxe−λ(b−a)µa(dx) ,
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2 Continuity theorem and applications

we deduce that eaxµa(dx) = ebxµb(dx) . Hence, for any a > 0 we may consis-
tently define measure

µ(dx) = eaxµa(dx) .

Then for λ > 0 and a = λ
2 we get

f(λ) = f(λ2 +
λ
2 ) =

∫

[0,∞)

e−
λ
2xµλ/2(dx) =

∫

[0,∞)

e−λxµ(dx) .

✷

Proposition 2.5 Let f be a completely monotone function.

(a) If g is a completely monotone function, then fg is also completely monotone.

(b) If h : (0,∞) → (0,∞) is such that h′ is completely monotone, then f ◦ h
is also completely monotone.

Proof. (a) By Theorem 2.4, there exist measures µ and ν such that f = Lµ and
g = Lν. Then Proposition 1.4 (iv) implies that fg = LµLν = L(µ ⋆ ν). Now it
is enough to observe that L(µ ⋆ ν) is completely monotone by Theorem 2.4.
(b) We prove this by mathematical induction. First,

(h ◦ f)′ = (f ′ ◦ h)
︸ ︷︷ ︸

≤0

h′
︸︷︷︸
≥0

≤ 0 .

Assume that for some n ∈ N

(−1)k(f̃ ◦ h̃)(k) ≥ 0 for all k ∈ {1, . . . , n} (2.1)

and all functions f̃ , h̃ : (0,∞) → (0,∞) such that h̃′ and f̃ are completely
monotone . Since −f ′ and h′ are completely monotone, by Leibniz formula for
higher derivatives and (2.1),

(−1)(n+1)(h ◦ f)(n+1) = (−1)n [((−f ′) ◦ h) · h′]
(n)

= (−1)n
n∑

k=0

(
n

k

)

((−f)′ ◦ h)(k)(h′)(n−k)

=

n∑

k=0

(
n

k

)

(−1)k((−f ′) ◦ h)(k)
︸ ︷︷ ︸

≥0

(−1)n−k(h′)(n−k)

︸ ︷︷ ︸
≥0

≥ 0 .

✷
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2.2 Tauberian theorems

2.2 Tauberian theorems

We have seen that continuity theorem enables us to deduce convergence of
distribution functions from the convergence of the Laplace transforms of the
corresponding measures. In this section we will see that under certain conditions
behavior of the Laplace transform around the origin determines the behavior
of the distribution function near the infinity. Such type of relation, describing
behavior of measure µ in terms of transform Lµ is often called Tauberian.
Reverse relation is known as Abelian.

Theorem 2.6 Let ρ ≥ 0 and let µ be a measure on [0,∞) such that its Laplace
transform Lµ is defined on (0,∞) . The following claims are equivalent

(i)
Lµ(λt )
Lµ(1

t
)

−→
t→∞

λ−ρ for all λ > 0 ,

(ii)
µ([0, tx])

µ([0, t])
−→
t→∞

xρ for all x > 0 .

Moreover, if the relations above hold, then

Lµ(1
t
)

µ([0, t])
−→
t→∞

Γ(1 + ρ) . (2.2)

Proof. (i) =⇒ (ii) (Tauberian theorem) By Proposition 1.4 (iii) with γ(y) = y
t ,

for any λ > 0 and t > 0 we obtain

Lµ(λt )
Lµ(1

t
)
= L

(
µ ◦ γ−1

Lµ(1
t
)

)

(λ) .

Hence,

L
(
µ ◦ γ−1

Lµ(1t )

)

(λ) −→
t→∞

λ−ρ =

{∫∞
0 e−λy yρ−1

Γ(ρ) dy , ρ > 0

Lδ0(λ) , ρ = 0

and so, by the continuity theorem (Theorem 2.1), we conclude that

µ([0, tx])

Lµ(1t )
−→
t→∞

{∫ x

0
yρ−1

Γ(ρ) dy , ρ > 0
∫

[0,x] δ0(dy) , ρ = 0
=

xρ

Γ(1 + ρ)
for any x > 0 . (2.3)
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2 Continuity theorem and applications

In particular, taking x = 1 in (2.3) we get (2.2) and then

µ([0, tx])

µ([0, t])
=

µ([0,tx])

Lµ(1t )
µ([0,t])

Lµ(1t )
−→
t→∞

xρ for any x > 0 .

(ii) =⇒ (i) (Abelian theorem) Similarly as before, by Proposition 1.4 (iii) with

γ(y) = y
t

L
(
µ ◦ γ−1

µ([0, t])

)

(λ) =
Lµ(λt )
µ([0, t])

for λ, t > 0 .

In order to apply continuity theorem first we are going to prove that for some
t0 > 0

sup
t>t0

Lµ(1t )
µ([0, t])

< ∞ .

From (ii) it follows that there is t0 > 0 such that

µ([0, 2t]) ≤ 2 · 2ρµ([0, t]) for every t ≥ t0 . (2.4)

Then for any a > 0

Lµ(at ) ≤ µ([0, t]) +

∞∑

n=1

∫

[2n−1t,2nt]

e−a y
tµ(dy) ≤ µ([0, t]) +

∞∑

n=1

e−a2n−1

µ([0, 2nt])

yielding together with multiple application of (2.4)

Lµ(at )
µ([0, t])

≤ 1 +

∞∑

n=1

e−a2n−1µ([0, 2nt])

µ([0, t])
≤ 1 +

∞∑

n=1

e−a2n−1

2n(1+ρ) < ∞ .

Therefore, we may use continuity theorem (Theorem 2.1) to conclude that

Lµ(λt )
µ([0, t])

= L
(
µ ◦ γ−1

µ([0, t])

)

(λ) −→
t→∞

{∫∞
0 e−λyρyρ−1 dy , ρ > 0

Lδ0(λ) , ρ = 0
=

Γ(1 + ρ)

λρ

for all λ > a, implying that the convergence actually holds for all λ > 0, since
a > 0 was arbitrary. As in the first part of the proof, by taking λ = 1 we obtain
(2.2) and then

Lµ(λt )
Lµ(1t )

=

Lµ(λt )
µ([0,t])

Lµ(1t )
µ([0,t])

−→
t→∞

λ−ρ for all λ > 0 .
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2.2 Tauberian theorems

✷

Example 2.7 By (2.2),

µ([0, t]) ∼ ln t as t → ∞ ⇐⇒ Lµ(λ) ∼ ln 1
λ as λ → 0 + .

Definition 2.8 A function g : (0,∞) → (0,∞) varies regularly at infinity with
index ρ ∈ R if

lim
t→∞

g(tx)

g(t)
= tρ for all x > 0 .

If ℓ : (0,∞) → (0,∞) varies regluarly with index ρ = 0, then it is said to vary

slowly at infinity, i.e.

lim
t→∞

ℓ(tx)

ℓ(t)
= 1 for all x > 0 .

Using this terminology we can restate Theorem 2.6 as follows.

Theorem 2.9 Let µ be a measure on [0,∞), ℓ : (0,∞) → (0,∞) a slowly
varying function at infinity and ρ ≥ 0. The following relations are equivalent:

(i) Lµ(λ) ∼ λ−ρℓ( 1λ), λ → 0+

(ii) µ([0, t]) ∼ 1

Γ(1 + ρ)
tρℓ(t), t → ∞ .

Proof. If (i) holds, then

Lµ(λ
t
)

Lµ(1t )
∼ λ−ρℓ(

t
λ
)

ℓ(t)
∼ λ−ρ as t → ∞,

which is (i) in Theorem 2.6. Hence, from (2.2) we deduce

µ([0, t]) ∼ 1

Γ(1 + ρ)
Lµ(1t ) ∼

1

Γ(1 + ρ)
tρℓ(t) as t → ∞ .

In the other case we proceed similarly. ✷

19



2 Continuity theorem and applications

Proposition 2.10 (Monotone density theorem) Let µ be a measure on
[0,∞) such that

µ([0, t]) =

∫ t

0

m(s) ds, t > 0 ,

where m : (0,∞) → (0,∞) is ultimately monotone, i.e. there exists t0 > 0
such that m is monotone on (t0,∞) . If there exist ρ ∈ R and a slowly varying
function ℓ : (0,∞) → (0,∞) such that

µ([0, t]) ∼ tρℓ(t), as t → ∞ , (2.5)

then
m(t) ∼ ρtρ−1ℓ(t), as t → ∞ . (2.6)

Proof. Let us assume that m is eventualy nondecreasing and let 0 < a < b.
Then for t > 0 large enough,

(b− a)tm(at)

tρℓ(t)
≤ µ((at, bt])

tρℓ(t)
≤ (b− a)tm(bt)

tρℓ(t)
. (2.7)

Since ℓ varies slowly at infinity we have

µ((at, bt])

tρℓ(t)
=

µ([0, bt])

(bt)ρℓ(bt)
bρ
ℓ(bt)

ℓ(t)
− µ([0, at])

(at)ρℓ(at)
aρ
ℓ(at)

ℓ(t)
−→
t→∞

bρ − aρ .

Therefore, it follows from (2.7) that

lim sup
t→∞

m(at)

tρ−1ℓ(t)
≤ bρ − aρ

b− a

and by taking a = 1 and letting b → 1+ we get

lim sup
t→∞

m(t)

tρ−1ℓ(t)
≤ lim

b→1+

bρ − 1

b− 1
= ρ .

Similarly,

lim inf
t→∞

m(t)

tρ−1ℓ(t)
≥ lim

a→1−
1− aρ

1− a
= ρ

showing that

lim
t→∞

m(t)

tρ−1ℓ(t)
= ρ .

✷
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2.2 Tauberian theorems

Remark 2.11 It can be proved that (2.5) and (2.6) in Proposition 2.10 are
equivalent when ρ > 0. The direction that we have not proved is known as
Karamata theorem (see [1, Proposition 1.5.8]).

Example 2.12 Let µ be a probability measure on [0,∞) with the distribution
function. Then, by Proposition 1.7,

∫ ∞

0

e−λx[1− F (x)] dx =
1− Lµ(λ)

λ
, λ > 0 .

Since 1−F is monotone, Theorem 2.9 and Proposition 2.10 and previous remark
imply that for a slowly varying function ℓ and ρ > 0 the following relations are
equivalent

1−Lµ(λ) ∼ λ1−ρℓ( 1λ), λ → 0+ and 1−F (t) ∼ ρ

Γ(1 + ρ)
︸ ︷︷ ︸

= 1
Γ(ρ)

tρ−1ℓ(t), t → ∞ .

(2.8)

Example 2.13 (Stable distributions) Let α ∈ (0, 1) and φ(λ) = e−λα

. Then
φ is a completely monotone function by Proposition 2.5 (b) as a composition
of a completely monotone function and a function with a completely monotone
derivative. Moreover, since φ(0) = 1, by Theorem 2.4 φ is the Laplace transform
of a probability measure µ.

Let (Xn) be a sequence of independent random variables on a probability space
(Ω,F ,P) with law µ. Then the Laplace transform of the random variable
X1+...+Xn

n1/α is

E

[

e
−λ

X1+...+Xn

n1/α

]

= φ(λn−1/α)n = φ(λ),

showing by the uniqueness of the Laplace transform (Proposition 1.8) that the
law of X1+...+Xn

n1/α is again µ. Note that

1−Lµ(λ) = 1− e−λα ∼ λα, λ → 0 + .

If X has the law µ, then (2.8) with ρ = 1− α yields

P(X > t) ∼ 1

Γ(1− α)
t1−α−1 =

t−α

Γ(1− α)
, t → ∞ .
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2 Continuity theorem and applications

2.3 Further developments

If we consider example of the gamma distribution

γ(dx) =
xα−1

Γ(α)
e−x dx (α > 0) ,

then

Lµ(λ) = 1

Γ(α)

∫ ∞

0

e−(1+λ)xxα−1 dx =
1

(1 + λ)α

implying that σ0 = −1 . It can be proved that the tail of the measure µ(t,∞) =
∫∞
t

xα−1

Γ(α)e
−x dx satisfies

lim
t→∞

lnµ(t,∞)

t
= −1 = σ0 .

More generally, we have the following result.

Theorem 2.14 Let f : (0,∞) → (0,∞) be a completely monotone function
and let µ be the measure such that f = Lµ (see Theorem 2.4) . Assume that

lim sup
λ→0+

λ ln f(σ0 + λ) = 0 and lim sup
λ→0+

f(σ0 + 2λ)

f(σ0 + λ)
< 1 . (2.9)

Then

lim
t→∞

1

t
lnµ(t,∞) = σ0 .

Proof. See [3, Theorem 1.2] . ✷

Remark 2.15 Condition (2.9) is satisfied if function λ 7→ f(σ0 + λ) varies
regularly at 0 with index ρ < 0 .
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