Vertex algebras and Whittaker modules for affine Lie algebras

Dražen Adamović

University of Zagreb, Croatia

Supported by CSF, grant no. 2634

HRI, Allahabad, December 16, 2014

Senepati Eswara Rao 60th Birthday

In this talk we shall study Whittaker modules for affine Lie algebras as modules for universal affine vertex algebras. We shall discuss a role of Whittaker categories in the representation theory of affine vertex algebras. We will present a complete description of Whittaker modules for the affine Lie algebra $A_1^{(1)}$ at arbitrary level. A particular emphasis will be put on explicit bosonic realization of Whittaker modules at the critical level.

- Based on the paper:
 D. Adamovic, R. Lu, K. Zhao, Whittaker modules for the affine Lie algebra A₁⁽¹⁾, http://arxiv.org/abs/1409.5354
- We shall also discuss related paper/projects.

Let g is a complex, simple Lie algebra. Basic problem: Classify all irreducible g–modules.

Solved (in full generality) only for *sl*2 by R. Block, Advances in Math. 39 (1) 1981 Let g is a complex, simple Lie algebra. Basic problem: Classify all irreducible g-modules. Solved (in full generality) only for sl_2 by R. Block, Advances in Math. 39 (1) 1981 Let $\mathfrak{g} := \mathfrak{sl}_2$ be a simple, complex three dimensional Lie algebra with generators: e, f, hand relations [h, e] = 2e, [h, f] = -2f, [e, f] = h. Let $\mathfrak{h} = \mathbb{C}h$ (Cartan subalgebra) $\mathfrak{b} = \mathbb{C}e + \mathbb{C}h$ (Borel subalgebra) $\mathfrak{n}_+ = \mathbb{C}e, \mathfrak{n}_- = \mathbb{C}f$.

$$\mathfrak{g} = \mathfrak{n}_- + \mathfrak{h} + \mathfrak{n}_+.$$

Highest weight vs. Whittaker modules

For every $\lambda \in \mathfrak{h}^*$ there is unique irreducible highest weight \mathfrak{g} -module $U(\lambda)$ generated by cyclic vector v_{λ} such that

$$hv_{\lambda} = \lambda(h)v_{\lambda}, \ \mathfrak{n}_+v_{\lambda} = 0.$$

On highest weight modules Cartan subalgebra acts semisimple. They are not irreducible as \mathfrak{b} -modules. If λ is generic, $U(\lambda) = U(\mathfrak{n}) \cong \mathbb{C}[f]$ as vector space. For every $\lambda \in \mathfrak{n}^*$ there is a unique irreducible Whittaker \mathfrak{g} -module $W(\lambda)$ generated by vector w_{λ} such that

$$ew_{\lambda} = \lambda(e)w_{\lambda}.$$

If $\lambda \neq 0$, then $W(\lambda) \cong \mathbb{C}[h]$ as a vector space and $W(\lambda)$ is an irreducbile module for Borel subalgebra \mathfrak{b} .

8

Highest weight vs. Whittaker modules

For every $\lambda \in \mathfrak{h}^*$ there is unique irreducible highest weight \mathfrak{g} -module $U(\lambda)$ generated by cyclic vector v_{λ} such that

$$hv_{\lambda} = \lambda(h)v_{\lambda}, \ \mathfrak{n}_+v_{\lambda} = 0.$$

On highest weight modules Cartan subalgebra acts semisimple. They are not irreducible as \mathfrak{b} -modules. If λ is generic, $U(\lambda) = U(\mathfrak{n}) \cong \mathbb{C}[f]$ as vector space. For every $\lambda \in \mathfrak{n}^*$ there is a unique irreducible Whittaker \mathfrak{g} -module $W(\lambda)$ generated by vector w_{λ} such that

$$\mathsf{ew}_\lambda = \lambda(\mathsf{e})\mathsf{w}_\lambda.$$

If $\lambda \neq 0$, then $W(\lambda) \cong \mathbb{C}[h]$ as a vector space and $W(\lambda)$ is an irreducbile module for Borel subalgebra \mathfrak{b} .

Assume that ${\mathfrak g}$ is a Lie algebra (possible infinite dimensional) with triangular decomposition:

$$\mathfrak{g} = \mathfrak{n}_- + \mathfrak{h} + \mathfrak{n}_+.$$

Let $\lambda : \mathfrak{n} \to \mathbb{C}$ be a Lie algebra homomorphism. The universal Whittaker modules with Whittaker function λ is defined as

$$\widetilde{W}(\lambda) := U(\mathfrak{g})/J(\lambda)$$

where $J(\lambda) := U(\mathfrak{g}).\{x - \lambda(x)1 \mid x \in \mathfrak{n}_+\}.$ Let $W(\lambda)$ be its simple quotient.

Problem: Determine the structure of $W(\lambda)$.

For ${\mathfrak g}$ be a semisimple complex Lie algebra, Whittaker modules are studied by Kostant, McDowell, Miličić, Soergel and others.

Let \mathfrak{g} be a finite-dimensional simple Lie algebra over \mathbb{C} and let (\cdot, \cdot) be a nondegenerate symmetric bilinear form on \mathfrak{g} . The affine Kac-Moody Lie algebra $\widetilde{\mathfrak{g}}$ associated with \mathfrak{g} is defined as

$$\widetilde{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}d$$

where K is the canonical central element and the Lie algebra structure is given by

$$[x \otimes t^n, y \otimes t^m] = [x, y] \otimes t^{n+m} + n(x, y)\delta_{n+m,0}K,$$

$$[d, x \otimes t^n] = nx \otimes t^n$$

Let $\hat{\mathfrak{g}} = [\widetilde{\mathfrak{g}}, \widetilde{\mathfrak{g}}] = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] + \mathbb{C}K.$

Set $x(n) = x \otimes t^n$, for $x \in \mathfrak{g}$, $n \in \mathbb{Z}$, and identify \mathfrak{g} as the subalgebra $\mathfrak{g} \otimes t^0$.

Then $\widetilde{\mathfrak{g}}$ is a Kac-Moody Lie algebra with triangular decomposition

$$\widetilde{\mathfrak{g}} = \widetilde{\mathfrak{n}}_- \oplus \widetilde{\mathfrak{h}} \oplus \widetilde{\mathfrak{n}}_+$$

$$\widetilde{\mathfrak{h}}=\mathfrak{h}\oplus \mathbb{C}K\oplus \mathbb{C}d, \,\, \widetilde{\mathfrak{n}}_{\pm}=\mathfrak{n}_{\pm}\oplus\mathfrak{g}\otimes t^{\pm1}\mathbb{C}[t^{\pm1}].$$

Define the field $x(z) = \sum_{n \in \mathbb{Z}} x(n) z^{-n-1}$ which acts on restricted \hat{g} -modules of level k.

Let $V_k(\mathfrak{g})$ be the universal vertex algebra generated by fields $x(z), x \in \mathfrak{g}$.

As a $\hat{\mathfrak{g}}$ -module, $V_k(\mathfrak{g})$ can be realized as a generalized Verma module.

A $\hat{\mathfrak{g}}$ -module M is called restricted if

$$x(z)w \in M((z)), \quad (\forall x \in \mathfrak{g}, w \in M).$$

Every restricted \hat{g} -module M of level k is a module for $V_k(g)$. In particular:

 $\hat{\mathfrak{g}}$ -modules from the category \mathcal{O}_k are $V_k(\mathfrak{g})$ -modules

Whittaker modules of level k are $V_k(\mathfrak{g})$ -modules.

Our approach: Description of Whittaker modules for affine Lie algebra using theory of vertex algebras.

Replace the role of $U(\mathfrak{g})$ by universal affine vertex algebra.

Critical level

Level $k = -h^{\vee}$ is called **critical level**

(h^{\vee} denotes dual Coxeter number).

Let $x_i, y_i, i = 1, ..., \dim \mathfrak{g}$ be dual bases of \mathfrak{g} with respect to form (\cdot, \cdot) , and let

$$egin{aligned} &sug = \sum_{i=1}^{\dim \mathfrak{g}} x_i(-1) y_i(-1) \mathbf{1} \in V_k(\mathfrak{g}). \ &Y(sug,z) = \sum_{n \in \mathbb{Z}} S(n) z^{-n-1}. \end{aligned}$$

Then

$$S(n)$$
 are in the center of $V_{-h^{ee}}(\mathfrak{g})$.

Affine Lie algebra $A_1^{(1)}$

Let now $\mathfrak{g} = sl_2(\mathbb{C})$ with generators e, f, hand relations [h, e] = 2e, [h, f] = -2f, [e, f] = h. The corresponding affine Lie algebra $\tilde{\mathfrak{g}}$ is of type $A_1^{(1)}$. $\tilde{\mathfrak{n}}_+$ is generated by

$$e_0 = e \otimes t^0$$
; $e_1 = f \otimes t^1$.

Lie algebra homomorphism $\lambda:\widetilde{\mathfrak{n}}_+\to\mathbb{C}$ is uniquely determined by

$$(\lambda_0, \lambda_1) = (\lambda(e_0), \lambda(e_1)).$$

Let $W(k, \lambda_1, \lambda_2)$ and $W(k, \lambda_1, \lambda_2)$ denote the universal and simple Whittaker modules of level k and type (λ_1, λ_2) .

$$\omega = rac{1}{2(k+2)}(e(-1)f(-1)+f(-1)e(-1)+1/2h(-1)^2)\mathbf{1} \in V_k(sl_2).$$

Assume that *M* is a $V_k(sl_2)$ -module for $k \neq -2$. Then *M* is a module for the Virasoro algebra at central charge c = 3k/(k+2) (Sugawara construction)

$$Y(\omega,z) = \sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$$

M can be treated as $\hat{\mathfrak{g}} \rtimes Vir$ -module and as $\hat{\mathfrak{b}} \rtimes Vir$ -module.

Theorem (D.A; R. L, K. Z, 2014)

Assume that $k \neq -2$ and $\lambda_1 \cdot \lambda_2 \neq 0$. Then

The universal Whittaker module $\widetilde{W}(k, \lambda_1, \lambda_2)$ is an irreducible $\widehat{\mathfrak{b}} \rtimes Vir-module$.

The universal Whittaker module $\widetilde{W}(k, \lambda_1, \lambda_2)$ is an irreducible $\widetilde{sl_2}$ -module.

Whittaker modules at the critical level

Assume that *M* is $V_{-2}(sl_2)$ -module. *M* is also a module for the center of $V_{-2}(sl_2)$ generated by S(n), $n \in \mathbb{Z}$.

Theorem (D.A; R. L, K. Z, 2014)

Assume that
$$k = -2$$
 and $\lambda_1, \lambda_2 \in \mathbb{C}$, $\lambda_1 \neq 0$. Let
 $c(z) = \sum_{n \leq 0} c_n z^{-n-2} \in \mathbb{C}((z)).$
(1) $W(-2, \lambda_1, \lambda_2, c(z)) =$
 $\widetilde{W}(-2, \lambda_1, \lambda_2) / \langle (S(n) - c_n) v_{-2,\lambda_1,\lambda_2} | n \leq 0 \rangle$ is an irreducible
 $\widehat{sl_2}$ -module.

(2)
$$W(-2, \lambda_1, \lambda_2, c(z))$$
 is irreducible $\hat{\mathfrak{b}}$ -module.

(3) Assume that $\lambda_2 \neq 0$. Then

$$\mathit{Ind}_{\widehat{sl_2}}^{\widetilde{sl_2}}W(-2,\lambda_1,\lambda_2,c(z))$$

is an irreducible Whittaker module at the critical level.

Bases for universal Whittaker modules

Theorem

Basis of the universal Whittaker module $W(k, \lambda_1, \lambda_2)$ is given by vectors

$$e(-n_1)\cdots e(-n_r)h(-m_1)\cdots h(-m_s)X(-p_1)\cdots X(-p_t)v_{k,\lambda_1,\lambda_2}$$

for

$$n_1 \geq \cdots n_r \geq 1$$
; $m_1 \geq \cdots m_s \geq 0$; $p_1 \geq \cdots p_t \geq 0, \dots$

where X(n) = L(n) if $k \neq -2$ and X(n) = S(n) at the critical level.

This suggests that a higher rank generalization of our result should use \mathcal{W} -algebra $\mathcal{W}(\mathfrak{g})$.

The Weyl vertex algebra W is generated by the fields

$$a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \ a^*(z) = \sum_{n \in \mathbb{Z}} a^*(n) z^{-n},$$

whose components satisfy the commutation relations for infinite-dimensional Weyl algebra

$$[a(n), a(m)] = [a^*(n), a^*(m)] = 0, \quad [a(n), a^*(m)] = \delta_{n+m,0}.$$

Assume that $\chi(z) \in \mathbb{C}((z))$.

On the vertex algebra W exists the structure of the $\hat{\mathfrak{g}}$ -module at the critical level defined by

$$\begin{array}{lll} e(z) &=& a(z), \\ h(z) &=& -2: a^*(z)a(z): -\chi(z) \\ f(z) &=& -: a^*(z)^2a(z): -2\partial_z a^*(z) - a^*(z)\chi(z). \end{array}$$

This module is called the Wakimoto module and it is denoted by $W_{-\chi(z)}$.

Theorem (D.A., CMP 2007; Contemporary Math. 2014.)

The Wakimoto module $W_{-\chi}$ is irreducible if and only if $\chi(z)$ satisfies one of the following conditions:

(i) There is $p \in \mathbf{Z}_{>0}$, $p \ge 1$ such that

$$\chi(z) = \sum_{n=-p}^{\infty} \chi_{-n} z^{n-1} \in \mathbb{C}((z)) \quad and \quad \chi_p \neq 0.$$

(ii) $\chi(z) = \sum_{n=0}^{\infty} \chi_{-n} z^{n-1} \in \mathbb{C}((z))$ and $\chi_0 \in \{1\} \cup (\mathbb{C} \setminus \mathbb{Z})$. (iii) There is $\ell \in \mathbb{Z}_{\geq 0}$ such that

$$\chi(z) = \frac{\ell+1}{z} + \sum_{n=1}^{\infty} \chi_{-n} z^{n-1} \in \mathbb{C}((z))$$

and $S_{\ell}(-\chi) \neq 0$, where $S_{\ell}(-\chi) = S_{\ell}(-\chi_{-1}, -\chi_{-2}, ...)$ is a Schur polynomial.

Every restricted module for the Weyl algebra is a module for Weyl vertex algebra W.

For $(\lambda, \mu) \in \mathbb{C}^2$ let $M_1(\lambda, \mu)$ be the module for the Weyl algebra generated by the Whittaker vector v_1 such that

$$a(0)v_1 = \lambda v_1, \; a^*(1)v_1 = \mu v_1, \; a(n+1)v_1 = a^*(n+2)v_1 = 0 \quad (n \ge 0).$$

 $M_1(\lambda, \mu)$ is a *W*-module.

Theorem (D.A; R. Lu, K. Zhao, 2014)

For every $\chi(z) \in \mathbb{C}((z))$, $(\lambda, \mu) \in \mathbb{C}^2$, $\lambda \neq 0$ there exists irreducible $\widehat{sl_2}$ -module $\overline{M_{Wak}}(\lambda, \mu, -2, \chi(z))$ realized on the W-module $M_1(\lambda, \mu)$ such that

$$e(z) = a(z);$$

$$h(z) = -2: a^{*}(z)a(z): +\chi(z);$$

$$f(z) = -: a^{*}(z)^{2}a(z): -2\partial_{z}a^{*}(z) + a^{*}(z)\chi(z)$$

- We see that Whittaker modules from previous theorem are realized using same formulas.
- Wakimoto modules are realized on vertex algebra W, but Whittaker are realized on W-module M₁(λ, μ).
- Whitteker modules are always irreducible, but for Wakimoto modules we have non-trivial criteria.

As a special case, the previous theorem provides a realization of degenerate Whittaker modules at the critical level.

But it does not cover non-degenerate Whittaker modules at the critical level.

We need to modify construction of Wakimoto modules. Method: Use vertex algebra $\Pi(0)$, a localization of Weyl vertex algebra.

$$\mathbf{L} = \mathbb{Z} \alpha + \mathbb{Z} \beta, \ \langle \alpha, \alpha \rangle = - \langle \beta, \beta \rangle = \mathbf{1}, \quad \langle \alpha, \beta \rangle = \mathbf{0},$$

and $V_L = M_{\alpha,\beta}(1) \otimes \mathbb{C}[L]$ the associated lattice vertex superalgebra, where $M_{\alpha,\beta}(1)$ is the Heisenbeg vertex algebra generated by fields $\alpha(z)$ and $\beta(z)$ and $\mathbb{C}[L]$ is the group algebra of L. We have its subalgebra

$$\mathsf{\Pi}(\mathsf{0}) = \mathit{M}_{lpha,eta}(\mathsf{1}) \otimes \mathbb{C}[\mathbb{Z}(lpha+eta)] \subset \mathit{V}_L.$$

The Weyl vertex algebra W can be realized as a subalgebra of $\Pi(0)$ generated by

$$egin{aligned} & eta = e^{lpha + eta}, \; eta^* = -lpha(-1)e^{-lpha - eta}. \ & M = ext{Ker}_{\Pi(0)}e_0^lpha. \end{aligned}$$

 $\Pi(0)$ is a localization of Weyl vertex algebra with respect to a(-1), $\Pi(0) = M[(a(-1)^{-1}]$. Let $a^{-1} := e^{-\alpha-\beta}$ and $a^{-1}(n) := e_{n-2}^{-\alpha-\beta}$. We have the expansion

$$a^{-1}(z) = Y(a^{-1}, z) = \sum_{n \in \mathbb{Z}} a^{-1}(n) z^{-n+1}.$$

$$a^{-1}(z)a(z)=Id.$$

Theorem

Assume that $\lambda \neq 0$. There is a $\Pi(0)$ -module Π_{λ} generated by the cyclic vector w_{λ} such that

$$a(0)w_{\lambda}=\lambda w_{\lambda}, \quad a^{-1}(0)w_{\lambda}=rac{1}{\lambda}w_{\lambda}, \quad a(n)w_{\lambda}=a^{-1}(n)w_{\lambda}=0 (n\geq 1).$$

As a vector space

$$\Pi_{\lambda}\cong \mathbb{C}[d(-n),c(-n-1)\mid n\geq 0]=\mathbb{C}[d(0)]\otimes M_{lpha,eta}(1),$$

where $c = \alpha + \beta$, $d = \alpha - \beta$. Π_{λ} is $\mathbb{Z}_{\geq 0}$ -graded $\Pi_{\lambda} = \bigoplus_{n \in \mathbb{Z}_{\geq 0}} \Pi_{\lambda}(n)$

and lowest component is isomorphic to $\mathbb{C}[d(0)]$.

There is an embedding of vertex algebras

$$V_{-2}(\mathfrak{sl}_2) \rightarrow M_T(0) \otimes \Pi(0)$$

such that

$$e = a, (1)$$

$$h = -2\beta(-1) = -2a^{*}(0)a(-1)\mathbf{1} (2)$$

$$f = [T(-2) - (\alpha(-1)^{2} + \alpha(-2))]a^{-1} (3)$$

$$= -a^{*}(0)^{2}a(-1)\mathbf{1} - 2a^{*}(-1)\mathbf{1} + T(-2)a^{-1} (4)$$

Non-degenerate Whittaker modules at the critical level

For any $\chi(z) = \sum_{n \in \mathbb{Z}} \chi(n) z^{-n-2} \in \mathbb{C}((z))$ let $M_T(\chi(z))$ be 1-dimensional $M_T(0)$ -module such that T(n) acts as multiplication with $\chi(n) \in \mathbb{C}$.

Theorem

Let $\lambda \neq 0$. Let

$$\chi(z)=rac{\lambda\mu}{z^3}+c(z),\quad c(z)=\sum_{n<0}\chi(n)z^{-n-2}\in\mathbb{C}((z)).$$

Then we have:

$$V_{\widehat{sh}}(\lambda,\mu,-2,c(z))\cong M_{\mathcal{T}}(\chi(z))\otimes \Pi_{\lambda}.$$

- Consider Whittaker modules as modules for related $\mathcal{W}\text{--}\mathsf{algebras}.$
- In particular, Whittaker modules for $\widehat{sl_n}$ can be considered as modules for $W(sl_n)$ -algebras obtained as higher rank generalization of Sugawara construction.
- At the critical level consider Whittaker modules as (Whittaker) modules for the Feigin-Frenkel center.

- (Most important) Π(0) appeared in works of S. Rao, Y. Billig, S. Tan, S. Berman, C. Dong, S. Futorny, M. Lau ... for constructions of modules for toroidal algebras.
- So in the analysis of Whittaker modules for toroidal algebras, module Π_{λ} probably must appear.

More comments on vertex algebra $\Pi(0)$ and its modules

• In D. Adamović, A realization of certain modules for the N = 4 superconformal algebra and the affine Lie algebra $A_2^{(1)}$ (2014)

the vertex algebra $\Pi(0)$ appears in these new realizations In particular, the simple affine vertex algebra

$$L_{A_2}(-rac{3}{2}\Lambda_0)\subset \Pi(0)^{\otimes 2}$$

We know that $\Pi_{\lambda} \otimes \Pi_{\mu}$ is an irreducible (degenerate) Whittaker $A_2^{(1)}$ -module. • In D. A., G. Radobolja, Free field realization of the twisted Heisenberg-Virasoro algebra at level zero and its applications (2014),

the representation theory of $\Pi(0)$ was used to construct screening operators for the twisted Heisnberg-Virasoro algebra and determination of fusion rules.

• Principal representations of Wakimoto modules by using twisted modules for vertex algebras will be subject of our forthcoming paper

D.Adamovic, N. Jing; K. Misra, to appear,

Whittaker modules in Kazhdan-Lusztig corrspondence (preliminary)

- Idea: To suitable vertex algebra, obtained as kernel of screening operators, one can associate quantum group, so called Kazhdan-Lusztig dual.
- Conjecture is that the representation categories of vertex algebras and associated quantum groups should be closely related (equivalent ?)
- Whittaker modules can appear as modules on the quantum group side, so one can expect that they naturally appear in the vertex-algebra side

Whittaker modules in Kazhdan-Lusztig corrspondence (preliminary)

- 1. The triplet vertex algebra $\mathcal{W}(p)$ (studied by D.A, A. Milas in series of works) is C_2 -cofinite and irrational. Its Kazhdan-Lusztig dual is restricted quantum group $\overline{U}_q(sl_2)$, when $q = e^{2\pi i/p}$. There are no Whittaker modules in this case.
- 2. Kazhdan-Lusztig dual of the Virasoro vertex algebra of central charge $c = 1 6(p 1)^2/p$ is the quantum group $\mathcal{LU}_q(sl_2)$ (introduced by Bushlanov, Feigin, Gainutdinov, Tipunin) which is extension of $\overline{U}_q(sl_2)$ by sl_2 triple e, f, h. $\mathcal{LU}_q(sl_2)$ is extension of $\overline{U}_q(sl_2)$ by sl_2 triple e, f, h. There are Whittaker modules on both sides.

Thank you