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I VOA, intertwining operators and tensor product
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I The twisted Heisenberg-Virasoro Lie algebra H. We
study representations at level zero, important in rep.
theory of toroidal Lie algebras. Developed by Y. Billig in
Representations of the twisted Heisenberg-Virasoro
algebra at level zero, Canadian Math. Bulletin, 46
(2003)

I Irreducibiliy problem of V ′α,β,F ⊗ L(cL, 0, cL,I , h, hI ).
I Free-field realization of H.
I Explicit formulas for singular vectors. Some intertwining
operators.

I Irreduciblity of V ′α,β,F ⊗ L(cL, 0, cL,I , h, hI ) solved.
Fusion rules.

I W (2, 2)-structure on H-modules.
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Structure of Verma
modules
(Sub)singular vectors
W -degree
Submodules and
singular vectors
Quotient module L’
Necessary condition
Conjecture

Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)

VOA W(2,2) and
intertwining
operators

Algebra W (2, 2)

Algebra L = W (2, 2) is a complex Lie algebra with a basis
{Ln,Wn,CL,CW : n ∈ Z} and a Lie bracket

[Ln, Lm ] = (n−m) Ln+m + δn,−m
n3 − n
12

CL,

[Ln,Wm ] = (n−m)Wn+m + δn,−m
n3 − n
12

CW ,

[Wn,Wm ] = [L,CL] = [L,CW ] = 0.

{Ln,CL, : n ∈ Z} spans a copy of the Virasoro algebra.

{Wn : n ∈ Z} spans a Virasoro module V ′1,−1.
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v ∈ V (cL, cW , h, hW ) - the highest weight vector, i.e.,
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(unlike I0 in the twisted Heisenberg-Virasoro algebra).
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W-degree

Lemma (Jiang-Pei (Y. Billig))
Let 0 6= x ∈ V (cL, cW , h, hW ) and degW x = k.
(a) If x /∈ W and n ∈N is the smallest, such that L−n
occurs as a factor in one of the terms in x, then the part of
Wnx of the W -degree k is given by

n
(
2hW +

n2 − 1
12

cW

)
∂x

∂L−n
.
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∂W−m
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Singular vectors

From now on we assume that hW = 1−p2
24 cW for p ∈N.

Lemma (Jiang-Pei (Y. Billig))
There is a singular vector x ∈ V (cL, cW , h, hW )h+p such
that x = W−pv or x = L−pv.

Theorem
Let hW = 1−p2

24 cW , p ∈N. Then there is a singular vector
u′ ∈ Wh+p , such that u′ = W−pv. Moreover, U(L)u′ is
isomorphic to Verma module V (cL, cW , h+ p, hW ).
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Examples of singular vectors

module u′

V (cL, cW , h, 0) W−1v

V
(
cL, cW , h,− cW8

)
(W−2 + 6

cW
W 2
−1)v

V (cL, cW , h,− cW3 ) (W−3 + 6
cW
W−2W−1 + 9

c2W
W 3
−1)v

V (cL, cW , h,− 5cW8 ) (W−4 + 4
cW
W−3W−1 + 2

3cW
W 2
−2+

+ 10
c2W
W−2W 2

−1 +
15
4c2W

W 4
−1)v
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Characters
From now on, u′ denotes the singular vector from
previous theorem.

J ′(cL, cW , h, hW ) := U (L) u′

L′(cL, cW , h, hW ) = V (cL, cW , h, hW )/J ′(cL, cW , h, hW )

Since

charV (cL, cW , h, hW ) = qh ∑
n≥0

P2(n)qn,

the theorem yields

char J ′(cL, cW , h, hW ) = qh+p ∑
n≥0

P2(n)qn,

char L′(cL, cW , h, hW ) = charV − char J ′ =

= qh(1− qp) ∑
n≥0

P2(n)qn.
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Reducibility of a quotient module

Is L′(cL, cW , h, hW ) irreducible?

Example
i) L−1v is a singular vector in
L′ (cL, cW , 0, 0) = V (cL, cW , 0, 0) /U (L)W−1.
ii)

(
L−2 + 12

cW
W−1L−1 − 6(14+cL)

cW
W 2
−1

)
v is a singular

vector in L′
(
cL, cW ,

18−cL
8 ,− cW8

)
=

V
(
cL, cW ,

18−cL
8 ,− cW8

)
/U (L) (W−2 + 6

cW
W 2
−1)v .

iii)
(
L2−1 +

6
cW
W−2

)
v is a singular vector in

L′(cL, cW ,− 12 , 0) = V (cL, cW ,−
1
2 , 0)/U (L)W−1v .

Problem
What is the structure of L′(cL, cW , h, hW )?
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Structure of a quotient module L’
Lemma (Jiang, Pei (Y. Billig))
Let 0 6= x ∈ J ′(cL, cW , h, hW ). Then there exist terms in x,
containing factor W−p .

Proposition
The set of all PBW vectors W−ms · · ·W−m1L−nt · · · L−n1v
modulo J ′(cL, cW , h, hW ) with mi 6= p forms a basis for
L′(cL, cW , h, hW ).

Theorem
Assume that L′(cL, cW , h, hW ) is reducible. Then there is a
singular vector u ∈ L′(cL, cW , h, hW ) such that u = Lq−pv
for some q ∈N.
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Necessary condition

Equating certain coeffi cients in relation
Lpu ∈ J ′ (cL, cW , h, hW ) we get the following result:

Theorem (Necessary condition for the existence of a
subsingular vector)
Let hW = 1−p2

24 cW . If L
′(cL, cW , h, hW ) contains a singular

vector u such that u = Lq−pv, for some q ∈N, then

h =
(
1− p2

) cL − 2
24

+ p(p − 1) + (1− q)p
2

=: hp,q .

For a PBW monomial x = W−ms · · ·W−m1L−nt · · · L−n1v
define L−p-degree degL−p x as a number of factors
L−ni = L−p .
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Irreducibility of a quotient module

Theorem
Let hW = 1−p2

24 cW . If V (cL, cW , hp,q , hW ) contains a
subsingular vector u such that u = Lq−pv, for some q ∈N,
then

J(cL, cW , h, hW ) = U(L_)
{
u, u′

}
is the maximal submodule.

Module

L(cL, cW , h, hW ) = V (cL, cW , h, hW )/J(cL, cW , h, hW )

is irreducible with a basis{
x = W−ms · · ·W−m1L−nt · · · L−n1v : mj 6= p, degL−p x < q

}
and a character

char L(cL, cW , h, hW ) = qh(1− qp)(1− qqp) ∑
n≥0

P2(n)qn.
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subsingular vector u such that u = Lq−pv, for some q ∈N,
then

J(cL, cW , h, hW ) = U(L_)
{
u, u′

}
is the maximal submodule. Module

L(cL, cW , h, hW ) = V (cL, cW , h, hW )/J(cL, cW , h, hW )

is irreducible with a basis{
x = W−ms · · ·W−m1L−nt · · · L−n1v : mj 6= p, degL−p x < q

}
and a character

char L(cL, cW , h, hW ) = qh(1− qp)(1− qqp) ∑
n≥0

P2(n)qn.
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Characters (subsingular case)

charV (cL, cW , h, hW ) = qh ∑
n≥0

P2(n)qn

char J ′(cL, cW , h, hW ) = qh+p ∑
n≥0

P2(n)qn

char L′(cL, cW , h, hW ) = qh(1− qp) ∑
n≥0
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P2(n)qn

char L(cL, cW , hp,q , hW ) = qh(1− qp)(1− qqp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW )/J ′(cL, cW , hp,q , hW ) =

= qhp,q+pq(1− qp) ∑
n≥0

P2(n)qn



Algebra W (2, 2)

Structure of Verma
modules
(Sub)singular vectors
W -degree
Submodules and
singular vectors
Quotient module L’
Necessary condition
Conjecture

Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)

VOA W(2,2) and
intertwining
operators

Characters (subsingular case)

charV (cL, cW , h, hW ) = qh ∑
n≥0

P2(n)qn

char J ′(cL, cW , h, hW ) = qh+p ∑
n≥0

P2(n)qn

char L′(cL, cW , h, hW ) = qh(1− qp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW ) = qh+p(1+q(q−1)p −qqp) ∑
n≥0

P2(n)qn

char L(cL, cW , hp,q , hW ) = qh(1− qp)(1− qqp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW )/J ′(cL, cW , hp,q , hW ) =

= qhp,q+pq(1− qp) ∑
n≥0

P2(n)qn



Algebra W (2, 2)

Structure of Verma
modules
(Sub)singular vectors
W -degree
Submodules and
singular vectors
Quotient module L’
Necessary condition
Conjecture

Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)

VOA W(2,2) and
intertwining
operators

Characters (subsingular case)

charV (cL, cW , h, hW ) = qh ∑
n≥0

P2(n)qn

char J ′(cL, cW , h, hW ) = qh+p ∑
n≥0

P2(n)qn

char L′(cL, cW , h, hW ) = qh(1− qp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW ) = qh+p(1+q(q−1)p −qqp) ∑
n≥0

P2(n)qn

char L(cL, cW , hp,q , hW ) = qh(1− qp)(1− qqp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW )/J ′(cL, cW , hp,q , hW ) =

= qhp,q+pq(1− qp) ∑
n≥0

P2(n)qn



Algebra W (2, 2)

Structure of Verma
modules
(Sub)singular vectors
W -degree
Submodules and
singular vectors
Quotient module L’
Necessary condition
Conjecture

Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)

VOA W(2,2) and
intertwining
operators

Characters (subsingular case)

charV (cL, cW , h, hW ) = qh ∑
n≥0

P2(n)qn

char J ′(cL, cW , h, hW ) = qh+p ∑
n≥0

P2(n)qn

char L′(cL, cW , h, hW ) = qh(1− qp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW ) = qh+p(1+q(q−1)p −qqp) ∑
n≥0

P2(n)qn

char L(cL, cW , hp,q , hW ) = qh(1− qp)(1− qqp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW )/J ′(cL, cW , hp,q , hW ) =

= qhp,q+pq(1− qp) ∑
n≥0

P2(n)qn



Algebra W (2, 2)

Structure of Verma
modules
(Sub)singular vectors
W -degree
Submodules and
singular vectors
Quotient module L’
Necessary condition
Conjecture

Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)

VOA W(2,2) and
intertwining
operators

Characters (subsingular case)

charV (cL, cW , h, hW ) = qh ∑
n≥0

P2(n)qn

char J ′(cL, cW , h, hW ) = qh+p ∑
n≥0

P2(n)qn

char L′(cL, cW , h, hW ) = qh(1− qp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW ) = qh+p(1+q(q−1)p −qqp) ∑
n≥0

P2(n)qn

char L(cL, cW , hp,q , hW ) = qh(1− qp)(1− qqp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW )/J ′(cL, cW , hp,q , hW ) =

= qhp,q+pq(1− qp) ∑
n≥0

P2(n)qn



Algebra W (2, 2)

Structure of Verma
modules
(Sub)singular vectors
W -degree
Submodules and
singular vectors
Quotient module L’
Necessary condition
Conjecture

Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)

VOA W(2,2) and
intertwining
operators

Characters (subsingular case)

charV (cL, cW , h, hW ) = qh ∑
n≥0

P2(n)qn

char J ′(cL, cW , h, hW ) = qh+p ∑
n≥0

P2(n)qn

char L′(cL, cW , h, hW ) = qh(1− qp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW ) = qh+p(1+q(q−1)p −qqp) ∑
n≥0

P2(n)qn

char L(cL, cW , hp,q , hW ) = qh(1− qp)(1− qqp) ∑
n≥0

P2(n)qn

char J(cL, cW , hp,q , hW )/J ′(cL, cW , hp,q , hW ) =

= qhp,q+pq(1− qp) ∑
n≥0

P2(n)qn



Algebra W (2, 2)

Structure of Verma
modules
(Sub)singular vectors
W -degree
Submodules and
singular vectors
Quotient module L’
Necessary condition
Conjecture

Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)

VOA W(2,2) and
intertwining
operators

Conjecture

Conjecture
Suppose hW = 1−p2

24 cW for some p ∈N. Then
L′(cL, cW , h, hW ) is reducible if and only if

h = hp,q =
(
1− p2

) cL − 2
24

+ p(p − 1) + (1− q)p
2

.

Using determinant formula one can prove

Theorem
Module L′(cL, cW ,

1−q
2 , 0) is reducible for every q ∈N, i.e.

there is a subsingular vector u ∈ V (cL, cW , 1−q2 , 0) such that
u = Lq−1.
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Examples

Subsingular vectors u in V (cL, cW ,
1−q
2 , 0):

V (cL, cW , 0, 0) L−1v

V (cL, cW ,− 12 , 0)
(
L2−1 +

6
cW
W−2

)
v

V (cL, cW ,−1, 0)
(
L3−1 +

12
cW
W−3 + 24

cW
W−2L−1

)
v

V (cL, cW ,− 32 , 0)

(
L4−1 +

60
cW
W−2L2−1 +

60
cW
W−3L−1+

+ 36
cW
W−4 + 324

c2W
W 2
−2

)
v

V (cL, cW ,−2, 0)

(
L5−1 +

120
cW
W−2L3−1 +

180
cW
W−3L2−1+

+ 48
cW
W−4L−1 + 3312

c2W
W 2
−2L−1+

+ 144
cW
W−5 + 2304

c2W
W−3W−2

)
v

It can be shown that u = (Lq−1 +∑q−1
i=0 wiL

i
−1)v for some

wi ∈ W .
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Intermediate series

For α, β ∈ C take Vir-modules

Vα,β = spanC {vn : n ∈ Z}

with

Lkvn = − (n+ α+ β+ kβ) vn+k ,

CLvn = 0, k, n ∈ Z.

Define L-modules

Vα,β,0 := Vα,β with

CW vn = Wkvn = 0, k, n ∈ Z.
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Intermediate series

Vα,β,0
∼= Vα+k ,β,0 for k ∈ Z

⇒ if α ∈ Z we may assume α = 0

Vα,β,0 is reducible if and only if α ∈ Z and β ∈ {0, 1}.
Define

V ′0,0,0 := V0,0,0/Cv0,

V ′0,1,0 :=
⊕
m 6=−1

Cvm ⊆ V0,1,0,

V ′α,β,0 := Vα,β,0 otherwise.{
V ′α,β,0 : α, β ∈ C

}
- all irreducible modules belonging to

intermediate series.
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Irreducible Harish-Chandra modules

Theorem (Liu, D., Zhu, L.)
An irreducible weight L-module with finite-dimensional
weight spaces is isomorphic either to a highest (or lowest)
weight module, or to V ′α,β,0 for some α, β ∈ C.

What about modules with infinite-dimensional weight
spaces?
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Tensor product modules

V ′α,β,0 ⊗ L(cL, cW , h, hW ) is L-module:

Lk (vn ⊗ x) = Lkvn ⊗ x + vn ⊗ Lkx ,
Wm(vn ⊗ x) = vn ⊗Wmx ,

CL(vn ⊗ x) = cL(vn ⊗ x),
CW (vn ⊗ x) = cW (vn ⊗ x).

All weight subspaces are infinite-dimensional:(
V ′α,β,0 ⊗ L (cL, cW , h, hW )

)
h+m−α−β

=

=
⊕
n∈Z+

Cvn−m ⊗ L (cL, cW , h, hW )h+n
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(Ir)reducibility of the tensor product modules

I {vn ⊗ v : n ∈ Z} generates V ′α,β,0 ⊗ L(cL, cW , h, hW )

I Set Un = U (L) (vn ⊗ v) .

Theorem (Irreducibiliy criterion)
V ′α,β,0 ⊗ L(cL, cW , h, hW ) is irreducible if and only if it is
cyclic on every vn ⊗ v, i.e., if Un = Un+1 for n ∈ Z.

Theorem
Let h 6= hp,q for all q. Then module
V ′α,β,0 ⊗ L(cL, cW , h, hW ) is reducible for any α, β ∈ C.
Moreover:

Un ! Un+1, ∀n ∈ Z.
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Irreducibility of the tensor product modules

Theorem
Let h = hp,q and let u ∈ V (cL, cW , h, hW ) be a subsingular
vector such that u = Lq−p . If α+ (1− p)β /∈ Z then module
V ′α,β,0 ⊗ L(cL, cW , h, hW ) is irreducible.

Proof.
[Sketch of proof] Using subsingular vector u we find
x ∈ U (L) such that

x(vn ⊗ v) =

=

(
q−1
∏
j=0
(n− 1+ (q − j)p + α+ (1− p)β)

)
vn−1 ⊗ v
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Irreducible submodules

Theorem
Let h = hp,q , and let u ∈ V (cL, cW , h, hW ) be a subsingular
vector such that u = Lq−p . If α+ (1− p)β ∈ Z, module
V ′α,β,0 ⊗ L(cL, cW , h, hW ) is reducible. There exists k ∈ Z

such that Uk is irreducible.

U−jp ! U1−jp for 1 ≤ j ≤ q,

V ′α,β,0 ⊗ L(cL, cW , h, hW ) = U−qp ,

U1−p is irreducible.
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Weight (0,0)

Corollary
(i) V ′α,β,0 ⊗ L(cL, cW , 0, 0) is irreducible if and only if
α /∈ Z.

(ii) U0 is irreducible submodule in V ′0,β,0 ⊗ L(cL, cW , 0, 0).
If 1− β 6= 1−q

2 for q ∈N then(
V ′0,β,0 ⊗ L(cL, cW , 0, 0)

)
/U0 ∼= L(cL, cW , 1− β, 0),

(
V ′0,1,0 ⊗ L(cL, cW , 0, 0)

)
/U0 ∼= L(cL, cW , 1, 0).

If q ∈N \ {1}(
V ′
0, 1+q2 ,0

⊗ L(cL, cW , 0, 0)
)

/U0 ∼= L′(cL, cW ,
1− q
2

, 0).
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VOA

L(cL, cW , 0, 0) is the only quotient of V (cL, cW , 0, 0) with
the structure of vertex operator algebra.

Theorem (Zhang-Dong)
Let cL, cW 6= 0. Then

1. There is a unique VOA structure on L(cL, cW , 0, 0)
which we denote LW (cL, cW ), with the vacuum vector
v , and the Virasoro element ω = L−2v. LW (cL, cW ) is
generated with ω and x = W−2v and
Y (ω, z) = ∑n∈Z Lnz

−n−2, Y (x , z) = ∑n∈ZWnz−n−2.

2. Any quotient of V (cL, cW , h, hW ) is an
LW (cL, cW )-module, and
{L(cL, cW , h, hW ) : h, hW ∈ C} gives a complete list of
irreducible LW (cL, cW )-modules.
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Intertwining operators

I M(cL, cW , h, hW ) - any highest weight module

I Suppose a nontrivial intertwining operator I of type
(

M (cL ,cW ,h3h′W )
L(cL ,cW ,h1,0) M (cL ,cW ,h2,hW )

) exists

I Let h1 6= 0 and v ∈ L(cL, cW , h1, 0) the highest weight
vector

I Recall that W0v = W−1v = 0

I I(v , z) = z−α ∑n∈Z v(n)z
−n−1 for α = h1 + h2 − h3
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Intertwining operators

[
Lm , v(n)

]
= ∑

i≥0

(
m+ 1
i

)
(Li−1v)(m+n−i+1) =

= (L−1v)(m+n+1) + (m+ 1) (L0v)(m+n) =

= − (α+ n+m+ 1) v(m+n) + (m+ 1) h1v(m+n) =
= − (n+ α+ (1+m) (1− h1)) v(m+n)

and[
Wm , v(n)

]
= ∑

i≥0

(
m+ 1
i

)
(Wi−1v)(m+n−i+1) =

= (W−1v)(m+n+1) + (m+ 1) (W0v)(m+n) = 0

so components v(n) span V
′
α,1−h1,0.



Algebra W (2, 2)

Structure of Verma
modules
(Sub)singular vectors
W -degree
Submodules and
singular vectors
Quotient module L’
Necessary condition
Conjecture

Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)

VOA W(2,2) and
intertwining
operators

Intertwining operators

[
Lm , v(n)

]
= ∑

i≥0

(
m+ 1
i

)
(Li−1v)(m+n−i+1) =

= (L−1v)(m+n+1) + (m+ 1) (L0v)(m+n) =

= − (α+ n+m+ 1) v(m+n) + (m+ 1) h1v(m+n) =
= − (n+ α+ (1+m) (1− h1)) v(m+n)

and[
Wm , v(n)

]
= ∑

i≥0

(
m+ 1
i

)
(Wi−1v)(m+n−i+1) =

= (W−1v)(m+n+1) + (m+ 1) (W0v)(m+n) = 0

so components v(n) span V
′
α,1−h1,0.



Algebra W (2, 2)

Structure of Verma
modules
(Sub)singular vectors
W -degree
Submodules and
singular vectors
Quotient module L’
Necessary condition
Conjecture

Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)

VOA W(2,2) and
intertwining
operators

Intertwining operators and reducibility

We get a nontrivial L-homomorphism

Φ : V ′α,1−h1,0 ⊗M(cL, cW , h2, hW )→ M(cL, cW , h3, h
′
W ),

Φ(v(n) ⊗ x) = v(n)x .

dimensions of weight spaces ⇒
V ′α,1−h1,0 ⊗M(cL, cW , h2, hW ) is reducible
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Intertwining operators and reducibility

M(cL, cW , h, hW ) is LW (cL, cW )-module ⇒ there exist
intertwining operators of type ( M (cL ,cW ,h,hW )

L(cL ,cW ,0,0) M (cL ,cW ,h,hW )
)

and transposed operator ( M (cL ,cW ,h,hW )
M (cL ,cW ,h,hW ) L(cL ,cW ,0,0)

).
In particular, operators of type(

L(cL, cW , h, 0)
L(cL, cW , h, 0) L(cL, cW , 0, 0)

)
and (

L′(cL, cW , h, 0)
L′(cL, cW , h, 0) L(cL, cW , 0, 0)

)
exist for all h.
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The twisted Heisenberg-Virasoro algebra

Algebra H is a complex Lie algebra with a basis
{Ln, In,CL,CI ,CL,I : n ∈ Z} and a Lie bracket

[Ln, Lm ] = (n−m) Ln+m + δn,−m
n3 − n
12

CL,

[Ln, Im ] = −mIn+m − δn,−m(n2 + n)CLI ,

[In, Im ] = nδn,−mCI ,

[H,CL] = [H,CLI ] = [H,CI ] = 0.

{Ln,CL, : n ∈ Z} spans a copy of the Virasoro algebra.

{In,CI : n ∈ Z} spans a copy of the Heisenberg algebra.
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The Verma module

I V (cL, cI , cL,I , h, hI ) - the Verma module with highest
weight (h, hI ) and central charge (cL, cI , cL,I ).

I We study the highest weight representation theory at
level zero (cI = 0).

I Appears in the representation theory of toroidal Lie
algebras.

I Note that I0 acts semisimply on entire module.
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The Verma module

Theorem (Y. Billig)
Assume that cI = 0 and cLI 6= 0.
(i) If hI

cLI
/∈ Z or hI

cLI
= 1, then the Verma module

V (cL, cLI , 0, h, hL) is irreducible.

(ii) If hI
cLI
∈ Z \ {1}, then V (cL, cLI , 0, h, hL) has a singular

vector u at level p = | hIcLI − 1|.
The quotient module
L(cL, 0, cL,I , h, hI ) = V (cL, 0, cL,I , h, hI )/U(H)u is
irreducible and its character is

char L(cL, 0, cL,I , h, hI ) = qh(1− qp)∏
j≥1
(1− qj )−2.
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Singular vectors

I From now on we assume that cI = 0 and cLI 6= 0.

I Define degI x and x as before.
I I = C [I−1, I−2, . . .] v ∈ V (cL, cLI , 0, h, hL).

Theorem (Y. Billig)
Assume that p = | hIcLI − 1| and u ∈ V (cL, cLI , 0, h, hL) is a
singular vector.

(i) U (H) u ∼= V (cL, 0, cL,I , h+ p, hI ).
(ii) If hI

cLI
= 1+ p, then u = I−pv and u ∈ I .

(iii) If hI
cLI
= 1− p, then u = L−p .
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Intermediate series

Once again we define a H-module structure on Virasoro
intermediate series:

Let α, β,F ∈ C define Vα,β,F =
⊕
n∈Z

Cvn with Lie bracket

Lnvm = − (m+ α+ β+ nβ) vm+n,

Invm = Fvm+n,

CLvm = CI vm = CL,I vm = 0.

As usual,

I Vα,β,F
∼= Vα+k ,β,F for k ∈ Z,

I Vα,β,F is reducible if and only if α ∈ Z and β ∈ {0, 1}
and F = 0,

I V ′0,0,0 := V/Cv0, V ′0,1,0 :=
⊕
n 6=−1

Cvn and

V ′α,β,F := Vα,β,F otherwise.
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Tensor product modules

Consider V ′α,β,F ⊗ L (cL, 0, cL,I , h, hI ) module:

Lk (vn ⊗ x) = Lkvn ⊗ x + vn ⊗ Lkx ,
Im(vn ⊗ x) = Fvn ⊗ x + vn ⊗ Imx ,
CL(vn ⊗ x) = cL(vn ⊗ x),
CI (vn ⊗ x) = 0

CL,I (vn ⊗ x) = cL,I (vn ⊗ x).

I Generated by {vn ⊗ v : n ∈ Z}.
I Set Un = U (H) (vn ⊗ v).
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Tensor product modules

Consider V ′α,β,F ⊗ L (cL, 0, cL,I , h, hI ) module:

Lk (vn ⊗ x) = Lkvn ⊗ x + vn ⊗ Lkx ,
Im(vn ⊗ x) = Fvn ⊗ x + vn ⊗ Imx ,
CL(vn ⊗ x) = cL(vn ⊗ x),
CI (vn ⊗ x) = 0

CL,I (vn ⊗ x) = cL,I (vn ⊗ x).

I Generated by {vn ⊗ v : n ∈ Z}.
I Set Un = U (H) (vn ⊗ v).
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Reducibility of a tensor product module

Theorem
V ′α,β,F ⊗ L (cL, 0, cL,I , h, hI ) is irreducible if and only if
Un = Un+1 for all n ∈ Z.

Theorem
V ′α,β,F ⊗ V (cL, 0, cL,I , h, hI ) is reducible. Modules
V (cL, 0, cL,I , h− α− β− n, hI ), n ∈ Z occur as
subquotients.

For a complete solution of irreducibility problem for
V ′α,β,F ⊗ L (cL, 0, cL,I , h, hI ) we need more detailed formulas
for singular vectors.
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The Heisenberg-Virasoro vertex-algebra

Irreducible H-module L(cL, 0, cL,I , 0, 0) has the structure of
vertex operator algebra which we denote LH(cL, cL,I ).

Theorem (Y. Billig)
Let cL,I 6= 0. Then LH(cL, cL,I ) is a simpe VOA, and
V (cL, 0, cL,I , h, hI ) and L(cL, 0, cL,I , h, hI ) are
LH(cL, cL,I )-modules.

I LH(cL, cL,I ) can be realized as a subalgebra of the
Heisenberg vertex algebra M(1).

I Moreover, M (1)-modules M (1,γ) become
LH(cL, cL,I )-modules, and also H-modules.

I (Joint work with D. Adamovíc)
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Heisenberg vertex-algebra

I L = Zα+Zβ is a hyperbolic lattice such that
〈α, α〉 = − 〈β, β〉 = 1, 〈α, β〉 = 0.

I h = C⊗Z L is abelian Lie algebra and ĥ its affi nization.
I M (1,γ) := U(ĥ)⊗U (C[t ]⊗h⊕Cc ) C where tC[t]⊗ h acts
trivially on C, h acts as 〈δ,γ〉 for δ ∈ h and c acts as 1.

I eγ is a highest weight vector in M(1,γ).
I M (1) := M (1, 0) is a vertex-algebra and M(1,γ) for

γ ∈ h, are irreducible M(1)—modules.
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Heisenberg-Virasoro vertex algebra
I C [L] is a group algebra of L and VL = M(1)⊗C[L]
the vertex algebra associated to the lattice L.

I I = α(−1) + β(−1) is a Heisenberg vector, and
ω = 1

2α(−1)2 − 1
2 β(−1)2 + λα(−2) + µβ(−2) is a

Virasoro vector:
I I (z) = Y (I , z) = ∑n∈Z Inz

−n−1 and
L(z) = Y (ω, z) = ∑n∈Z Lnz

−n−2 generate the simple
Heisenberg-Virasoro vertex algebra LH(cL, cL,I )

I We get the twisted Heisenberg-Virasoro Lie algebra H
such that

cL = 2− 12(λ2 − µ2), cL,I = λ− µ

i.e.

λ =
2− cL
24cL,I

+
1
2
cL,I , µ =

2− cL
24cL,I

− 1
2
cL,I .
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Free-field realization

I For every r , s ∈ C let erα+sβ is a H-singular vector and
U(H)erα+sβ is a highest weight module with the
highest weight (h, hI ) where

h = ∆r ,s =
1
2
r2 − 1

2
s2 − λr + µs, hI = r − s

Proposition
(i) Let (h, hI ) ∈ C2, hI 6= cL,I . Then there exist unique
r , s ∈ C such that erα+sβ is a highest weight vector of the
highest weight (h, hI ).
(ii) For every r , s ∈ C such that r − s = λ− µ = cL,I ,
erα+sβ is a highest weight vector of weight

(h, hI ) = (
cL − 2
24

, cL,I ).
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Free-field realization

I Denote by Fr ,s the M(1)-module generated by erα+sβ.

I It is also a LH(cL, cL,I )-module, therefore a H-module.
I Obviously U(H)erα+sβ is a highest weight H—module.
I There is a surjective H—homomorphism

Φ : V (cL, 0, cL,I , h, hI )→ U(H)erα+sβ

such that Φ(vh,hI ) = e
rα+sβ and that Φ|I is injective.

Proposition
Assume that hI

cL,I
− 1 /∈ −Z>0. Then

Fr ,s ∼= V (cL, 0, cL,I , h, hI ) as LH(cL, cL,I )-modules.
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I It is also a LH(cL, cL,I )-module, therefore a H-module.
I Obviously U(H)erα+sβ is a highest weight H—module.
I There is a surjective H—homomorphism

Φ : V (cL, 0, cL,I , h, hI )→ U(H)erα+sβ

such that Φ(vh,hI ) = e
rα+sβ and that Φ|I is injective.

Proposition
Assume that hI

cL,I
− 1 /∈ −Z>0. Then

Fr ,s ∼= V (cL, 0, cL,I , h, hI ) as LH(cL, cL,I )-modules.
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Free-field realization

I For a vertex-algebra V and V -module M, one can
define a contragradient module M∗.

I One can show that F ∗r ,s ∼= F2λ−r ,2µ−s .
I Therefore
L(cL, 0, cL,I , h, hI )∗ ∼= L(cL, 0, cL,I , h,−hI + 2cL,I ).

Proposition
Assume that hI

cL,I
− 1 = −p ∈ −Z>0. As a

LH(cL, cL,I )—module Fr ,s is generated by erα+sβ and a family
of subsingular vectors {vn,p : n ≥ 1} of weights h+ np.
There is a filtration Fr ,s = ∪n≥0Zn such that

Zn/Zn−1 ∼= LH(cL, 0, cL,I , h+ np, hI ).
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Schur polynomials

I Schur polynomials Sr (x1, x2, · · · ) in variables x1, x2, . . .
are defined by the following equation:

exp

(
∞

∑
n=1

xn
n
yn
)
=

∞

∑
r=0

Sr (x1, x2, · · · )y r .

I Also

Sr (x1, x2, · · · ) =
1
r !

∣∣∣∣∣∣∣∣∣∣∣

x1 x2 · · · xr
−r + 1 x1 x2 · · · xr−1
0 −r + 2 x1 · · · xr−2
...

. . . . . . . . .
...

0 · · · 0 −1 x1

∣∣∣∣∣∣∣∣∣∣∣
.

I Schur polynomials naturally appear in formulas for
vertex operator for lattice vertex algebras.
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Schur polynomials and singular vectors

Lemma
If v ∈ I ⊂ V (cL, 0, cL,I , h, hI ) is such that Φ(v) ∈ Fr ,s is a
non-trivial singular vector, then v is a singular vector in
V (cL, 0, cL,I , h, hI ).

Since Sp
(
− I−1
cL,I
,− I−2

cL,I
, . . . ,− I−p

cL,I

)
erα+sβ is a singular vector

in U(H)erα+sβ we have:

Theorem
Assume that cL,I 6= 0 and p = hI

cL,I
− 1 ∈ Z>0. Then Ωvh,hI

where

Ω = Sp

(
− I−1
cL,I

,− I−2
cL,I

, . . . ,− I−p
cL,I

)
is a singular vector of weight p in the Verma module
V (cL, 0, cL,I , h, (1+ p) cL,I ).
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Schur polynomials and singular vectors

I Using technical lemma and some calculation with
erα+sβ in Fr ,s we get:

Theorem
Assume that cL,I 6= 0 and p = 1− hI

cL,I
∈ Z>0. Then Λvh,hI

where

Λ =
p−1
∑
i=0

Si

(
I−1
cL,I

, . . . ,
I−i
cL,I

)
Li−p +

p−1
∑
i=0

(
h
p
+
cL − 2
24

(p − 1)2 − pi
p

)
Si

(
I−1
cL,I

, . . . ,
I−i
cL,I

)
Ii−p
cL,I

is a singular vector of weight p in the Verma module
V (cL, 0, cL,I , h, (1− p) cL,I ).
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Intertwining operators and tensor product
modules

As with Virasoro and W (2, 2) algebras, the existence of a
nontrivial intertwining operator of type(

L(cL, 0, cL,I , h′′, h′′I )
L(cL, 0, cL,I , h, hI ) L(cL, 0, cL,I , h′, h′I )

)
yields a nontrivial H-homomorphism

ϕ : V ′α,β,F ⊗ L(cL, 0, cL,I , h′, h′I )→ L(cL, 0, cL,I , h
′′, h′′I )

where

α = h+ h′ − h′, β = 1− h, F = hI .

Again, by dimension argument, we get reducibility of
V ′α,β,F ⊗ L(cL, 0, cL,I , h′, h′I ).
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Fusion rules

From the standard fusion rules result for the Heisenberg
vertex algebra M(1) we get intertwining operators in the
category of H—modules:

Theorem
Let (h, hI ) = (∆r1,s1 , r1− s1), (h′, h′I ) = (∆r2,s2 , r2− s2) ∈ C2

such that hI
cL,I
− 1, h

′
I

cL,I
− 1, hI+h

′
I

cL,I
− 1 /∈ Z>0. Then there is a

non-trivial intertwining operator of the type(
LH(cL, 0, cL,I , h′′, hI + h′I )

LH(cL, 0, cL,I , h, hI ) LH(cL, 0, cL,I , h′, h′I )

)
where h′′ = ∆r1+r2,s1+s2 . In particular, the H—module
V ′α,β,F ⊗ LH(cL, 0, cL,I , h′, h′I ) is reducible where

α = h+ h′ − h′′, β = 1− h, F = hI .
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Fusion rules

Corollary
Let (h, hI ) = (∆r1,s1 , r1− s1), (h′, h′I ) = (∆r2,s2 , r2− s2) ∈ C2

and that there are p, q ∈ Z>0, q ≤ p such that

hI
cL,I
− 1 = −q, h′I

cL,I
− 1 = p.

Then there is a non-trivial intertwining operator of the type(
LH(cL, 0, cL,I , h′′, hI + h′I )

LH(cL, 0, cL,I , h, hI ) LH(cL, 0, cL,I , h′, h′I )

)
where h′′ = ∆r2−r1,s2−s1 . In particular, the H—module
V ′α,β,F ⊗ LH(cL, 0, cL,I , h′, h′′I ) is reducible where

α = h+ h′ − h′′, β = 1− h, F = hI .
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Corollary
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(Ir)reducibility of a tensor product

I Next we use formulas for Ω and Λ to get irreducibility
criterion for V ′α,β,F ⊗ L (cL, 0, cL,I , h, hI ).

I R. Lu and K. Zhao introduced a useful criterion:
I Define a linear map φn : U(H−)→ C

φn(1) = 1

φn(I (−i)u) = −Fφn(u)

φn(L(−i)u) = (α+ β+ k + i + n− iβ)φn(u)

for u ∈ U
(
H_
)
−k .

I V ′α,β,F ⊗ LH(cL, 0, cL,I , h, hI ) is irreducible if and only if
φn(Ω) 6= 0 (φn(Λ) 6= 0) for every n ∈ Z.
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Irreducibility criterion

I If p = hI
cL,I
− 1 ∈ Z>0, then for every n ∈ Z we have

φn(Ω) = (−1)p
(− F

cL,I
p

)
.

Theorem
Let p = hI

cL,I
− 1 ∈ Z>0. Module V ′α,β,F ⊗ LH(cL, 0, cL,I , h, hI )

is irreducible if and only if F 6= (i − p)cL,I , for i = 1, . . . , p.

I This expands the list of reducible tensor products
realized with intertwining operators.
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Irreducibiliy criterion

I If hI
cL,I
− 1 = −p ∈ −Z>0, then for every n ∈ Z we have

φn(Λ) = (−1)p−1
(
F/cL,I − 1
p − 1

)
(α+ n+ β)+

(−1)p−1(1− β)

(
F/cL,I − 2
p − 1

)
+ gp(F )

for a certain polynomial gp ∈ C[x ].

I If F/cL,I /∈ {1, . . . , p − 1}, then for every n ∈ Z there
is a unique α := αn ∈ C such that φn(Λ) = 0.

I This, along with previous results on existence of
intertwining operators result with the following:
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Irreducibiliy criterion

Theorem
Let hI

cL,I
− 1 = −p ∈ −Z>0. We write V short for

V ′α,β,F ⊗ L(cL, 0, cL,I , h, hI ).

(i) Let F/cL,I /∈ {1, . . . , p − 1} and let α0 ∈ C be such
that φ0(Λ) = 0. Then V is reducible if and only if α ≡ α0
mod Z. In this case W 0 = U(H)(v0 ⊗ v) is irreducible
submodule of V and V/W 0 is a highest weight H-module
L̃(cL, 0, cL,I , h′′, h′′I ) (not necessarily irreducible) where

h′′ = −α0 + h+ (1− β), h′′I = F + hI .

(ii) Let F/cL,I ∈ {2, . . . , p − 1}. Then V is reducible.
(iii) Let p > 1 and F/cL,I = 1. Then V is reducible if and
only if 1− β = cL−2

24 .
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Fusion rules
Theorem
Let (h, hI ) = (∆r1,s1 , r1 − s1), (h′, h′I ) = (∆r2,s2 , r2 − s2) such
that

hI
cL,I
− 1 = q, h′I

cL,I
− 1 = p, p, q ∈ Z \ {0}.

Let

d = dim I
(

LH(cL, 0, cL,I , h′′, h′′I )
LH(cL, 0, cL,I , h, hI ) LH(cL, 0, cL,I , h′, h′I )

)
.

Then d = 1 if and only if h′′I = hI + h
′
I and one of the

following holds:

(i) p, q < 0 and h′′ = ∆r1+r2,s1+s2
(ii) 1 ≤ −q ≤ p and h′′ = ∆r2−r1,s2−s1
(iii) 1 ≤ −p ≤ q and h′′ = ∆r2−r1,s2−s1

d = 0 otherwise.
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Fusion rules
Theorem
Let (h, hI ) = (∆r1,s1 , r1 − s1), (h′, h′I ) = (∆r2,s2 , r2 − s2) such
that

hI
cL,I
− 1 = q, h′I

cL,I
− 1 = p, p, q ∈ Z \ {0}.

Let

d = dim I
(

LH(cL, 0, cL,I , h′′, h′′I )
LH(cL, 0, cL,I , h, hI ) LH(cL, 0, cL,I , h′, h′I )

)
.

Then d = 1 if and only if h′′I = hI + h
′
I and one of the

following holds:

(i) p, q < 0 and h′′ = ∆r1+r2,s1+s2
(ii) 1 ≤ −q ≤ p and h′′ = ∆r2−r1,s2−s1
(iii) 1 ≤ −p ≤ q and h′′ = ∆r2−r1,s2−s1

d = 0 otherwise.
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Nontrivial intertwining operators

(
(∆r1+r2,s1+s2 , (1− (p + q − 1)cL,I )

(∆r1,s1 , (1− q)cL,I ) (∆r2,s2 , (1− p)cL,I )

)
for p, q ≥ 1

(
(∆r2−r1,s2−s1 , (1− (q − p − 1)cL,I )

(∆r1,s1 , (1− q)cL,I ) (∆r2,s2 , (1+ p)cL,I )

)
for 1 ≤ q ≤ p

(
(∆r2−r1,s2−s1 , (1− (p − q − 1)cL,I )

(∆r1,s1 , (1+ q)cL,I ) (∆r2,s2 , (1− p)cL,I )

)
for 1 ≤ p ≤ q
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Vertex-algebra homomorphism
I Vertex-algebra LW (cL, cW ) is generated by

Y (L−2, z) = ∑
n∈Z

Lnz−n−2, Y (W−2, z) = ∑
n∈Z

Wnz−n−2.

I Vertex-algebra LH(cL, cL,I ) is generated by

Y (L−2, z) = ∑
n∈Z

Lnz−n−2, Y (I−1, z) = ∑
n∈Z

Inz−n−1.

Theorem
There is a non-trivial homomorphism of vertex algebras

Ψ : LW (cL, cW )→ LH(cL, cL,I )

L−2 7→ L−21

W−2 7→ (I 2−1 + 2cL,I I−2)1

where
cW = −24c2L,I .
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Vertex-algebra homomorphism

I Every LH(cL, cL,I )-module becomes a
LW (cL, cW )-module.

I VH(cL, 0, cL,I , h, hI ) is a LW (cL, cW )-module and vh,hI
is a W (2, 2) highest weight vector such that

L(0)vh,hI = hvh,hI , W (0)vh,hI = hW vh,hI

where hW = hI (hI − 2cL,I ).
I There is a nontrivial W (2, 2)-homomorphism

Ψ : VW (2,2)(c, cW , h, hW )→ VH(cL, 0, cL,I , h, hI )
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Highest weight H-modules as W(2,2)-modules

Example
Let hW = 1−p2

24 cW = (p2 − 1)c2L,I = hI (hI − 2cL,I ) as
above. Then there are nontrivial W (2, 2)-homomorphisms

VW (2,2)(c, cW , h,
1−p2
24 cW )

Ψ+↙ ↘Ψ−

VH(cL, 0, cL,I , h, (1+ p) cL,I ) VH(cL, 0, cL,I , h, (1− p) cL,I )
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Highest weight H-modules as W(2,2)-modules

Theorem
(i) Let hI

cL,I
− 1 /∈ −Z>0. Then Ψ is an isomorphism of

W (2, 2)-modules.

(ii) If hI
cL,I
− 1 = p ∈ Z>0 then

Ψ−1
(
Sp

(
− I (−1)

cL,I
,− I (−2)

cL,I
, · · ·

)
vh,hI

)
= u′

is a singular vector in VW (2,2)(cL, cW , h, hW )h+p .

(iii) If hI
cL,I
− 1 = −p ∈ −Z>0 then Ψ (u′) = 0.

(iv) Let hI
cL,I
− 1 = −p ∈ −Z>0 and let u be a subsingular

vector in VW (2,2) (cL, cW , hpq , hW )h+pq . Then Ψ (u) is a
singular vector in VH(cL, 0, cL,I , h, (1− p)cL,I ).
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The End

T H A N K Y O U !

...if you’re still awake... :)



The twisted
Heisenberg-
Virasoro
algebra

Structure of Verma
modules

Intermediate series

Tensor product

Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors

Fusion rules and
tensor product
modules

Irreducibility of a
tensor product
Using Ω

Using Λ

More fusion rules

Free-field
realization of
W(2,2)

The End

T H A N K Y O U !

...if you’re still awake... :)


	Abstract
	Introduction
	Algebra W( 2,2) 
	Algebra W( 2,2) 
	Structure of Verma modules
	(Sub)singular vectors
	W-degree
	Submodules and singular vectors
	Quotient module L'
	Necessary condition
	Conjecture

	Tensor product of weight modules
	Intermediate series
	Tensor product modules
	Irreducibility
	Highest weight (0,0)

	VOA W(2,2) and intertwining operators

	The twisted Heisenberg-Virasoro algebra
	The twisted Heisenberg-Virasoro algebra
	Structure of Verma modules
	Intermediate series
	Tensor product
	Free-field realization
	Heisenberg-Virasoro vertex operator algebra
	Singular vectors

	Fusion rules and tensor product modules
	Irreducibility of a tensor product
	Using 
	Using 
	More fusion rules

	Free-field realization of W(2,2)


