Aganović Ibrahim Home Page
(2017)

Ibrahim Aganović, professor emeritus of the University of Zagreb
Adress: Faculty of Natural Sciences and Mathematics, Department of Mathematics, Bijenička c. 30, 10000 Zagreb, Croatia
E-mail: aga@math.hr

Place and date of birth: Banja-Luka, BiH, July 10, 1934.
Education: PhD in Mathematics, University of Zagreb, 1965.
Research interests: quantum field theory, fluid - structure interaction, singular perturbation and homogenization in continuum mechanics (thin elasic structures, viscous fluid flow through a porous medium).
Curiculum vitae
New book Mathematical physics (from Aristotle to Galilei) (in Croatian).


List of publicatios:

  1. I. Aganović, Note on the majorization of Feynman diagrams, Nuovo Cimento 36 (1965), 1384 -1385.
  2. I. Aganović, Diagram tecnique in the case of many – particle interaction, Glasnik Mat. Fiz. Astr. 20 (1965), 137 – 144.
  3. I. Aganović, On complex singularities of Feynman diagrams, Nuovo Cimento 45 (1966), 478 – 486.
  4. I. Aganović, Geometric properties of primitive analyticity domains of perturbation theory amplitudes, Radovi JAZU 343 A (1968), 119 -130.
  5. I. Aganović, K. Veselić, Exercises in Theoretical Mechanics (Croatian), Sveučilište u Zagrebu, 1968.
  6. I. Aganović, The method of the minimal surface integrals for the linear elliptic equations of the second order, Glasnik Mat. 5 (1970), 259 – 267.
  7. I. Aganović, H. Kraljević, K. Veselić, Exercises in Theoretical Mechanics (Croatian), 2. ed., Sveučilište u Zagrebu, 1970.
  8. I. Aganović, The method of the minimal surface integrals in the elasticity theory, Glasnik Mat. 6 (1971), 59 – 66.
  9. I. Aganović, Oscillations of an elastic body with the liquid inside, Glasnik Mat. 7 (1972), 119 – 125.
  10. I. Aganović, Oscillations of an elastic body with the liquid inside 2, Glasnik Mat. 8 (1973), 323 – 328.
  11. I. Aganović, Oscillations of an elastic body with cavities partially filled with liquid, Glasnik Mat. 9 (1974), 161 – 171.
  12. I.Aganovic, K. Veselic, On singular contact problem for two – dimensional Laplace equation, Rendiconti di Matematica 11 (1978), 521 – 532.
  13. I. Aganović, An eigenvalue problem of continuum mechanics, Berichte der Mathematisch – Statistischen Sektion im Fotschungszentrum Graz, Bericht Nr. 110 (1979), 1 – 5.
  14. I. Aganović, The Galerkin method for an eigenvalue problem of hydroelasticity, Glasnik Mat. 14 (1979), 387 – 392.
  15. I. Aganović, Integral equations (Croatian), Tehnical Encyclopedia, LZ, Zagreb, 1979.
  16. I. Aganović, On a spectral problem of hydroelasticity, J. de Mécanique 20 (1981), 409 – 414.
  17. I. Aganović, Z. Tutek, One - dimensional approximation of the Lamé equation (German), Berichte der Mathematisch – Statistischen Sektion im Forschungszentrum Graz, Bericht Nr. 154 (1981), 1 – 5.
  18. I. Aganović, Z. Tutek, On the lower – dimensional approximations of the mixed problem for Laplace equation, Glasnik Mat. 20 (1985), 355 – 361.
  19. A. Mikelić, I. Aganović, Homogenization of the Stokes equation under a non – homogenous boundary condition, Berichte der Mathematisch – Statistischen Sektion im Forschungszentrum Graz, Bericht Nr. 251 (1985), 1 – 4.
  20. I. Aganović, K. Veselić, Equations of Mathematical Physics (Croatian), Školska knjiga, Zagreb, 1985.
  21. Z. Tutek, I. Aganović, A justification of the one – dimensional linear model of elastic beam, Math. Meth. Appl. Sci. 8 (1986), 502 – 505.
  22. I. Aganović, K. Veselić, A. Wigner, An Introduction to Partial Differential Equations, Courses 1 – 7 (German), FernUniversität in Hagen, 1987.
  23. A. Mikelić, I. Aganović, Homogenization in a porous media under a nonhomogenous boundary condition, Bollettino U. M. I. (7) 1 – A (1987), 171 – 180.
  24. A. Mikelić, I. Aganović, Homogenization of stationary flow of miscible fluids in a domain with a grained boundary, SIAM J. Math. Anal. 19 (1988), 287 – 294.
  25. I. Aganović, A. Mikelić, On miscible flow in a porous medium, in: Continuum Mechanics and its Applications (eds. G. A. C. Graham and S. K. Malik), Hemisphere, New York, 1989., pp. 569 – 576.
  26. I Aganović, An introduction to finite and boundary elements method 1 (Croatian), Matematika 1 (1989), 49 – 61.
  27. I Aganović, An introduction to finite and boundary elements method 2 (Croatian), Matematika 2 (1989), 37 – 53.
  28. I. Aganović, K. Veselić, An Introduction to Analytical Mechanics (Croatian), Matematički odjel PMF, Zagreb, 1990.
  29. I. Aganović, K. Veselić, A. Wigner, An Introduction to Partial Differential Equations 2, Courses 1 – 4 (German), FernUniversität Hagen, 1992.
  30. I. Aganović, K. Veselić, Linear Differential Equations – An Introduction to Boundary Value Problems (Croatian), Matematički odjel PMF, Zagreb, 1992.
  31. I. Aganović, A. Mikelić, Justification of viscous fluid flow models in porous media, in: Heat and Mass Transfer through Porous Media (ed. M. Quintard), Elseviere, Amsterdam, 1992., pp. 1 – 14.
  32. I. Aganović, Homogenization of small oscillations of heavy inviscid fluid in an open reservoir containing many solid tubes, C. R. Acad. Sci. Paris, t. 314, Serie 1 (1992), 273 – 240.
  33. I. Aganović, A. Mikelić, Homogenization of nonstationary flow of two – constituant mixture through a porous medium, Asympt. Anal. 6 (1992), 173 – 189.
  34. I. Aganović, Homogenization of free boundary oscillation of an inviscid fluid in a porous medium, Math. Modell. Num. Anal. 27 (1993), 65 – 76.
  35. I. Aganović, Note on the model of slightly compressible flow through a porous medium, Bollettino U. M. I. (7) 7 – A (1993), 67 – 76.
  36. I. Aganović, Z. Tutek, Homogenization of micropolar fluid flow through a porous medium, in: Mathematical Modelling of Flow through Porous Media (eds. A. Bourgeat et al), World Scientific, 1995., pp. 3 – 13.
  37. I. Aganović, E. Marušić – Paloka, Z. Tutek, Slightly wrinkled plate, ZAMM 75 (1995) S 1, 137 – 138.
  38. I. Aganović, K. Delinić, Z. Tutek, Homogenization of an elastic medium containing rigidly connected elastic inclusions, ZAMM 75 (1995) S1, 449 – 450.
  39. I. Aganović, K. Veselić, A. Wigner, An Introduction to Partial Differential Equations 2, Courses 5 – 7 (German), FernUniversität Hagen, 1996.
  40. I. Aganović, K. Veselić, Linear Differential Equations – An Introduction to Boundary Value Problems, 2. ed. (Croatian), Element, Zagreb, 1997.
  41. I. Aganović, E. Marušić – Paloka, Z. Tutek, Slightly wrinkled plate, Asympt. Anal. 13 (1996), 1 – 29.
  42. I. Aganović, M. Jurak, E. Marušić – Paloka, Z. Tutek, A model of wrinkled plate, ZAMM 76 (1996) S2, 457 – 458.
  43. I. Aganović, Mathematical analysis of composite structures, Math. Commun. 1 (1996), 139 – 141.
  44. I. Aganović, Z. Tutek, Homogenization of unsteady Stokes flow of micropolar fluid through a porous medium, ZAMM 77 (1997) S2, 505 – 506.
  45. I. Aganović, Z. Tutek, Nonstationary micropolar fluid flow through porous medium, Nonlin. Anal. 30 (1997), 3171 – 3178.
  46. I. Aganović, K. Delinić, Z. Tutek, Homogenization of a spectral problem for a pile foundation structure, Math. Meth. Appl. Sci. 20 (1997), 979 – 988.
  47. I. Aganović, Z. Tutek, K. Veselić, Decoupling of a system of two membranes connected by a thin rigid cylinder, ZAMM 77 (1997) S2, 507 – 508.
  48. I. Aganović, M. Jurak, E. Marušić – Paloka, Z. Tutek, Moderately wrinkled plate, Asympt. Anal. 16 (1998), 273 – 297.
  49. I. Aganović, Z. Tutek, K. Veselić, Approximation of Green's function and application, Glasnik Mat. 35 (55) (2000), 179 – 190.
  50. I. Aganović, J. Tambača, On the stability of rotating rods and plates, ZAMM 81 (2001), 733 – 742.
  51. I. Aganović, An Introduction to Boundary Value Problems of Continuum Mechanics (Croatian), Element, Zagreb, 2003.
  52. I. Aganović, J. Tambača, Z. Tutek, A note on reduction of dimension for linear elliptic equations, Glasnik Mat. 41 (1) (2006), 77 – 88.
  53. I. Aganović, J. Tambača, Z. Tutek, Derivation and justification of the models of rods and plates from three – dimensional micropolar elasticity, J. of Elasticity 84 (2006), 131 – 152.
  54. I. Aganović, J. Tambača, Z. Tutek, Derivation of the model of elastic curved rods from three – dimensional micropolar elasticity, Ann Univ Ferrara 53 (2007), 109 – 133.
  55. I. Aganović, J. Tambača, Z. Tutek, Derivation and justification of the model of elastic shells from three – dimensional linearized micropolar elasticity, Asympt. Anal. 51 (3,4) (2007), 335 – 361.
  56. I. Aganović, K. Veselić, Mathematical Methods and Models (Croatian), Sveučilište J. J. Strossmayera u Osijeku - Odjel za matematiku, 2014.