Application of VOA to representation theory of $W(2,2)$-algebra and the twisted Heisenberg-Virasoro algebra

Gordan Radobolja

Faculty of Natural science and Mathematics, University of Split, Croatia

Dec 2014

Overview

1. G. R. "Application of vertex algebras to the structure theory of certain representations over Virasoro algebra", Algebras and Represent. Theory 16 (2013)
2. G. R. "Subsingular vectors in Verma modules, and tensor product of weight modules over the twisted Heisenberg-Virasoro algebra and $W(2,2)$ algebra", Journal of Mathematical Physics 54 (2013)
3. D. Adamović, G. R. "Free fields realization of the twisted Heisenberg-Virasoro algebra at level zero and its applications" to appear

Overview

- Lie algebra $W(2,2)$. First introduced by W. Zhang and C. Dong in W-algebra $W(2,2)$ and the vertex operator algebra $L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{1}{2}, 0\right)$, Commun. Math. Phys. 285 (2009) as a part of classification of simple VOAs generated by two weight two vectors.

Overview

- Lie algebra $W(2,2)$. First introduced by W. Zhang and C. Dong in W-algebra $W(2,2)$ and the vertex operator algebra $L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{1}{2}, 0\right)$, Commun. Math. Phys. 285 (2009) as a part of classification of simple VOAs generated by two weight two vectors.
- Structure od Verma modules and irreducible highest weight modules

Overview

- Lie algebra $W(2,2)$. First introduced by W. Zhang and C. Dong in W-algebra $W(2,2)$ and the vertex operator algebra $L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{1}{2}, 0\right)$, Commun. Math. Phys. 285 (2009) as a part of classification of simple VOAs generated by two weight two vectors.
- Structure od Verma modules and irreducible highest weight modules
- Irreducibility and structure of $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$.

Overview

- Lie algebra $W(2,2)$. First introduced by W. Zhang and C. Dong in W-algebra $W(2,2)$ and the vertex operator algebra $L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{1}{2}, 0\right)$, Commun. Math. Phys. 285 (2009) as a part of classification of simple VOAs generated by two weight two vectors.
- Structure od Verma modules and irreducible highest weight modules
- Irreducibility and structure of $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$.
- VOA, intertwining operators and tensor product modules

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}. We study representations at level zero, important in rep. theory of toroidal Lie algebras. Developed by Y. Billig in Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canadian Math. Bulletin, 46 (2003)

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}. We study representations at level zero, important in rep. theory of toroidal Lie algebras. Developed by Y. Billig in Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canadian Math. Bulletin, 46 (2003)
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}. We study representations at level zero, important in rep. theory of toroidal Lie algebras. Developed by Y. Billig in Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canadian Math. Bulletin, 46 (2003)
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
- Free-field realization of \mathcal{H}.

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}. We study representations at level zero, important in rep. theory of toroidal Lie algebras. Developed by Y. Billig in Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canadian Math. Bulletin, 46 (2003)
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
- Free-field realization of \mathcal{H}.
- Explicit formulas for singular vectors. Some intertwining operators.

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}. We study representations at level zero, important in rep. theory of toroidal Lie algebras. Developed by Y. Billig in Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canadian Math. Bulletin, 46 (2003)
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
- Free-field realization of \mathcal{H}.
- Explicit formulas for singular vectors. Some intertwining operators.
- Irreduciblity of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ solved. Fusion rules.

Overview

- The twisted Heisenberg-Virasoro Lie algebra \mathcal{H}. We study representations at level zero, important in rep. theory of toroidal Lie algebras. Developed by Y. Billig in Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canadian Math. Bulletin, 46 (2003)
- Irreducibiliy problem of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
- Free-field realization of \mathcal{H}.
- Explicit formulas for singular vectors. Some intertwining operators.
- Irreduciblity of $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ solved. Fusion rules.
- $W(2,2)$-structure on \mathcal{H}-modules.

Algebra $W(2,2)$

Algebra $\mathcal{L}=W(2,2)$ is a complex Lie algebra with a basis $\left\{L_{n}, W_{n}, C_{L}, C_{W}: n \in \mathbb{Z}\right\}$ and a Lie bracket

$$
\begin{gathered}
{\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} C_{L}} \\
{\left[L_{n}, W_{m}\right]=(n-m) W_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} C_{W}} \\
{\left[W_{n}, W_{m}\right]=\left[\mathcal{L}, C_{L}\right]=\left[\mathcal{L}, C_{W}\right]=0}
\end{gathered}
$$

(Sub)singular vectors

Algebra $W(2,2)$

Algebra $\mathcal{L}=W(2,2)$ is a complex Lie algebra with a basis $\left\{L_{n}, W_{n}, C_{L}, C_{W}: n \in \mathbb{Z}\right\}$ and a Lie bracket

$$
\begin{gathered}
{\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} C_{L}} \\
{\left[L_{n}, W_{m}\right]=(n-m) W_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} C_{W}} \\
{\left[W_{n}, W_{m}\right]=\left[\mathcal{L}, C_{L}\right]=\left[\mathcal{L}, C_{W}\right]=0}
\end{gathered}
$$

(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators
$\left\{L_{n}, C_{L},: n \in \mathbb{Z}\right\}$ spans a copy of the Virasoro algebra.

Algebra $W(2,2)$

Algebra $\mathcal{L}=W(2,2)$ is a complex Lie algebra with a basis $\left\{L_{n}, W_{n}, C_{L}, C_{W}: n \in \mathbb{Z}\right\}$ and a Lie bracket

$$
\begin{gathered}
{\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} C_{L}} \\
{\left[L_{n}, W_{m}\right]=(n-m) W_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} C_{W}} \\
{\left[W_{n}, W_{m}\right]=\left[\mathcal{L}, C_{L}\right]=\left[\mathcal{L}, C_{W}\right]=0}
\end{gathered}
$$

(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators
$\left\{L_{n}, C_{L},: n \in \mathbb{Z}\right\}$ spans a copy of the Virasoro algebra.
$\left\{W_{n}: n \in \mathbb{Z}\right\}$ spans a Virasoro module $V_{1,-1}^{\prime}$.

Algebra $W(2,2)$

Triangular decomposition:

$$
\mathcal{L}=\mathcal{L}_{-} \oplus \mathcal{L}_{0} \oplus \mathcal{L}_{+}
$$

where

$$
\begin{gathered}
\mathcal{L}_{+}=\bigoplus_{n>0}\left(\mathbb{C} L_{n}+\mathbb{C} W_{n}\right), \\
\mathcal{L}_{-}=\bigoplus_{n>0}\left(\mathbb{C} L_{-n}+\mathbb{C} W_{-n}\right), \\
\mathcal{L}_{0}=\operatorname{span}\left\{L_{0}, W_{0}, C_{L}, C_{W}\right\}
\end{gathered}
$$

(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

The Verma module

$V\left(c_{L}, c_{W}, h, h_{W}\right)$ - the Verma module with highest weight (h, h_{W}) and central charge (c_{L}, c_{W})

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

The Verma module

$V\left(c_{L}, c_{W}, h, h_{W}\right)$ - the Verma module with highest weight (h, h_{W}) and central charge (c_{L}, c_{W})
$v \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ - the highest weight vector, i.e.,

$$
\begin{aligned}
& L_{0} v=h v, \quad W_{0} v=h_{W} v, \\
& C_{L} v=c_{L} v, \quad C_{W} v=c_{W} v, \quad \mathcal{L}_{+} v=0 .
\end{aligned}
$$ modules

(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

The Verma module

$V\left(c_{L}, c_{W}, h, h_{W}\right)$ - the Verma module with highest weight (h, h_{W}) and central charge (c_{L}, c_{W})
$v \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ - the highest weight vector, i.e.,

$$
\begin{aligned}
& L_{0} v=h v, \quad W_{0} v=h_{W} v, \\
& C_{L} v=c_{L} v, \quad C_{W} v=c_{W} v, \quad \mathcal{L}_{+} v=0 .
\end{aligned}
$$

However, W_{0} does not act semisimply on rest of the module

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

The Verma module

$V\left(c_{L}, c_{W}, h, h_{W}\right)$ - the Verma module with highest weight (h, h_{W}) and central charge (c_{L}, c_{W})
$v \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ - the highest weight vector, i.e.,

$$
\begin{aligned}
& L_{0} v=h v, \quad W_{0} v=h_{W} v, \\
& C_{L} v=c_{L} v, \quad C_{W} v=c_{W} v, \quad \mathcal{L}_{+} v=0 .
\end{aligned}
$$

However, W_{0} does not act semisimply on rest of the module (unlike I_{0} in the twisted Heisenberg-Virasoro algebra).

The Verma module

- PBW basis

$$
\begin{gathered}
\left\{W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v:\right. \\
\left.m_{s} \geq \cdots \geq m_{1} \geq 1, n_{t} \geq \cdots \geq n_{1} \geq 1\right\}
\end{gathered}
$$

Structure of Verma modules
(Sub) singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

The Verma module

- PBW basis

$$
\begin{gathered}
\left\{W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v:\right. \\
\left.m_{s} \geq \cdots \geq m_{1} \geq 1, n_{t} \geq \cdots \geq n_{1} \geq 1\right\}
\end{gathered}
$$

- $V\left(c_{L}, c_{W}, h, h_{W}\right)=\bigoplus_{n \geq 0} V\left(c_{L}, c_{W}, h, h_{W}\right)_{h+n}$

Structure of Verma modules
(Sub) singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

The Verma module

- PBW basis

$$
\begin{gathered}
\left\{W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v:\right. \\
\left.m_{s} \geq \cdots \geq m_{1} \geq 1, n_{t} \geq \cdots \geq n_{1} \geq 1\right\}
\end{gathered}
$$

- $V\left(c_{L}, c_{W}, h, h_{W}\right)=\bigoplus_{n \geq 0} V\left(c_{L}, c_{W}, h, h_{W}\right)_{h+n}$

Tensor product of

- $\operatorname{dim} V\left(c_{L}, c_{W}, h, h_{W}\right)_{h+n}=P_{2}(n)=$ $\sum_{i=0}^{n} P(n-i) P(i)$, where P is a partition function, with $P(0)=1$

The Verma module

- $J\left(c_{L}, c_{W}, h, h_{W}\right)$ - unique maximal submodule in $V\left(c_{L}, c_{W}, h, h_{W}\right)$

Structure of Verma modules
(Sub)singular vectors
W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

The Verma module

- $J\left(c_{L}, c_{W}, h, h_{W}\right)$ - unique maximal submodule in $V\left(c_{L}, c_{W}, h, h_{W}\right)$
- $L\left(c_{L}, c_{W}, h, h_{W}\right)=$ $V\left(c_{L}, c_{W}, h, h_{W}\right) / J\left(c_{L}, c_{W}, h, h_{W}\right)$ - the unique irreducible highest weight module

Structure of Verma modules
(Sub) singular vectors
W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

The Verma module

- $J\left(c_{L}, c_{W}, h, h_{W}\right)$ - unique maximal submodule in $V\left(c_{L}, c_{W}, h, h_{W}\right)$
- $L\left(c_{L}, c_{W}, h, h_{W}\right)=$ $V\left(c_{L}, c_{W}, h, h_{W}\right) / J\left(c_{L}, c_{W}, h, h_{W}\right)$ - the unique irreducible highest weight module

Theorem (Zhang-Dong)
Verma module $V\left(c_{L}, c_{W}, h, h_{W}\right)$ is irreducible if and only if $h_{W} \neq \frac{1-m^{2}}{24} c_{W}$ for any $m \in \mathbb{N}$.

(Sub)singular vectors

- $x \in V\left(c_{L}, c_{W}, h, h_{W}\right)_{h+n}$ is called a singular vector if $\mathcal{L}_{+} x=0$

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

(Sub)singular vectors

- $x \in V\left(c_{L}, c_{W}, h, h_{W}\right)_{h+n}$ is called a singular vector if $\mathcal{L}_{+} x=0$
- singular vectors generate submodules in
$V\left(c_{L}, c_{W}, h, h_{W}\right)$
(Sub)singular vectors

Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

(Sub)singular vectors

- $x \in V\left(c_{L}, c_{W}, h, h_{W}\right)_{h+n}$ is called a singular vector if $\mathcal{L}_{+} x=0$
- singular vectors generate submodules in $V\left(c_{L}, c_{W}, h, h_{W}\right)$
- nontrivial submodules in $V\left(c_{L}, c_{W}, h, h_{W}\right)$ contain singular vectors

(Sub)singular vectors

- $x \in V\left(c_{L}, c_{W}, h, h_{W}\right)_{h+n}$ is called a singular vector if $\mathcal{L}_{+} x=0$
- singular vectors generate submodules in $V\left(c_{L}, c_{W}, h, h_{W}\right)$
- nontrivial submodules in $V\left(c_{L}, c_{W}, h, h_{W}\right)$ contain singular vectors
- $y \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ is called a subsingular vector if y is a singular vector in some quotient $V\left(c_{L}, c_{W}, h, h_{W}\right) / U$ i.e. if $\mathcal{L}_{+} y \in U$ for a submodule $U \subset V\left(c_{L}, c_{W}, h, h_{W}\right)$

W-degree

W-degree on \mathcal{L}_{-}

$$
\operatorname{deg}_{W} L_{-n}=0, \quad \operatorname{deg}_{W} W_{-n}=1
$$

Structure of Verma modules
(Sub)singular vectors
W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

W-degree

W-degree on \mathcal{L}_{-}

$$
\operatorname{deg}_{W} L_{-n}=0, \quad \operatorname{deg}_{W} W_{-n}=1
$$

induces \mathbb{Z}-grading on $U(\mathcal{L})$ and on $V\left(c_{L}, c_{W}, h, h_{W}\right)$ (in a standard PBW basis)

$$
\operatorname{deg}_{W} W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v=s
$$

Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

W-degree

W-degree on \mathcal{L}_{-}

$$
\operatorname{deg}_{W} L_{-n}=0, \quad \operatorname{deg}_{W} W_{-n}=1
$$

induces \mathbb{Z}-grading on $U(\mathcal{L})$ and on $V\left(c_{L}, c_{W}, h, h_{W}\right)$ (in a standard PBW basis)

$$
\operatorname{deg}_{W} W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v=s
$$

\bar{x} denotes the lowest nonzero homogeneous component of $x \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ (with respect to W-degree)

Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

W-degree

W-degree on \mathcal{L}_{-}

$$
\operatorname{deg}_{W} L_{-n}=0, \quad \operatorname{deg}_{W} W_{-n}=1
$$

induces \mathbb{Z}-grading on $U(\mathcal{L})$ and on $V\left(c_{L}, c_{W}, h, h_{W}\right)$ (in a standard PBW basis)

$$
\operatorname{deg}_{W} W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v=s
$$

\bar{x} denotes the lowest nonzero homogeneous component of $x \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ (with respect to W-degree)

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

$$
\begin{gathered}
\mathcal{W}=\mathbb{C}\left[\mathcal{W}_{-1}, W_{-2}, \ldots\right] v \\
\mathcal{W}_{h+n}=\mathcal{W} \cap V\left(c_{L}, c_{W}, h, h_{W}\right)_{h+n}
\end{gathered}
$$

W-degree

Lemma (Jiang-Pei (Y. Billig))
Let $0 \neq x \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ and $\operatorname{deg}_{W} \bar{x}=k$.
(a) If $\bar{x} \notin \mathcal{W}$ and $n \in \mathbb{N}$ is the smallest, such that L_{-n} occurs as a factor in one of the terms in \bar{x}, then the part of $W_{n} x$ of the W-degree k is given by

$$
n\left(2 h_{W}+\frac{n^{2}-1}{12} c_{W}\right) \frac{\partial \bar{x}}{\partial L_{-n}}
$$

Tensor product of

W-degree

Lemma (Jiang-Pei (Y. Billig))

Let $0 \neq x \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ and $\operatorname{deg}_{W} \bar{x}=k$.
(a) If $\bar{x} \notin \mathcal{W}$ and $n \in \mathbb{N}$ is the smallest, such that L_{-n} occurs as a factor in one of the terms in \bar{x}, then the part of $W_{n} x$ of the W-degree k is given by

$$
n\left(2 h_{W}+\frac{n^{2}-1}{12} c_{W}\right) \frac{\partial \bar{x}}{\partial L_{-n}}
$$

(b) If $\bar{x} \in \mathcal{W}, \bar{x} \notin \mathbb{C} v$ and $m \in \mathbb{N}$ is maximal, such that W_{-m} occurs as a factor in one of the terms of \bar{x}, then the part of $L_{m} x$ of the W-degree $k-1$ is given by

$$
m\left(2 h_{W}+\frac{m^{2}-1}{12} c_{W}\right) \frac{\partial \bar{x}}{\partial W_{-m}}
$$

Singular vectors

From now on we assume that $h_{W}=\frac{1-p^{2}}{24} c_{W}$ for $p \in \mathbb{N}$.

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Singular vectors

From now on we assume that $h_{W}=\frac{1-p^{2}}{24} c_{W}$ for $p \in \mathbb{N}$.

Lemma (Jiang-Pei (Y. Billig))
There is a singular vector $x \in V\left(c_{L}, c_{W}, h, h_{W}\right)_{h+p}$ such that $\bar{x}=W_{-p} v$ or $\bar{x}=L_{-p} v$.
(Sub)singular vectors

Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Singular vectors

From now on we assume that $h_{W}=\frac{1-p^{2}}{24} c_{W}$ for $p \in \mathbb{N}$.

Lemma (Jiang-Pei (Y. Billig))

There is a singular vector $x \in V\left(c_{L}, c_{W}, h, h_{W}\right)_{h+p}$ such that $\bar{x}=W_{-p} v$ or $\bar{x}=L_{-p} v$.

Theorem

Let $h_{W}=\frac{1-p^{2}}{24} c_{W}, p \in \mathbb{N}$. Then there is a singular vector $u^{\prime} \in \mathcal{W}_{h+p}$, such that $\overline{u^{\prime}}=W_{-p} v$. Moreover, $U(\mathcal{L}) u^{\prime}$ is isomorphic to Verma module $V\left(c_{L}, c_{W}, h+p, h_{W}\right)$.

Examples of singular vectors

module

$$
\begin{array}{cc}
V\left(c_{L}, c_{W}, h, 0\right) & W_{-1} v \\
V\left(c_{L}, c_{W}, h,-\frac{c_{W}}{8}\right) & \left(W_{-2}+\frac{6}{c_{W}} W_{-1}^{2}\right) v \\
V\left(c_{L}, c_{W}, h,-\frac{c_{W}}{3}\right) & \left(W_{-3}+\frac{6}{c_{W}} W_{-2} W_{-1}+\frac{9}{c_{W}^{2}} W_{-1}^{3}\right) v \\
V\left(c_{L}, c_{W}, h,-\frac{5 c_{W}}{8}\right) & \left(W_{-4}+\frac{4}{c_{W}} W_{-3} W_{-1}+\frac{2}{3 c_{W}} W_{-2}^{2}+\right. \\
& \left.+\frac{10}{c_{W}^{2}} W_{-2} W_{-1}^{2}+\frac{15}{4 c_{W}^{2}} W_{-1}^{4}\right) v
\end{array}
$$

(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)
$\operatorname{VOA} W(2,2)$ and

Characters

From now on, u^{\prime} denotes the singular vector from previous theorem.

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Characters

From now on, u^{\prime} denotes the singular vector from previous theorem.

$$
\begin{aligned}
& J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right):=U(\mathcal{L}) u^{\prime} \\
& L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=V\left(c_{L}, c_{W}, h, h_{W}\right) / J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)
\end{aligned}
$$

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

Characters

From now on, u^{\prime} denotes the singular vector from previous theorem.

$$
\begin{aligned}
& J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right):=U(\mathcal{L}) u^{\prime} \\
& L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=V\left(c_{L}, c_{W}, h, h_{W}\right) / J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)
\end{aligned}
$$

Since

$$
\operatorname{char} V\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h} \sum_{n \geq 0} P_{2}(n) q^{n}
$$

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

Characters

From now on, u^{\prime} denotes the singular vector from previous theorem.

$$
\begin{aligned}
& J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right):=U(\mathcal{L}) u^{\prime} \\
& L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=V\left(c_{L}, c_{W}, h, h_{W}\right) / J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)
\end{aligned}
$$

Since

$$
\operatorname{char} V\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h} \sum_{n \geq 0} P_{2}(n) q^{n}
$$

the theorem yields

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
$\operatorname{char} J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h+p} \sum_{n \geq 0} P_{2}(n) q^{n}$, $\operatorname{char} L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=\operatorname{char} V-\operatorname{char} J^{\prime}=$

$$
=q^{h}\left(1-q^{p}\right) \sum_{n \geq 0} P_{2}(n) q^{n} .
$$

Reducibility of a quotient module

Is $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ irreducible?

Structure of Verma modules
(Sub) singular vectors W-degree
Submodules and singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Reducibility of a quotient module

Is $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ irreducible?

Example

i) $L_{-1} v$ is a singular vector in
$L^{\prime}\left(c_{L}, c_{W}, 0,0\right)=V\left(c_{L}, c_{W}, 0,0\right) / U(\mathcal{L}) W_{-1}$.

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Reducibility of a quotient module

Is $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ irreducible?

Example

i) $L_{-1} v$ is a singular vector in $L^{\prime}\left(c_{L}, c_{W}, 0,0\right)=V\left(c_{L}, c_{W}, 0,0\right) / U(\mathcal{L}) W_{-1}$.
ii) $\left(L_{-2}+\frac{12}{c_{W}} W_{-1} L_{-1}-\frac{6\left(14+c_{L}\right)}{c_{W}} W_{-1}^{2}\right) v$ is a singular vector in $L^{\prime}\left(c_{L}, c_{W}, \frac{18-c_{L}}{8},-\frac{c_{W}}{8}\right)=$
$V\left(c_{L}, c_{W}, \frac{18-c_{L}}{8},-\frac{c_{W}}{8}\right) / U(\mathcal{L})\left(W_{-2}+\frac{6}{c_{W}} W_{-1}^{2}\right) v$.

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

Reducibility of a quotient module

Is $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ irreducible?

Example

i) $L_{-1} v$ is a singular vector in $L^{\prime}\left(c_{L}, c_{W}, 0,0\right)=V\left(c_{L}, c_{W}, 0,0\right) / U(\mathcal{L}) W_{-1}$.
ii) $\left(L_{-2}+\frac{12}{c_{W}} W_{-1} L_{-1}-\frac{6\left(14+c_{L}\right)}{c_{W}} W_{-1}^{2}\right) v$ is a singular vector in $L^{\prime}\left(c_{L}, c_{W}, \frac{18-c_{L}}{8},-\frac{c_{W}}{8}\right)=$
$V\left(c_{L}, c_{W}, \frac{18-c_{L}}{8},-\frac{c_{W}}{8}\right) / U(\mathcal{L})\left(W_{-2}+\frac{6}{c_{W}} W_{-1}^{2}\right) v$.
iii) $\left(L_{-1}^{2}+\frac{6}{c_{W}} W_{-2}\right) v$ is a singular vector in
$L^{\prime}\left(c_{L}, c_{W},-\frac{1}{2}, 0\right)=V\left(c_{L}, c_{W},-\frac{1}{2}, 0\right) / U(\mathcal{L}) W_{-1} v$.

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Reducibility of a quotient module

Is $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ irreducible?

Example

i) $L_{-1} v$ is a singular vector in $L^{\prime}\left(c_{L}, c_{W}, 0,0\right)=V\left(c_{L}, c_{W}, 0,0\right) / U(\mathcal{L}) W_{-1}$.
ii) $\left(L_{-2}+\frac{12}{c_{W}} W_{-1} L_{-1}-\frac{6\left(14+c_{L}\right)}{c_{W}} W_{-1}^{2}\right) v$ is a singular vector in $L^{\prime}\left(c_{L}, c_{W}, \frac{18-c_{L}}{8},-\frac{c_{W}}{8}\right)=$
$V\left(c_{L}, c_{W}, \frac{18-c_{L}}{8},-\frac{c_{W}}{8}\right) / U(\mathcal{L})\left(W_{-2}+\frac{6}{c_{W}} W_{-1}^{2}\right) v$.
iii) $\left(L_{-1}^{2}+\frac{6}{c_{W}} W_{-2}\right) v$ is a singular vector in
$L^{\prime}\left(c_{L}, c_{W},-\frac{1}{2}, 0\right)=V\left(c_{L}, c_{W},-\frac{1}{2}, 0\right) / U(\mathcal{L}) W_{-1} v$.
Problem
What is the structure of $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$?

Structure of a quotient module L'

Lemma (Jiang, Pei (Y. Billig)) Let $0 \neq x \in J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$. Then there exist terms in \bar{x}, containing factor W_{-p}.

Tensor product of

Structure of a quotient module L'

 Lemma (Jiang, Pei (Y. Billig)) Let $0 \neq x \in J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$. Then there exist terms in \bar{x}, containing factor W_{-p}.
Proposition

The set of all PBW vectors $W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v$ modulo $J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ with $m_{i} \neq p$ forms a basis for $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$.

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Structure of a quotient module L'

 Lemma (Jiang, Pei (Y. Billig)) Let $0 \neq x \in J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$. Then there exist terms in \bar{x}, containing factor W_{-p}.
Proposition

The set of all PBW vectors $W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v$ modulo $J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ with $m_{i} \neq p$ forms a basis for $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$.

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and

Theorem
Assume that $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ is reducible. Then there is a singular vector $u \in L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ such that $\bar{u}=L_{-p}^{q} v$ for some $q \in \mathbb{N}$.

Necessary condition

Equating certain coefficients in relation $L_{p} u \in J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ we get the following result:

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L' Necessary condition Conjecture

Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Necessary condition

Equating certain coefficients in relation $L_{p} u \in J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ we get the following result:

Theorem (Necessary condition for the existence of a subsingular vector)
Let $h_{W}=\frac{1-p^{2}}{24} c_{W}$. If $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ contains a singular vector u such that $\bar{u}=L_{-p}^{q} v$, for some $q \in \mathbb{N}$, then

$$
h=\left(1-p^{2}\right) \frac{c_{L}-2}{24}+p(p-1)+\frac{(1-q) p}{2}=: h_{p, q} .
$$

Necessary condition

Equating certain coefficients in relation $L_{p} u \in J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ we get the following result:

Theorem (Necessary condition for the existence of a subsingular vector)
Let $h_{W}=\frac{1-p^{2}}{24} c_{W}$. If $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ contains a singular vector u such that $\bar{u}=L_{-p}^{q} v$, for some $q \in \mathbb{N}$, then

$$
h=\left(1-p^{2}\right) \frac{c_{L}-2}{24}+p(p-1)+\frac{(1-q) p}{2}=: h_{p, q} .
$$

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)
VOA W $(2,2)$ and
intertwining
operators

For a PBW monomial $x=W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v$ define L_{-p}-degree $\operatorname{deg}_{L_{-p}} x$ as a number of factors $L_{-n_{i}}=L_{-p}$.

Irreducibility of a quotient module

Theorem
Let $h_{W}=\frac{1-p^{2}}{24} c_{W}$. If $V\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right)$ contains a subsingular vector u such that $\bar{u}=L_{-p}^{q} v$, for some $q \in \mathbb{N}$, then

$$
J\left(c_{L}, c_{W}, h, h_{W}\right)=U\left(\mathcal{L}_{-}\right)\left\{u, u^{\prime}\right\}
$$

is the maximal submodule.
(Sub)singular vectors

W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

Irreducibility of a quotient module

Theorem
Let $h_{W}=\frac{1-p^{2}}{24} c_{W}$. If $V\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right)$ contains a subsingular vector u such that $\bar{u}=L_{-p}^{q} v$, for some $q \in \mathbb{N}$, then

$$
J\left(c_{L}, c_{W}, h, h_{W}\right)=U\left(\mathcal{L}_{-}\right)\left\{u, u^{\prime}\right\}
$$

is the maximal submodule. Module

$$
L\left(c_{L}, c_{W}, h, h_{W}\right)=V\left(c_{L}, c_{W}, h, h_{W}\right) / J\left(c_{L}, c_{W}, h, h_{W}\right)
$$

is irreducible

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Irreducibility of a quotient module
Theorem
Let $h_{W}=\frac{1-p^{2}}{24} c_{W}$. If $V\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right)$ contains a subsingular vector u such that $\bar{u}=L_{-p}^{q} v$, for some $q \in \mathbb{N}$, then

$$
J\left(c_{L}, c_{W}, h, h_{W}\right)=U\left(\mathcal{L}_{-}\right)\left\{u, u^{\prime}\right\}
$$

is the maximal submodule. Module

$$
L\left(c_{L}, c_{W}, h, h_{W}\right)=V\left(c_{L}, c_{W}, h, h_{W}\right) / J\left(c_{L}, c_{W}, h, h_{W}\right)
$$

is irreducible with a basis

$$
\left\{x=W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v: m_{j} \neq p, \operatorname{deg}_{L_{-p}} x<q\right\}
$$

Irreducibility of a quotient module

Theorem

Let $h_{W}=\frac{1-p^{2}}{24} c_{W}$. If $V\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right)$ contains a subsingular vector u such that $\bar{u}=L_{-p}^{q} v$, for some $q \in \mathbb{N}$, then

$$
J\left(c_{L}, c_{W}, h, h_{W}\right)=U\left(\mathcal{L}_{-}\right)\left\{u, u^{\prime}\right\}
$$

is the maximal submodule. Module

$$
L\left(c_{L}, c_{W}, h, h_{W}\right)=V\left(c_{L}, c_{W}, h, h_{W}\right) / J\left(c_{L}, c_{W}, h, h_{W}\right)
$$

is irreducible with a basis
$\left\{x=W_{-m_{s}} \cdots W_{-m_{1}} L_{-n_{t}} \cdots L_{-n_{1}} v: m_{j} \neq p, \operatorname{deg}_{L_{-p}} x<q\right\}$
and a character $\operatorname{char} L\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h}\left(1-q^{p}\right)\left(1-q^{q p}\right) \sum_{n \geq 0} P_{2}(n) q^{n}$.

Characters (subsingular case)

char $V\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h} \sum_{n \geq 0} P_{2}(n) q^{n}$

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors
W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Characters (subsingular case)

$$
\begin{gathered}
\operatorname{char} V\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h} \sum_{n \geq 0} P_{2}(n) q^{n} \\
\operatorname{char} J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h+p} \sum_{n \geq 0} P_{2}(n) q^{n}
\end{gathered}
$$

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Characters (subsingular case)

$$
\begin{gathered}
\text { char } V\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h} \sum_{n \geq 0} P_{2}(n) q^{n} \\
\text { char } J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h+p} \sum_{n \geq 0} P_{2}(n) q^{n} \\
\operatorname{char} L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h}\left(1-q^{p}\right) \sum_{n \geq 0} P_{2}(n) q^{n}
\end{gathered}
$$

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Characters (subsingular case)

char $V\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h} \sum_{n \geq 0} P_{2}(n) q^{n}$ char $J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h+p} \sum_{n \geq 0} P_{2}(n) q^{n}$ $\operatorname{char} L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h}\left(1-q^{p}\right) \sum_{n \geq 0} P_{2}(n) q^{n}$
char $J\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right)=q^{h+p}\left(1+q^{(q-1) p}-q^{q p}\right) \sum_{n \geq 0} P_{2}(n) q^{\prime}$

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Characters (subsingular case)

char $V\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h} \sum_{n \geq 0} P_{2}(n) q^{n}$ char $J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h+p} \sum_{n \geq 0} P_{2}(n) q^{n}$ char $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h}\left(1-q^{p}\right) \sum_{n \geq 0} P_{2}(n) q^{n}$
char $J\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right)=q^{h+p}\left(1+q^{(q-1) p}-q^{q p}\right) \sum_{n \geq 0} P_{2}(n) q^{\prime}$ $\operatorname{char} L\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right)=q^{h}\left(1-q^{p}\right)\left(1-q^{q p}\right) \sum_{n \geq 0} P_{2}(n) q^{n}$

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Characters (subsingular case)

char $V\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h} \sum_{n \geq 0} P_{2}(n) q^{n}$ char $J^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h+p} \sum_{n \geq 0} P_{2}(n) q^{n}$ char $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)=q^{h}\left(1-q^{p}\right) \sum_{n \geq 0} P_{2}(n) q^{n}$
char $J\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right)=q^{h+p}\left(1+q^{(q-1) p}-q^{q p}\right) \sum_{n \geq 0} P_{2}(n) q^{\prime}$ $\operatorname{char} L\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right)=q^{h}\left(1-q^{p}\right)\left(1-q^{q p}\right) \sum_{n \geq 0} P_{2}(n) q^{n}$
$\operatorname{char} J\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right) / J^{\prime}\left(c_{L}, c_{W}, h_{p, q}, h_{W}\right)=$

$$
=q^{h_{p, q}+p q}\left(1-q^{p}\right) \sum_{n \geq 0} P_{2}(n) q^{n}
$$

Conjecture

Conjecture

Suppose $h_{W}=\frac{1-p^{2}}{24} c_{W}$ for some $p \in \mathbb{N}$. Then
$L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ is reducible if and only if

$$
h=h_{p, q}=\left(1-p^{2}\right) \frac{c_{L}-2}{24}+p(p-1)+\frac{(1-q) p}{2} .
$$

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Conjecture

Conjecture

Suppose $h_{W}=\frac{1-p^{2}}{24} c_{W}$ for some $p \in \mathbb{N}$. Then $L^{\prime}\left(c_{L}, c_{W}, h, h_{W}\right)$ is reducible if and only if

$$
h=h_{p, q}=\left(1-p^{2}\right) \frac{c_{L}-2}{24}+p(p-1)+\frac{(1-q) p}{2} .
$$

Using determinant formula one can prove
Theorem
Module $L^{\prime}\left(c_{L}, c_{W}, \frac{1-q}{2}, 0\right)$ is reducible for every $q \in \mathbb{N}$, i.e. there is a subsingular vector $u \in V\left(c_{L}, c_{W}, \frac{1-q}{2}, 0\right)$ such that $\bar{u}=L_{-1}^{q}$.

Examples

Subsingular vectors u in $V\left(c_{L}, c_{W}, \frac{1-q}{2}, 0\right)$:

$V\left(c_{L}, c_{W}, 0,0\right)$	$L_{-1} v$
$V\left(c_{L}, c_{W},-\frac{1}{2}, 0\right)$	$\left(L_{-1}^{2}+\frac{6}{c_{W}} W_{-2}\right) v$
$V\left(c_{L}, c_{W},-1,0\right)$	$\left(L_{-1}^{3}+\frac{12}{c_{W}} W_{-3}+\frac{24}{c_{W}} W_{-2} L_{-1}\right) v$
$V\left(c_{L}, c_{W},-\frac{3}{2}, 0\right)$	$\left(L_{-1}^{4}+\frac{60}{c_{W}} W_{-2} L_{-1}^{2}+\frac{60}{c_{W}} W_{-3} L_{-1}+\right.$
	$\left.+\frac{36}{c_{W}} W_{-4}+\frac{324}{c_{W}^{2}} W_{-2}^{2}\right) v$
	$\left(\begin{array}{c}L_{-1}^{5}+\frac{120}{c_{W}} W_{-2} L_{-1}^{3}+\frac{180}{c_{W}} W_{-3} L_{-1}^{2}+ \\ V\left(c_{L}, c_{W},-2,0\right) \\ \\ \\ \\ \\ \\ \hline\end{array} \frac{+\frac{48}{c_{W}} W_{-4} L_{-1}+\frac{3312}{c_{W}^{2}} W_{-2}^{2} L_{-1}+}{c_{W}} W_{-5}+\frac{2304}{c_{W}^{2}} W_{-3} W_{-2}\right) v$

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and intertwining

Examples

Subsingular vectors u in $V\left(c_{L}, c_{W}, \frac{1-q}{2}, 0\right)$:

$V\left(c_{L}, c_{W}, 0,0\right)$	$L_{-1} v$
$V\left(c_{L}, c_{W},-\frac{1}{2}, 0\right)$	$\left(L_{-1}^{2}+\frac{6}{c_{W}} W_{-2}\right) v$
$V\left(c_{L}, c_{W},-1,0\right)$	$\left(L_{-1}^{3}+\frac{12}{c_{W}} W_{-3}+\frac{24}{c_{W}} W_{-2} L_{-1}\right) v$
$V\left(c_{L}, c_{W},-\frac{3}{2}, 0\right)$	$\left(L_{-1}^{4}+\frac{60}{c_{W}} W_{-2} L_{-1}^{2}+\frac{60}{c_{W}} W_{-3} L_{-1}+\right.$
	$\left.+\frac{36}{c_{W}} W_{-4}+\frac{324}{c_{W}^{2}} W_{-2}^{2}\right) v$
	$\left(L_{-1}^{5}+\frac{120}{c_{W}} W_{-2} L_{-1}^{3}+\frac{180}{c_{W}} W_{-3} L_{-1}^{2}+\right.$
$V\left(c_{L}, c_{W},-2,0\right)$	$+\frac{48}{c_{W}} W_{-4} L_{-1}+\frac{3312}{c_{W}^{2}} W_{-2}^{2} L_{-1}+$
	$\left.+\frac{144}{c_{W}} W_{-5}+\frac{2304}{c_{W}^{2}} W_{-3} W_{-2}\right) v$

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and intertwining

It can be shown that $u=\left(L_{-1}^{q}+\sum_{i=0}^{q-1} w_{i} L_{-1}^{i}\right) v$ for some $w_{i} \in \mathcal{W}$.

Intermediate series

For $\alpha, \beta \in \mathbb{C}$ take Vir-modules

$$
V_{\alpha, \beta}=\operatorname{span}_{\mathbb{C}}\left\{v_{n}: n \in \mathbb{Z}\right\}
$$

with

$$
\begin{aligned}
& L_{k} v_{n}=-(n+\alpha+\beta+k \beta) v_{n+k}, \\
& C_{L} v_{n}=0, \quad k, n \in \mathbb{Z} .
\end{aligned}
$$

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Intermediate series

For $\alpha, \beta \in \mathbb{C}$ take Vir-modules

$$
V_{\alpha, \beta}=\operatorname{span}_{\mathrm{C}}\left\{v_{n}: n \in \mathbb{Z}\right\}
$$

with

$$
\begin{aligned}
& L_{k} v_{n}=-(n+\alpha+\beta+k \beta) v_{n+k}, \\
& C_{L} v_{n}=0, \quad k, n \in \mathbb{Z} .
\end{aligned}
$$

Define \mathcal{L}-modules
Structure of Verma modules
(Sub) singular vectors
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

$$
\begin{aligned}
& V_{\alpha, \beta, 0}:=V_{\alpha, \beta} \quad \text { with } \\
& C_{W} v_{n}=W_{k} v_{n}=0, \quad k, n \in \mathbb{Z} .
\end{aligned}
$$

Intermediate series

$$
\begin{aligned}
& V_{\alpha, \beta, 0} \cong V_{\alpha+k, \beta, 0} \quad \text { for } \quad k \in \mathbb{Z} \\
& \Rightarrow \text { if } \alpha \in \mathbb{Z} \text { we may assume } \alpha=0
\end{aligned}
$$

Structure of Verma modules
(Sub)singular vectors
W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Intermediate series

$$
\begin{aligned}
& V_{\alpha, \beta, 0} \cong V_{\alpha+k, \beta, 0} \quad \text { for } \quad k \in \mathbb{Z} \\
& \Rightarrow \text { if } \alpha \in \mathbb{Z} \text { we may assume } \alpha=0
\end{aligned}
$$

$V_{\alpha, \beta, 0}$ is reducible if and only if $\alpha \in \mathbb{Z}$ and $\beta \in\{0,1\}$.

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Intermediate series

$$
\begin{aligned}
& V_{\alpha, \beta, 0} \cong V_{\alpha+k, \beta, 0} \quad \text { for } \quad k \in \mathbb{Z} \\
& \Rightarrow \text { if } \alpha \in \mathbb{Z} \text { we may assume } \alpha=0
\end{aligned}
$$

$V_{\alpha, \beta, 0}$ is reducible if and only if $\alpha \in \mathbb{Z}$ and $\beta \in\{0,1\}$. Define

$$
\begin{aligned}
& V_{0,0,0}^{\prime}:=V_{0,0,0} / \mathbb{C} v_{0} \\
& V_{0,1,0}^{\prime}:=\bigoplus_{m \neq-1} \mathbb{C} v_{m} \subseteq V_{0,1,0} \\
& V_{\alpha, \beta, 0}^{\prime}:=V_{\alpha, \beta, 0} \quad \text { otherwise }
\end{aligned}
$$

Intermediate series

$$
\begin{aligned}
& V_{\alpha, \beta, 0} \cong V_{\alpha+k, \beta, 0} \quad \text { for } \quad k \in \mathbb{Z} \\
& \Rightarrow \text { if } \alpha \in \mathbb{Z} \text { we may assume } \alpha=0
\end{aligned}
$$

$V_{\alpha, \beta, 0}$ is reducible if and only if $\alpha \in \mathbb{Z}$ and $\beta \in\{0,1\}$. Define

$$
\begin{aligned}
& V_{0,0,0}^{\prime}:=V_{0,0,0} / \mathbb{C} v_{0} \\
& V_{0,1,0}^{\prime}:=\bigoplus_{m \neq-1} \mathbb{C} v_{m} \subseteq V_{0,1,0} \\
& V_{\alpha, \beta, 0}^{\prime}:=V_{\alpha, \beta, 0} \quad \text { otherwise }
\end{aligned}
$$

$\left\{V_{\alpha, \beta, 0}^{\prime}: \alpha, \beta \in \mathbb{C}\right\}$ - all irreducible modules belonging to intermediate series.

Irreducible Harish-Chandra modules

Theorem (Liu, D., Zhu, L.)
An irreducible weight \mathcal{L}-module with finite-dimensional weight spaces is isomorphic either to a highest (or lowest) weight module, or to $V_{\alpha, \beta, 0}^{\prime}$ for some $\alpha, \beta \in \mathbb{C}$.

Tensor product of

Irreducible Harish-Chandra modules

Theorem (Liu, D., Zhu, L.)
An irreducible weight \mathcal{L}-module with finite-dimensional weight spaces is isomorphic either to a highest (or lowest) weight module, or to $V_{\alpha, \beta, 0}^{\prime}$ for some $\alpha, \beta \in \mathbb{C}$.

Tensor product of

What about modules with infinite-dimensional weight

Tensor product modules

$V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is \mathcal{L}-module:

$$
\begin{aligned}
L_{k}\left(v_{n} \otimes x\right) & =L_{k} v_{n} \otimes x+v_{n} \otimes L_{k} x, \\
W_{m}\left(v_{n} \otimes x\right) & =v_{n} \otimes W_{m} x, \\
C_{L}\left(v_{n} \otimes x\right) & =c_{L}\left(v_{n} \otimes x\right), \\
C_{W}\left(v_{n} \otimes x\right) & =c_{W}\left(v_{n} \otimes x\right) .
\end{aligned}
$$

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

Tensor product modules

$V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is \mathcal{L}-module:

$$
\begin{aligned}
L_{k}\left(v_{n} \otimes x\right) & =L_{k} v_{n} \otimes x+v_{n} \otimes L_{k} x, \\
W_{m}\left(v_{n} \otimes x\right) & =v_{n} \otimes W_{m} x, \\
C_{L}\left(v_{n} \otimes x\right) & =c_{L}\left(v_{n} \otimes x\right), \\
C_{W}\left(v_{n} \otimes x\right) & =c_{W}\left(v_{n} \otimes x\right) .
\end{aligned}
$$

All weight subspaces are infinite-dimensional:

$$
\begin{aligned}
& \left(V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)\right)_{h+m-\alpha-\beta}= \\
& =\bigoplus_{n \in \mathbb{Z}_{+}} \mathbb{C} v_{n-m} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)_{h+n}
\end{aligned}
$$

(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of
weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and

(Ir)reducibility of the tensor product modules

- $\left\{v_{n} \otimes v: n \in \mathbb{Z}\right\}$ generates $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors
W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

(Ir)reducibility of the tensor product modules

- $\left\{v_{n} \otimes v: n \in \mathbb{Z}\right\}$ generates $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$
- Set $U_{n}=U(\mathcal{L})\left(v_{n} \otimes v\right)$.

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors
W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

(Ir)reducibility of the tensor product modules

- $\left\{v_{n} \otimes v: n \in \mathbb{Z}\right\}$ generates $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$
- Set $U_{n}=U(\mathcal{L})\left(v_{n} \otimes v\right)$.

Theorem (Irreducibiliy criterion)
$V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is irreducible if and only if it is cyclic on every $v_{n} \otimes v$, i.e., if $U_{n}=U_{n+1}$ for $n \in \mathbb{Z}$.

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

(Ir)reducibility of the tensor product modules

- $\left\{v_{n} \otimes v: n \in \mathbb{Z}\right\}$ generates $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$
- Set $U_{n}=U(\mathcal{L})\left(v_{n} \otimes v\right)$.

Theorem (Irreducibiliy criterion)
$V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is irreducible if and only if it is cyclic on every $v_{n} \otimes v$, i.e., if $U_{n}=U_{n+1}$ for $n \in \mathbb{Z}$.

Theorem
Let $h \neq h_{p, q}$ for all q. Then module $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is reducible for any $\alpha, \beta \in \mathbb{C}$. Moreover:

$$
U_{n} \supsetneq U_{n+1}, \quad \forall n \in \mathbb{Z} .
$$

Irreducibility of the tensor product modules

Theorem

Let $h=h_{p, q}$ and let $u \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ be a subsingular vector such that $\bar{u}=L_{-p}^{q}$. If $\alpha+(1-p) \beta \notin \mathbb{Z}$ then module $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is irreducible.
modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Irreducibility of the tensor product modules

Theorem

Let $h=h_{p, q}$ and let $u \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ be a subsingular vector such that $\bar{u}=L_{-p}^{q}$. If $\alpha+(1-p) \beta \notin \mathbb{Z}$ then module $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is irreducible.

Proof.

[Sketch of proof] Using subsingular vector u we find $x \in U(\mathcal{L})$ such that

$$
x\left(v_{n} \otimes v\right)=
$$

$$
=\left(\prod_{j=0}^{q-1}(n-1+(q-j) p+\alpha+(1-p) \beta)\right) v_{n-1} \otimes v
$$

Irreducible submodules

Theorem

Let $h=h_{p, q}$, and let $u \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ be a subsingular vector such that $\bar{u}=L_{-p}^{q}$. If $\alpha+(1-p) \beta \in \mathbb{Z}$, module $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is reducible. There exists $k \in \mathbb{Z}$ such that U_{k} is irreducible.
(Sub)singular vectors

Irreducible submodules

Theorem

Let $h=h_{p, q}$, and let $u \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ be a subsingular vector such that $\bar{u}=L_{-p}^{q}$. If $\alpha+(1-p) \beta \in \mathbb{Z}$, module $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is reducible. There exists $k \in \mathbb{Z}$ such that U_{k} is irreducible.

$$
U_{-j p} \supsetneq U_{1-j p} \text { for } \quad 1 \leq j \leq q,
$$

(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Irreducible submodules

Theorem

Let $h=h_{p, q}$, and let $u \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ be a subsingular vector such that $\bar{u}=L_{-p}^{q}$. If $\alpha+(1-p) \beta \in \mathbb{Z}$, module $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is reducible. There exists $k \in \mathbb{Z}$ such that U_{k} is irreducible.

$$
\begin{gathered}
U_{-j p} \nsupseteq U_{1-j p} \text { for } 1 \leq j \leq q \\
V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)=U_{-q p}
\end{gathered}
$$

(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Irreducible submodules

Theorem

Let $h=h_{p, q}$, and let $u \in V\left(c_{L}, c_{W}, h, h_{W}\right)$ be a subsingular vector such that $\bar{u}=L_{-p}^{q}$. If $\alpha+(1-p) \beta \in \mathbb{Z}$, module $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)$ is reducible. There exists $k \in \mathbb{Z}$ such that U_{k} is irreducible.

$$
\begin{gathered}
U_{-j p} \nsupseteq U_{1-j p} \text { for } 1 \leq j \leq q \\
V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, h, h_{W}\right)=U_{-q p}
\end{gathered}
$$

(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators
U_{1-p} is irreducible.

Weight $(0,0)$

Corollary
(i) $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)$ is irreducible if and only if $\alpha \notin \mathbb{Z}$.

Structure of Verma modules
(Sub) singular vectors
W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Weight $(0,0)$

Corollary
(i) $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)$ is irreducible if and only if $\alpha \notin \mathbb{Z}$.
(ii) U_{0} is irreducible submodule in $V_{0, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)$.

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Weight $(0,0)$

Corollary
(i) $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)$ is irreducible if and only if $\alpha \notin \mathbb{Z}$.
(ii) U_{0} is irreducible submodule in $V_{0, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)$. If $1-\beta \neq \frac{1-q}{2}$ for $q \in \mathbb{N}$ then

$$
\left(V_{0, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)\right) / U_{0} \cong L\left(c_{L}, c_{W}, 1-\beta, 0\right)
$$

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Weight $(0,0)$

Corollary
(i) $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)$ is irreducible if and only if $\alpha \notin \mathbb{Z}$.
(ii) U_{0} is irreducible submodule in $V_{0, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)$. If $1-\beta \neq \frac{1-q}{2}$ for $q \in \mathbb{N}$ then

$$
\begin{aligned}
& \left(V_{0, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)\right) / U_{0} \cong L\left(c_{L}, c_{W}, 1-\beta, 0\right) \\
& \quad\left(V_{0,1,0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)\right) / U_{0} \cong L\left(c_{L}, c_{W}, 1,0\right)
\end{aligned}
$$

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Weight $(0,0)$

Corollary
(i) $V_{\alpha, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)$ is irreducible if and only if $\alpha \notin \mathbb{Z}$.
(ii) U_{0} is irreducible submodule in $V_{0, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)$. If $1-\beta \neq \frac{1-q}{2}$ for $q \in \mathbb{N}$ then

$$
\left(V_{0, \beta, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)\right) / U_{0} \cong L\left(c_{L}, c_{W}, 1-\beta, 0\right),
$$

$$
\left(V_{0,1,0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)\right) / U_{0} \cong L\left(c_{L}, c_{W}, 1,0\right) .
$$

$$
\text { If } q \in \mathbb{N} \backslash\{1\}
$$

$$
\left(V_{0, \frac{1+q}{2}, 0}^{\prime} \otimes L\left(c_{L}, c_{W}, 0,0\right)\right) / U_{0} \cong L^{\prime}\left(c_{L}, c_{W}, \frac{1-q}{2}, 0\right) .
$$

VOA

$L\left(c_{L}, c_{W}, 0,0\right)$ is the only quotient of $V\left(c_{L}, c_{W}, 0,0\right)$ with the structure of vertex operator algebra.

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

VOA

$L\left(c_{L}, c_{W}, 0,0\right)$ is the only quotient of $V\left(c_{L}, c_{W}, 0,0\right)$ with the structure of vertex operator algebra.
Theorem (Zhang-Dong)
Let $c_{L}, c_{W} \neq 0$. Then

1. There is a unique VOA structure on $L\left(c_{L}, c_{W}, 0,0\right)$ which we denote $L^{W}\left(c_{L}, c_{W}\right)$, with the vacuum vector v, and the Virasoro element $\omega=L_{-2} v . L^{W}\left(c_{L}, c_{W}\right)$ is generated with ω and $x=W_{-2} v$ and $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}, Y(x, z)=\sum_{n \in \mathbb{Z}} W_{n} z^{-n-2}$.

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

VOA

$L\left(c_{L}, c_{W}, 0,0\right)$ is the only quotient of $V\left(c_{L}, c_{W}, 0,0\right)$ with the structure of vertex operator algebra.

Theorem (Zhang-Dong)
Let $c_{L}, c_{W} \neq 0$. Then

1. There is a unique $V O A$ structure on $L\left(c_{L}, c_{W}, 0,0\right)$ which we denote $L^{W}\left(c_{L}, c_{W}\right)$, with the vacuum vector v, and the Virasoro element $\omega=L_{-2} v . L^{W}\left(c_{L}, c_{W}\right)$ is generated with ω and $x=W_{-2} v$ and $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}, Y(x, z)=\sum_{n \in \mathbb{Z}} W_{n} z^{-n-2}$.
2. Any quotient of $V\left(c_{L}, c_{W}, h, h_{W}\right)$ is an $L^{W}\left(c_{L}, c_{W}\right)$-module, and $\left\{L\left(c_{L}, c_{W}, h, h_{W}\right): h, h_{W} \in \mathbb{C}\right\}$ gives a complete list of irreducible $L^{W}\left(c_{L}, c_{W}\right)$-modules.

Intertwining operators

- $M\left(c_{L}, c_{W}, h, h_{W}\right)$ - any highest weight module

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L' Necessary condition Conjecture

Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight (0,0)
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Intertwining operators

- $M\left(c_{L}, c_{W}, h, h_{W}\right)$ - any highest weight module
- Suppose a nontrivial intertwining operator \mathcal{I} of type $\left(\begin{array}{c}M\left(c_{L}, c_{W}, h_{3} h_{W}^{\prime}\right) \\ \left(L\left(c_{L}, c_{W}, h_{1}, 0\right)\right. \\ M\left(c_{L}, c_{W}, h_{2}, h_{W}\right)\end{array}\right)$ exists

Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Intertwining operators

- $M\left(c_{L}, c_{W}, h, h_{W}\right)$ - any highest weight module
- Suppose a nontrivial intertwining operator \mathcal{I} of type $\left(\begin{array}{c}M\left(c_{L}, c_{W}, h_{3} h_{W}^{\prime}\right) \\ L\left(c_{L}, c_{W}, h_{1}, 0\right)\end{array} \quad M\left(c_{L}, c_{W}, h_{2}, h_{W}\right)\right)$ exists
- Let $h_{1} \neq 0$ and $v \in L\left(c_{L}, c_{W}, h_{1}, 0\right)$ the highest weight vector
(Sub)singular vectors
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

Intertwining operators

- $M\left(c_{L}, c_{W}, h, h_{W}\right)$ - any highest weight module
- Suppose a nontrivial intertwining operator \mathcal{I} of type $\left(\begin{array}{c}M\left(c_{L}, c_{W}, h_{3} h_{W}^{\prime}\right) \\ L\left(c_{L}, c_{W}, h_{1}, 0\right)\end{array} \quad M\left(c_{L}, c_{W}, h_{2}, h_{W}\right)\right)$ exists
- Let $h_{1} \neq 0$ and $v \in L\left(c_{L}, c_{W}, h_{1}, 0\right)$ the highest weight vector

Tensor product of

- Recall that $W_{0} v=W_{-1} v=0$

Intertwining operators

- $M\left(c_{L}, c_{W}, h, h_{W}\right)$ - any highest weight module
- Suppose a nontrivial intertwining operator \mathcal{I} of type $\left(\begin{array}{c}M\left(c_{L}, c_{W}, h_{3} h_{W}^{\prime}\right) \\ L\left(c_{L}, c_{W}, h_{1}, 0\right)\end{array} \quad M\left(c_{L}, c_{W}, h_{2}, h_{W}\right)\right)$ exists
- Let $h_{1} \neq 0$ and $v \in L\left(c_{L}, c_{W}, h_{1}, 0\right)$ the highest weight vector

Algebra $W(2,2)$
Structure of Verma modules
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

- Recall that $W_{0} v=W_{-1} v=0$
- $\mathcal{I}(v, z)=z^{-\alpha} \sum_{n \in \mathbb{Z}} v_{(n)} z^{-n-1}$ for $\alpha=h_{1}+h_{2}-h_{3}$

Intertwining operators

$$
\begin{aligned}
{\left[L_{m}, v_{(n)}\right] } & =\sum_{i \geq 0}\binom{m+1}{i}\left(L_{i-1} v\right)_{(m+n-i+1)}= \\
& =\left(L_{-1} v\right)_{(m+n+1)}+(m+1)\left(L_{0} v\right)_{(m+n)}= \\
& =-(\alpha+n+m+1) v_{(m+n)}+(m+1) h_{1} v_{(m+n)}= \\
& =-\left(n+\alpha+(1+m)\left(1-h_{1}\right)\right) v_{(m+n)}
\end{aligned}
$$

Algebra $W(2,2)$
Structure of Verma modules
(Sub) singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA $W(2,2)$ and
intertwining
operators

Intertwining operators

$$
\begin{aligned}
{\left[L_{m}, v_{(n)}\right] } & =\sum_{i \geq 0}\binom{m+1}{i}\left(L_{i-1} v\right)_{(m+n-i+1)}= \\
& =\left(L_{-1} v\right)_{(m+n+1)}+(m+1)\left(L_{0} v\right)_{(m+n)}= \\
& =-(\alpha+n+m+1) v_{(m+n)}+(m+1) h_{1} v_{(m+n)}= \\
& =-\left(n+\alpha+(1+m)\left(1-h_{1}\right)\right) v_{(m+n)}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[W_{m}, v_{(n)}\right] } & =\sum_{i \geq 0}\binom{m+1}{i}\left(W_{i-1} v\right)_{(m+n-i+1)}= \\
& =\left(W_{-1} v\right)_{(m+n+1)}+(m+1)\left(W_{0} v\right)_{(m+n)}=0
\end{aligned}
$$

(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators
so components $v_{(n)}$ span $V_{\alpha, 1-h_{1}, 0}^{\prime}$.

Intertwining operators and reducibility

We get a nontrivial \mathcal{L}-homomorphism

$$
\begin{gathered}
\Phi: V_{\alpha, 1-h_{1}, 0}^{\prime} \otimes M\left(c_{L}, c_{W}, h_{2}, h_{W}\right) \rightarrow M\left(c_{L}, c_{W}, h_{3}, h_{W}^{\prime}\right) \\
\Phi\left(v_{(n)} \otimes x\right)=v_{(n)} x .
\end{gathered}
$$

(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Intertwining operators and reducibility

We get a nontrivial \mathcal{L}-homomorphism

$$
\begin{gathered}
\Phi: V_{\alpha, 1-h_{1}, 0}^{\prime} \otimes M\left(c_{L}, c_{W}, h_{2}, h_{W}\right) \rightarrow M\left(c_{L}, c_{W}, h_{3}, h_{W}^{\prime}\right) \\
\Phi\left(v_{(n)} \otimes x\right)=v_{(n)} x .
\end{gathered}
$$

dimensions of weight spaces \Rightarrow $V_{\alpha, 1-h_{1}, 0}^{\prime} \otimes M\left(c_{L}, c_{W}, h_{2}, h_{W}\right)$ is reducible
(Sub)singular vectors W-degree
Submodules and singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
VOA W $(2,2)$ and
intertwining
operators

Intertwining operators and reducibility

$M\left(c_{L}, c_{W}, h, h_{W}\right)$ is $L^{W}\left(c_{L}, c_{W}\right)$-module \Rightarrow there exist intertwining operators of type $\left(\begin{array}{c}M\left(c_{L}, c_{W}, h, h_{W}\right) \\ L\left(c_{L}, c_{W}, 0,0\right)\end{array} \quad M\left(c_{L}, c_{W}, h, h_{W}\right).\right) ~$
(Sub) singular vectors

W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Intertwining operators and reducibility

$M\left(c_{L}, c_{W}, h, h_{W}\right)$ is $L^{W}\left(c_{L}, c_{W}\right)$-module \Rightarrow there exist
 and transposed operator $\left(\begin{array}{c}M\left(c_{L}, c_{W}, h_{h}, h_{W}\right) \\ M\left(c_{L}, c_{W}, h, h_{W}\right) \\ L\left(c_{L}, c_{W}, 0,0\right)\end{array}\right)$.
(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
Highest weight $(0,0)$
$\operatorname{VOA} W(2,2)$ and
intertwining
operators

Intertwining operators and reducibility
$M\left(c_{L}, c_{W}, h, h_{W}\right)$ is $L^{W}\left(c_{L}, c_{W}\right)$-module \Rightarrow there exist intertwining operators of type $\left(\begin{array}{c}M\left(c_{L}, c_{W}, h_{1}, h_{W}\right) \\ L\left(c_{L}, c_{W}, 0,0\right) \\ M\left(c_{L}, c_{W}, h, h_{W}\right)\end{array}\right)$
and transposed operator $\left(\begin{array}{c}M\left(c_{L}, c_{W}, h, h_{W}\right) \\ M\left(c_{L}, c_{W}, h, h_{W}\right) \\ L\left(c_{L}, c_{W}, 0,0\right)\end{array}\right)$. In particular, operators of type

$$
\left(\begin{array}{c}
L\left(c_{L}, c_{W}, h, 0\right) \\
L\left(c_{L}, c_{W}, h, 0\right)
\end{array} \quad L\left(c_{L}, c_{W}, 0,0\right)\right) ~
$$

and

$$
\left(\begin{array}{cc}
L^{\prime}\left(c_{L}, c_{W}, h, 0\right) \\
L^{\prime}\left(c_{L}, c_{W}, h, 0\right) & L\left(c_{L}, c_{W}, 0,0\right)
\end{array}\right)
$$

exist for all h.

Intertwining operators and reducibility

Since intertwining operators of types

$$
\left(\begin{array}{c}
L\left(c_{L}, c_{W}, 1-\beta, 0\right) \\
L\left(c_{L}, c_{W}, 1-\beta, 0\right) \\
L\left(c_{L}, c_{W}, 0,0\right)
\end{array}\right)
$$

Structure of Verma modules
(Sub)singular vectors
Submodules and
singular vectors
Quotient module L'
Necessary condition
and

$$
\left(\begin{array}{c}
L^{\prime}\left(c_{L}, c_{W}, \frac{1-q}{2}, 0\right) \\
L^{\prime}\left(c_{L}, c_{W}, \frac{1-q}{2}, 0\right) \\
L\left(c_{L}, c_{W}, 0,0\right)
\end{array}\right)
$$

Tensor product of weight modules
Intermediate series
Tensor product
modules
Irreducibility
exist,

Highest weight (0,0)
VOA $W(2,2)$ and
intertwining
operators

Intertwining operators and reducibility

Since intertwining operators of types

$$
\left(\begin{array}{c}
L\left(c_{L}, c_{W}, 1-\beta, 0\right) \\
L\left(c_{L}, c_{W}, 1-\beta, 0\right) \\
L\left(c_{L}, c_{W}, 0,0\right)
\end{array}\right)
$$

(Sub)singular vectors W-degree
Submodules and
singular vectors
Quotient module L'
Necessary condition
Conjecture
Tensor product of

$$
\left(\begin{array}{c}
L^{\prime}\left(c_{L}, c_{W}, \frac{1-q}{2}, 0\right) \\
L^{\prime}\left(c_{L}, c_{W}, \frac{1-q}{2}, 0\right) \\
L\left(c_{L}, c_{W}, 0,0\right)
\end{array}\right)
$$

exist, there are nontrivial \mathcal{L}-homomorphisms

$$
\begin{aligned}
V_{0, \beta, 0}^{\prime} \otimes L(c, 0,0) & \rightarrow L\left(c_{L}, c_{W}, 1-\beta, 0\right) \\
V_{0, \frac{1+q}{2}, 0}^{\prime} \otimes L(c, 0,0) & \rightarrow L^{\prime}\left(c_{L}, c_{W}, \frac{1-q}{2}, 0\right)
\end{aligned}
$$

The twisted Heisenberg-Virasoro algebra

Algebra \mathcal{H} is a complex Lie algebra with a basis $\left\{L_{n}, I_{n}, C_{L}, C_{I}, C_{L, I}: n \in \mathbb{Z}\right\}$ and a Lie bracket

$$
\begin{aligned}
& {\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} C_{L},} \\
& {\left[L_{n}, I_{m}\right]=-m I_{n+m}-\delta_{n,-m}\left(n^{2}+n\right) C_{L I},} \\
& {\left[I_{n}, I_{m}\right]=n \delta_{n,-m} C_{l},} \\
& {\left[\mathcal{H}, C_{L}\right]=\left[\mathcal{H}, C_{L I}\right]=\left[\mathcal{H}, C_{l}\right]=0 .}
\end{aligned}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The twisted Heisenberg-Virasoro algebra

Algebra \mathcal{H} is a complex Lie algebra with a basis $\left\{L_{n}, I_{n}, C_{L}, C_{I}, C_{L, I}: n \in \mathbb{Z}\right\}$ and a Lie bracket

$$
\begin{aligned}
& {\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} C_{L},} \\
& {\left[L_{n}, I_{m}\right]=-m I_{n+m}-\delta_{n,-m}\left(n^{2}+n\right) C_{L I},} \\
& {\left[I_{n}, I_{m}\right]=n \delta_{n,-m} C_{l},} \\
& {\left[\mathcal{H}, C_{L}\right]=\left[\mathcal{H}, C_{L I}\right]=\left[\mathcal{H}, C_{l}\right]=0 .}
\end{aligned}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
$\left\{L_{n}, C_{L},: n \in \mathbb{Z}\right\}$ spans a copy of the Virasoro algebra.

Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The twisted Heisenberg-Virasoro algebra

Algebra \mathcal{H} is a complex Lie algebra with a basis $\left\{L_{n}, I_{n}, C_{L}, C_{l}, C_{L, I}: n \in \mathbb{Z}\right\}$ and a Lie bracket

$$
\begin{aligned}
& {\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\delta_{n,-m} \frac{n^{3}-n}{12} C_{L}} \\
& {\left[L_{n}, I_{m}\right]=-m I_{n+m}-\delta_{n,-m}\left(n^{2}+n\right) C_{L I}} \\
& {\left[I_{n}, I_{m}\right]=n \delta_{n,-m} C_{l}} \\
& {\left[\mathcal{H}, C_{L}\right]=\left[\mathcal{H}, C_{L I}\right]=\left[\mathcal{H}, C_{l}\right]=0}
\end{aligned}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules
$\left\{L_{n}, C_{L},: n \in \mathbb{Z}\right\}$ spans a copy of the Virasoro algebra.
$\left\{I_{n}, C_{I}: n \in \mathbb{Z}\right\}$ spans a copy of the Heisenberg algebra.

Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

- $V\left(c_{L}, c_{l}, c_{L, l}, h, h_{l}\right)$ - the Verma module with highest weight $\left(h, h_{l}\right)$ and central charge ($\left.c_{L}, c_{l}, c_{L, l}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

- $V\left(c_{L}, c_{l}, c_{L, l}, h, h_{l}\right)$ - the Verma module with highest weight $\left(h, h_{l}\right)$ and central charge ($\left.c_{L}, c_{l}, c_{L, l}\right)$.
- We study the highest weight representation theory at level zero $\left(c_{l}=0\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

- $V\left(c_{L}, c_{l}, c_{L, l}, h, h_{l}\right)$ - the Verma module with highest weight $\left(h, h_{l}\right)$ and central charge ($\left.c_{L}, c_{l}, c_{L, l}\right)$.
- We study the highest weight representation theory at level zero $\left(c_{l}=0\right)$.
- Appears in the representation theory of toroidal Lie algebras.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

- $V\left(c_{L}, c_{l}, c_{L, l}, h, h_{l}\right)$ - the Verma module with highest weight (h, h_{l}) and central charge ($c_{L}, c_{l}, c_{L, l}$).
- We study the highest weight representation theory at level zero $\left(c_{l}=0\right)$.
- Appears in the representation theory of toroidal Lie algebras.
- Note that I_{0} acts semisimply on entire module.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

Theorem (Y. Billig)
Assume that $c_{I}=0$ and $c_{L I} \neq 0$.
(i) If $\frac{h_{I}}{c_{L I}} \notin \mathbb{Z}$ or $\frac{h_{I}}{c_{L I}}=1$, then the Verma module $V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$ is irreducible.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

Theorem (Y. Billig)

Assume that $c_{I}=0$ and $c_{L I} \neq 0$.
(i) If $\frac{h_{l}}{c_{L I}} \notin \mathbb{Z}$ or $\frac{h_{I}}{c_{L I}}=1$, then the Verma module $V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$ is irreducible.
(ii) If $\frac{h_{I}}{c_{L I}} \in \mathbb{Z} \backslash\{1\}$, then $V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$ has a singular vector u at level $p=\left|\frac{h_{1}}{c_{L I}}-1\right|$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Verma module

Theorem (Y. Billig)

Assume that $c_{I}=0$ and $c_{L I} \neq 0$.
(i) If $\frac{h_{I}}{c_{L I}} \notin \mathbb{Z}$ or $\frac{h_{I}}{c_{L I}}=1$, then the Verma module $V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$ is irreducible.
(ii) If $\frac{h_{I}}{c_{L I}} \in \mathbb{Z} \backslash\{1\}$, then $V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$ has a singular vector u at level $p=\left|\frac{h_{1}}{c_{L I}}-1\right|$.
The quotient module
$L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)=V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) / U(\mathcal{H}) u$ is irreducible and its character is

$$
\operatorname{char} L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)=q^{h}\left(1-q^{p}\right) \prod_{j \geq 1}\left(1-q^{j}\right)^{-2}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Singular vectors

- From now on we assume that $c_{l}=0$ and $c_{L I} \neq 0$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Singular vectors

- From now on we assume that $c_{l}=0$ and $c_{L I} \neq 0$.
- Define $\operatorname{deg}_{\boldsymbol{\prime}} x$ and \bar{x} as before.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Singular vectors

- From now on we assume that $c_{l}=0$ and $c_{L I} \neq 0$.
- Define $\operatorname{deg}_{\boldsymbol{\prime}} x$ and \bar{x} as before.
- $\mathcal{I}=\mathbb{C}\left[I_{-1}, I_{-2}, \ldots\right] v \in V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Singular vectors

- From now on we assume that $c_{l}=0$ and $c_{L I} \neq 0$.
- Define $\operatorname{deg}_{I} x$ and \bar{x} as before.
- $\mathcal{I}=\mathbb{C}\left[I_{-1}, I_{-2}, \ldots\right] v \in V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$.

Theorem (Y. Billig)
Assume that $p=\left|\frac{h_{I}}{c_{L I}}-1\right|$ and $u \in V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$ is a singular vector.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Singular vectors

- From now on we assume that $c_{l}=0$ and $c_{L I} \neq 0$.
- Define $\operatorname{deg}_{I} x$ and \bar{x} as before.
- $\mathcal{I}=\mathbb{C}\left[I_{-1}, I_{-2}, \ldots\right] v \in V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Theorem (Y. Billig)
Assume that $p=\left|\frac{h_{I}}{c_{L I}}-1\right|$ and $u \in V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$ is a singular vector.
(i) $U(\mathcal{H}) u \cong V\left(c_{L}, 0, c_{L, I}, h+p, h_{l}\right)$.

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Singular vectors

- From now on we assume that $c_{l}=0$ and $c_{L I} \neq 0$.
- Define $\operatorname{deg}_{I} x$ and \bar{x} as before.
- $\mathcal{I}=\mathbb{C}\left[I_{-1}, I_{-2}, \ldots\right] v \in V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product
(i) $U(\mathcal{H}) u \cong V\left(c_{L}, 0, c_{L, I}, h+p, h_{l}\right)$.
(ii) If $\frac{h_{I}}{c_{L I}}=1+p$, then $\bar{u}=I_{-p} v$ and $u \in \mathcal{I}$.

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Singular vectors

- From now on we assume that $c_{l}=0$ and $c_{L I} \neq 0$.
- Define $\operatorname{deg}_{\boldsymbol{\prime}} x$ and \bar{x} as before.
- $\mathcal{I}=\mathbb{C}\left[I_{-1}, I_{-2}, \ldots\right] v \in V\left(c_{L}, c_{L I}, 0, h, h_{L}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product
(i) $U(\mathcal{H}) u \cong V\left(c_{L}, 0, c_{L, I}, h+p, h_{l}\right)$.
(ii) If $\frac{h_{I}}{c_{L I}}=1+p$, then $\bar{u}=I_{-p} v$ and $u \in \mathcal{I}$.
(iii) If $\frac{h_{l}}{c_{L I}}=1-p$, then $\bar{u}=L_{-p}$.

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Intermediate series

Once again we define a \mathcal{H}-module structure on Virasoro intermediate series:

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Intermediate series

Once again we define a \mathcal{H}-module structure on Virasoro intermediate series:
Let $\alpha, \beta, F \in \mathbb{C}$ define $V_{\alpha, \beta, F}=\bigoplus_{n \in \mathbb{Z}} \mathbb{C} v_{n}$ with Lie bracket

$$
\begin{aligned}
L_{n} v_{m} & =-(m+\alpha+\beta+n \beta) v_{m+n} \\
I_{n} v_{m} & =F v_{m+n}, \\
C_{L} v_{m} & =C_{I} v_{m}=C_{L, I} v_{m}=0 .
\end{aligned}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Intermediate series

Once again we define a \mathcal{H}-module structure on Virasoro intermediate series:
Let $\alpha, \beta, F \in \mathbb{C}$ define $V_{\alpha, \beta, F}=\bigoplus_{n \in \mathbb{Z}} \mathbb{C} v_{n}$ with Lie bracket

$$
\begin{aligned}
L_{n} v_{m} & =-(m+\alpha+\beta+n \beta) v_{m+n} \\
I_{n} v_{m} & =F v_{m+n}, \\
C_{L} v_{m} & =C_{I} v_{m}=C_{L, I} v_{m}=0 .
\end{aligned}
$$

As usual,

- $V_{\alpha, \beta, F} \cong V_{\alpha+k, \beta, F}$ for $k \in \mathbb{Z}$,

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Intermediate series

Once again we define a \mathcal{H}-module structure on Virasoro intermediate series:
Let $\alpha, \beta, F \in \mathbb{C}$ define $V_{\alpha, \beta, F}=\bigoplus_{n \in \mathbb{Z}} \mathbb{C} v_{n}$ with Lie bracket

$$
\begin{aligned}
L_{n} v_{m} & =-(m+\alpha+\beta+n \beta) v_{m+n} \\
I_{n} v_{m} & =F v_{m+n} \\
C_{L} v_{m} & =C_{I} v_{m}=C_{L, I} v_{m}=0 .
\end{aligned}
$$

As usual,

- $V_{\alpha, \beta, F} \cong V_{\alpha+k, \beta, F}$ for $k \in \mathbb{Z}$,
- $V_{\alpha, \beta, F}$ is reducible if and only if $\alpha \in \mathbb{Z}$ and $\beta \in\{0,1\}$ and $F=0$,

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules

Intermediate series

Once again we define a \mathcal{H}-module structure on Virasoro intermediate series:
Let $\alpha, \beta, F \in \mathbb{C}$ define $V_{\alpha, \beta, F}=\underset{n \in \mathbb{Z}}{\bigoplus} \mathbb{C} v_{n}$ with Lie bracket

$$
\begin{aligned}
L_{n} v_{m} & =-(m+\alpha+\beta+n \beta) v_{m+n} \\
I_{n} v_{m} & =F v_{m+n} \\
C_{L} v_{m} & =C_{I} v_{m}=C_{L, I} v_{m}=0 .
\end{aligned}
$$

As usual,

- $V_{\alpha, \beta, F} \cong V_{\alpha+k, \beta, F}$ for $k \in \mathbb{Z}$,
- $V_{\alpha, \beta, F}$ is reducible if and only if $\alpha \in \mathbb{Z}$ and $\beta \in\{0,1\}$ and $F=0$,
- $V_{0,0,0}^{\prime}:=V / \mathbb{C} v_{0}, V_{0,1,0}^{\prime}:=\underset{n \neq-1}{\bigoplus} \mathbb{C} v_{n}$ and $V_{\alpha, \beta, F}^{\prime}:=V_{\alpha, \beta, F}$ otherwise.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Tensor product modules

Consider $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ module:

$$
\begin{aligned}
L_{k}\left(v_{n} \otimes x\right) & =L_{k} v_{n} \otimes x+v_{n} \otimes L_{k} x, \\
I_{m}\left(v_{n} \otimes x\right) & =F_{n} \otimes x+v_{n} \otimes I_{m} x, \\
C_{L}\left(v_{n} \otimes x\right) & =c_{L}\left(v_{n} \otimes x\right), \\
C_{l}\left(v_{n} \otimes x\right) & =0 \\
C_{L, I}\left(v_{n} \otimes x\right) & =c_{L, I}\left(v_{n} \otimes x\right) .
\end{aligned}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Tensor product modules

Consider $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ module:

$$
\begin{aligned}
L_{k}\left(v_{n} \otimes x\right) & =L_{k} v_{n} \otimes x+v_{n} \otimes L_{k} x, \\
I_{m}\left(v_{n} \otimes x\right) & =F_{v_{n}} \otimes x+v_{n} \otimes I_{m} x, \\
C_{L}\left(v_{n} \otimes x\right) & =c_{L}\left(v_{n} \otimes x\right), \\
C_{I}\left(v_{n} \otimes x\right) & =0 \\
C_{L, I}\left(v_{n} \otimes x\right) & =c_{L, I}\left(v_{n} \otimes x\right) .
\end{aligned}
$$

- Generated by $\left\{v_{n} \otimes v: n \in \mathbb{Z}\right\}$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Tensor product modules

Consider $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ module:

$$
\begin{aligned}
L_{k}\left(v_{n} \otimes x\right) & =L_{k} v_{n} \otimes x+v_{n} \otimes L_{k} x, \\
I_{m}\left(v_{n} \otimes x\right) & =F_{v_{n}} \otimes x+v_{n} \otimes I_{m} x, \\
C_{L}\left(v_{n} \otimes x\right) & =c_{L}\left(v_{n} \otimes x\right), \\
C_{I}\left(v_{n} \otimes x\right) & =0 \\
C_{L, I}\left(v_{n} \otimes x\right) & =c_{L, I}\left(v_{n} \otimes x\right) .
\end{aligned}
$$

- Generated by $\left\{v_{n} \otimes v: n \in \mathbb{Z}\right\}$.
- Set $U_{n}=U(\mathcal{H})\left(v_{n} \otimes v\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Reducibility of a tensor product module

Theorem
$V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ is irreducible if and only if $U_{n}=U_{n+1}$ for all $n \in \mathbb{Z}$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Reducibility of a tensor product module

Theorem
$V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ is irreducible if and only if $U_{n}=U_{n+1}$ for all $n \in \mathbb{Z}$.

Theorem
$V_{\alpha, \beta, F}^{\prime} \otimes V\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ is reducible. Modules $V\left(c_{L}, 0, c_{L, I}, h-\alpha-\beta-n, h_{l}\right), n \in \mathbb{Z}$ occur as subquotients.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Reducibility of a tensor product module

Theorem
$V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ is irreducible if and only if $U_{n}=U_{n+1}$ for all $n \in \mathbb{Z}$.

Theorem
$V_{\alpha, \beta, F}^{\prime} \otimes V\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ is reducible. Modules
$V\left(c_{L}, 0, c_{L, I}, h-\alpha-\beta-n, h_{l}\right), n \in \mathbb{Z}$ occur as
subquotients.
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
For a complete solution of irreducibility problem for
$V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ we need more detailed formulas for singular vectors.

Irreducibility of a

The Heisenberg-Virasoro vertex-algebra

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Heisenberg-Virasoro vertex-algebra

Irreducible \mathcal{H}-module $L\left(c_{L}, 0, c_{L, I}, 0,0\right)$ has the structure of vertex operator algebra which we denote $L^{\mathcal{H}}\left(c_{L}, c_{L, l}\right)$.
Theorem (Y. Billig)
Let $c_{L, I} \neq 0$. Then $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ is a simpe VOA, and $V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ and $L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ are $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Heisenberg-Virasoro vertex-algebra

Irreducible \mathcal{H}-module $L\left(c_{L}, 0, c_{L, I}, 0,0\right)$ has the structure of vertex operator algebra which we denote $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$.
Theorem (Y. Billig)
Let $c_{L, I} \neq 0$. Then $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ is a simpe VOA, and $V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ and $L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ are $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules.

- $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ can be realized as a subalgebra of the Heisenberg vertex algebra $M(1)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Heisenberg-Virasoro vertex-algebra

Irreducible \mathcal{H}-module $L\left(c_{L}, 0, c_{L, I}, 0,0\right)$ has the structure of vertex operator algebra which we denote $L^{\mathcal{H}}\left(c_{L}, c_{L, l}\right)$.
Theorem (Y. Billig)
Let $c_{L, I} \neq 0$. Then $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ is a simpe VOA, and $V\left(c_{L}, 0, c_{L, I}, h, h\right)$ and $L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ are $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules.

- $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ can be realized as a subalgebra of the Heisenberg vertex algebra $M(1)$.
- Moreover, $M(1)$-modules $M(1, \gamma)$ become $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules, and also \mathcal{H}-modules.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The Heisenberg-Virasoro vertex-algebra

Irreducible \mathcal{H}-module $L\left(c_{L}, 0, c_{L, I}, 0,0\right)$ has the structure of vertex operator algebra which we denote $L^{\mathcal{H}}\left(c_{L}, c_{L, l}\right)$.
Theorem (Y. Billig)
Let $c_{L, I} \neq 0$. Then $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ is a simpe VOA, and $V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ and $L\left(c_{L}, 0, c_{L, l}, h, h_{I}\right)$ are $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules.

- $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ can be realized as a subalgebra of the Heisenberg vertex algebra $M(1)$.
- Moreover, $M(1)$-modules $M(1, \gamma)$ become $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules, and also \mathcal{H}-modules.
- (Joint work with D. Adamović)

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg vertex-algebra

The twisted
Heisenberg-
Virasoro
algebra

- $L=\mathbb{Z} \alpha+\mathbb{Z} \beta$ is a hyperbolic lattice such that $\langle\alpha, \alpha\rangle=-\langle\beta, \beta\rangle=1,\langle\alpha, \beta\rangle=0$.

Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg vertex-algebra

The twisted
Heisenberg-
Virasoro
algebra

- $L=\mathbb{Z} \alpha+\mathbb{Z} \beta$ is a hyperbolic lattice such that $\langle\alpha, \alpha\rangle=-\langle\beta, \beta\rangle=1,\langle\alpha, \beta\rangle=0$.
- $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ is abelian Lie algebra and $\widehat{\mathfrak{h}}$ its affinization.

Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg vertex-algebra

- $L=\mathbb{Z} \alpha+\mathbb{Z} \beta$ is a hyperbolic lattice such that $\langle\alpha, \alpha\rangle=-\langle\beta, \beta\rangle=1,\langle\alpha, \beta\rangle=0$.
- $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ is abelian Lie algebra and $\widehat{\mathfrak{h}}$ its affinization.
- $M(1, \gamma):=U(\widehat{\mathfrak{h}}) \otimes_{U(\mathbb{C}[t] \otimes \mathfrak{h} \oplus \mathbb{C} c)} \mathbb{C}$ where $t \mathbb{C}[t] \otimes \mathfrak{h}$ acts trivially on \mathbb{C}, \mathfrak{h} acts as $\langle\delta, \gamma\rangle$ for $\delta \in \mathfrak{h}$ and c acts as 1 .

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg vertex-algebra

- $L=\mathbb{Z} \alpha+\mathbb{Z} \beta$ is a hyperbolic lattice such that $\langle\alpha, \alpha\rangle=-\langle\beta, \beta\rangle=1,\langle\alpha, \beta\rangle=0$.
- $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ is abelian Lie algebra and $\widehat{\mathfrak{h}}$ its affinization.
- $M(1, \gamma):=U(\widehat{\mathfrak{h}}) \otimes_{U(\mathbb{C}[t] \otimes \mathfrak{h} \oplus \mathbf{C} c)} \mathbb{C}$ where $t \mathbb{C}[t] \otimes \mathfrak{h}$ acts trivially on \mathbb{C}, \mathfrak{h} acts as $\langle\delta, \gamma\rangle$ for $\delta \in \mathfrak{h}$ and c acts as 1 .
- e^{γ} is a highest weight vector in $M(1, \gamma)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg vertex-algebra

- $L=\mathbb{Z} \alpha+\mathbb{Z} \beta$ is a hyperbolic lattice such that $\langle\alpha, \alpha\rangle=-\langle\beta, \beta\rangle=1,\langle\alpha, \beta\rangle=0$.
- $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ is abelian Lie algebra and $\widehat{\mathfrak{h}}$ its affinization.
- $M(1, \gamma):=U(\widehat{\mathfrak{h}}) \otimes_{U(\mathbb{C}[t] \otimes \mathfrak{h} \oplus \mathbb{C})} \mathbb{C}$ where $t \mathbb{C}[t] \otimes \mathfrak{h}$ acts trivially on \mathbb{C}, \mathfrak{h} acts as $\langle\delta, \gamma\rangle$ for $\delta \in \mathfrak{h}$ and c acts as 1 .
- e^{γ} is a highest weight vector in $M(1, \gamma)$.
- $M(1):=M(1,0)$ is a vertex-algebra and $M(1, \gamma)$ for $\gamma \in \mathfrak{h}$, are irreducible $M(1)$-modules.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg-Virasoro vertex algebra

- $\mathbb{C}[L]$ is a group algebra of L and $V_{L}=M(1) \otimes \mathbb{C}[L]$ the vertex algebra associated to the lattice L.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg-Virasoro vertex algebra

- $\mathbb{C}[L]$ is a group algebra of L and $V_{L}=M(1) \otimes \mathbb{C}[L]$ the vertex algebra associated to the lattice L.
- $I=\alpha(-1)+\beta(-1)$ is a Heisenberg vector, and $\omega=\frac{1}{2} \alpha(-1)^{2}-\frac{1}{2} \beta(-1)^{2}+\lambda \alpha(-2)+\mu \beta(-2)$ is a
Virasoro vector:

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg-Virasoro vertex algebra

- $\mathbb{C}[L]$ is a group algebra of L and $V_{L}=M(1) \otimes \mathbb{C}[L]$ the vertex algebra associated to the lattice L.
- $I=\alpha(-1)+\beta(-1)$ is a Heisenberg vector, and $\omega=\frac{1}{2} \alpha(-1)^{2}-\frac{1}{2} \beta(-1)^{2}+\lambda \alpha(-2)+\mu \beta(-2)$ is a Virasoro vector:
- $I(z)=Y(I, z)=\sum_{n \in \mathbb{Z}} I_{n} z^{-n-1} \quad$ and $L(z)=Y(\omega, z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}$ generate the simple Heisenberg-Virasoro vertex algebra $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Heisenberg-Virasoro vertex algebra

- $\mathbb{C}[L]$ is a group algebra of L and $V_{L}=M(1) \otimes \mathbb{C}[L]$ the vertex algebra associated to the lattice L.
- $I=\alpha(-1)+\beta(-1)$ is a Heisenberg vector, and $\omega=\frac{1}{2} \alpha(-1)^{2}-\frac{1}{2} \beta(-1)^{2}+\lambda \alpha(-2)+\mu \beta(-2)$ is a Virasoro vector:
- $I(z)=Y(I, z)=\sum_{n \in \mathbb{Z}} I_{n} z^{-n-1}$ and $L(z)=Y(\omega, z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}$ generate the simple Heisenberg-Virasoro vertex algebra $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$
- We get the twisted Heisenberg-Virasoro Lie algebra \mathcal{H} such that

$$
c_{L}=2-12\left(\lambda^{2}-\mu^{2}\right), \quad c_{L, I}=\lambda-\mu
$$

i.e.

$$
\lambda=\frac{2-c_{L}}{24 c_{L, I}}+\frac{1}{2} c_{L, I}, \quad \mu=\frac{2-c_{L}}{24 c_{L, I}}-\frac{1}{2} c_{L, I}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- For every $r, s \in \mathbb{C}$ let $e^{r \alpha+s \beta}$ is a \mathcal{H}-singular vector and $U(\mathcal{H}) e^{r \alpha+s \beta}$ is a highest weight module with the highest weight $\left(h, h_{l}\right)$ where

$$
h=\Delta_{r, s}=\frac{1}{2} r^{2}-\frac{1}{2} s^{2}-\lambda r+\mu s, \quad h_{l}=r-s
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- For every $r, s \in \mathbb{C}$ let $e^{r \alpha+s \beta}$ is a \mathcal{H}-singular vector and $U(\mathcal{H}) e^{r \alpha+s \beta}$ is a highest weight module with the highest weight $\left(h, h_{l}\right)$ where

$$
h=\Delta_{r, s}=\frac{1}{2} r^{2}-\frac{1}{2} s^{2}-\lambda r+\mu s, \quad h_{l}=r-s
$$

Proposition

(i) Let $\left(h, h_{l}\right) \in \mathbb{C}^{2}, h_{l} \neq c_{L, I}$. Then there exist unique $r, s \in \mathbb{C}$ such that $e^{r \alpha+s \beta}$ is a highest weight vector of the highest weight (h, h_{l}).

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- For every $r, s \in \mathbb{C}$ let $e^{r \alpha+s \beta}$ is a \mathcal{H}-singular vector and $U(\mathcal{H}) e^{r \alpha+s \beta}$ is a highest weight module with the highest weight $\left(h, h_{l}\right)$ where

$$
h=\Delta_{r, s}=\frac{1}{2} r^{2}-\frac{1}{2} s^{2}-\lambda r+\mu s, \quad h_{l}=r-s
$$

Proposition

(i) Let $\left(h, h_{l}\right) \in \mathbb{C}^{2}, h_{l} \neq c_{L, I}$. Then there exist unique $r, s \in \mathbb{C}$ such that $e^{r \alpha+s \beta}$ is a highest weight vector of the highest weight (h, h_{l}).
(ii) For every $r, s \in \mathbb{C}$ such that $r-s=\lambda-\mu=c_{L, I}$, $e^{r \alpha+s \beta}$ is a highest weight vector of weight

$$
\left(h, h_{l}\right)=\left(\frac{c_{L}-2}{24}, c_{L, l}\right)
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules

Free-field realization

- Denote by $\mathcal{F}_{r, s}$ the $M(1)$-module generated by $e^{r \alpha+s \beta}$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- Denote by $\mathcal{F}_{r, s}$ the $M(1)$-module generated by $e^{r \alpha+s \beta}$.
- It is also a $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module, therefore a \mathcal{H}-module.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- Denote by $\mathcal{F}_{r, s}$ the $M(1)$-module generated by $e^{r \alpha+s \beta}$.
- It is also a $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module, therefore a \mathcal{H}-module.
- Obviously $U(\mathcal{H}) e^{r \alpha+s \beta}$ is a highest weight \mathcal{H}-module.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- Denote by $\mathcal{F}_{r, s}$ the $M(1)$-module generated by $e^{r \alpha+s \beta}$.
- It is also a $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module, therefore a \mathcal{H}-module.
- Obviously $U(\mathcal{H}) e^{r \alpha+s \beta}$ is a highest weight \mathcal{H}-module.
- There is a surjective \mathcal{H}-homomorphism

$$
\Phi: V\left(c_{L}, 0, c_{L, l}, h, h_{l}\right) \rightarrow U(\mathcal{H}) e^{r \alpha+s \beta}
$$

such that $\Phi\left(v_{h, h_{l}}\right)=e^{r \alpha+s \beta}$ and that $\Phi \mid \mathcal{I}$ is injective.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- Denote by $\mathcal{F}_{r, s}$ the $M(1)$-module generated by $e^{r \alpha+s \beta}$.
- It is also a $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module, therefore a \mathcal{H}-module.
- Obviously $U(\mathcal{H}) e^{r \alpha+s \beta}$ is a highest weight \mathcal{H}-module.
- There is a surjective \mathcal{H}-homomorphism

$$
\Phi: V\left(c_{L}, 0, c_{L, l}, h, h_{l}\right) \rightarrow U(\mathcal{H}) e^{r \alpha+s \beta}
$$

such that $\Phi\left(v_{h, h_{l}}\right)=e^{r \alpha+s \beta}$ and that $\Phi \mid \mathcal{I}$ is injective.
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules

Proposition

Assume that $\frac{h_{I}}{c_{L, l}}-1 \notin-\mathbb{Z}_{>0}$. Then
$\mathcal{F}_{r, s} \cong V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ as $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-modules.

Irreducibility of a

Free-field realization

- For a vertex-algebra V and V-module M, one can define a contragradient module M^{*}.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- For a vertex-algebra V and V-module M, one can define a contragradient module M^{*}.
- One can show that $\mathcal{F}_{r, s}^{*} \cong \mathcal{F}_{2 \lambda-r, 2 \mu-s}$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- For a vertex-algebra V and V-module M, one can define a contragradient module M^{*}.
- One can show that $\mathcal{F}_{r, s}^{*} \cong \mathcal{F}_{2 \lambda-r, 2 \mu-s}$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

- Therefore $L\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)^{*} \cong L\left(c_{L}, 0, c_{L, I}, h,-h_{I}+2 c_{L, I}\right)$.

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Free-field realization

- For a vertex-algebra V and V-module M, one can define a contragradient module M^{*}.
- One can show that $\mathcal{F}_{r, s}^{*} \cong \mathcal{F}_{2 \lambda-r, 2 \mu-s}$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules

$$
Z_{n} / Z_{n-1} \cong L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h+n p, h_{l}\right) .
$$

Schur polynomials

- Schur polynomials $S_{r}\left(x_{1}, x_{2}, \cdots\right)$ in variables x_{1}, x_{2}, \ldots are defined by the following equation:

$$
\exp \left(\sum_{n=1}^{\infty} \frac{x_{n}}{n} y^{n}\right)=\sum_{r=0}^{\infty} S_{r}\left(x_{1}, x_{2}, \cdots\right) y^{r}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Schur polynomials

- Schur polynomials $S_{r}\left(x_{1}, x_{2}, \cdots\right)$ in variables x_{1}, x_{2}, \ldots are defined by the following equation:

$$
\exp \left(\sum_{n=1}^{\infty} \frac{x_{n}}{n} y^{n}\right)=\sum_{r=0}^{\infty} S_{r}\left(x_{1}, x_{2}, \cdots\right) y^{r}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field

- Also

$$
S_{r}\left(x_{1}, x_{2}, \cdots\right)=\frac{1}{r!}\left|\begin{array}{ccccc}
x_{1} & x_{2} & \cdots & & x_{r} \\
-r+1 & x_{1} & x_{2} & \cdots & x_{r-1} \\
0 & -r+2 & x_{1} & \cdots & x_{r-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -1 & x_{1}
\end{array}\right|
$$

Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules

Schur polynomials

- Schur polynomials $S_{r}\left(x_{1}, x_{2}, \cdots\right)$ in variables x_{1}, x_{2}, \ldots are defined by the following equation:

$$
\exp \left(\sum_{n=1}^{\infty} \frac{x_{n}}{n} y^{n}\right)=\sum_{r=0}^{\infty} S_{r}\left(x_{1}, x_{2}, \cdots\right) y^{r}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field

- Also

$$
S_{r}\left(x_{1}, x_{2}, \cdots\right)=\frac{1}{r!}\left|\begin{array}{ccccc}
x_{1} & x_{2} & \cdots & & x_{r} \\
-r+1 & x_{1} & x_{2} & \cdots & x_{r-1} \\
0 & -r+2 & x_{1} & \cdots & x_{r-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -1 & x_{1}
\end{array}\right|
$$

- Schur polynomials naturally appear in formulas for vertex operator for lattice vertex algebras.

Schur polynomials and singular vectors

Lemma

If $v \in \mathcal{I} \subset V\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ is such that $\Phi(v) \in \mathcal{F}_{r, s}$ is a non-trivial singular vector, then v is a singular vector in $V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Schur polynomials and singular vectors

Lemma

If $v \in \mathcal{I} \subset V\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ is such that $\Phi(v) \in \mathcal{F}_{r, s}$ is a non-trivial singular vector, then v is a singular vector in $V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
Since $S_{p}\left(-\frac{I_{-1}}{C_{L, 1}},-\frac{l_{-2}}{C_{L, l}}, \ldots,-\frac{I_{-p}}{C_{L, l}}\right) e^{r \alpha+s \beta}$ is a singular vector in $U(\mathcal{H}) e^{r \alpha+s \beta}$ we have:

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Schur polynomials and singular vectors

Lemma

If $v \in \mathcal{I} \subset V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ is such that $\Phi(v) \in \mathcal{F}_{r, s}$ is a non-trivial singular vector, then v is a singular vector in $V\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
Since $S_{p}\left(-\frac{I_{-1}}{C_{L, I}},-\frac{I_{-2}}{C_{L, I}}, \ldots,-\frac{I_{-p}}{C_{L, I}}\right) e^{r \alpha+s \beta}$ is a singular vector in $U(\mathcal{H}) e^{r \alpha+s \beta}$ we have:

Theorem
Assume that $c_{L, I} \neq 0$ and $p=\frac{h_{I}}{c_{L, l}}-1 \in \mathbb{Z}_{>0}$. Then $\Omega v_{h, h_{l}}$ where

$$
\Omega=S_{p}\left(-\frac{I_{-1}}{c_{L, 1}},-\frac{I_{-2}}{c_{L, I}}, \ldots,-\frac{I_{-p}}{c_{L, I}}\right)
$$

is a singular vector of weight p in the Verma module $V\left(c_{L}, 0, c_{L, I}, h,(1+p) c_{L, I}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Schur polynomials and singular vectors

- Using technical lemma and some calculation with $e^{r \alpha+s \beta}$ in $\mathcal{F}_{r, s}$ we get:

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Schur polynomials and singular vectors

- Using technical lemma and some calculation with $e^{r \alpha+s \beta}$ in $\mathcal{F}_{r, s}$ we get:
Theorem
Assume that $c_{L, I} \neq 0$ and $p=1-\frac{h_{1}}{c_{L, I}} \in \mathbb{Z}_{>0}$. Then $\Lambda v_{h, h_{l}}$ where

$$
\begin{aligned}
& \Lambda=\sum_{i=0}^{p-1} S_{i}\left(\frac{I_{-1}}{c_{L, l}}, \ldots, \frac{I_{-i}}{c_{L, l}}\right) L_{i-p}+ \\
& \sum_{i=0}^{p-1}\left(\frac{h}{p}+\frac{c_{L}-2}{24} \frac{(p-1)^{2}-p i}{p}\right) S_{i}\left(\frac{I_{-1}}{c_{L, l}}, \ldots, \frac{I_{-i}}{c_{L, l}}\right) \frac{I_{i-p}}{c_{L, l}}
\end{aligned}
$$

is a singular vector of weight p in the Verma module $V\left(c_{L}, 0, c_{L, I}, h,(1-p) c_{L, I}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω

Intertwining operators and tensor product modules

As with Virasoro and $W(2,2)$ algebras, the existence of a nontrivial intertwining operator of type

$$
\left(\begin{array}{c}
L\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right) \\
L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) \\
L\left(c_{L}, 0, c_{L, l}, h^{\prime}, h_{l}^{\prime}\right)
\end{array}\right)
$$

yields a nontrivial \mathcal{H}-homomorphism

$$
\varphi: V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right) \rightarrow L\left(c_{L}, 0, c_{L, l}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)
$$

where

$$
\alpha=h+h^{\prime}-h^{\prime}, \quad \beta=1-h, \quad F=h_{l} .
$$

The twisted
Heisenberg-
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Intertwining operators and tensor product modules

As with Virasoro and $W(2,2)$ algebras, the existence of a nontrivial intertwining operator of type

$$
\left(\begin{array}{c}
L\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right) \\
L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) \\
L\left(c_{L}, 0, c_{L, l}, h^{\prime}, h_{l}^{\prime}\right)
\end{array}\right)
$$

yields a nontrivial \mathcal{H}-homomorphism

$$
\varphi: V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right) \rightarrow L\left(c_{L}, 0, c_{L, l}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)
$$

where

$$
\alpha=h+h^{\prime}-h^{\prime}, \quad \beta=1-h, \quad F=h_{l} .
$$

Again, by dimension argument, we get reducibility of

The twisted
Heisenberg-
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

From the standard fusion rules result for the Heisenberg vertex algebra $M(1)$ we get intertwining operators in the

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

From the standard fusion rules result for the Heisenberg vertex algebra $M(1)$ we get intertwining operators in the

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules
Theorem
$\operatorname{Let}\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ such that $\frac{h_{1}}{c_{L, I}}-1, \frac{h_{1}^{\prime}}{c_{L, l}}-1, \frac{h_{1}+h_{1}^{\prime}}{c_{L, I}}-1 \notin \mathbb{Z}_{>0}$.

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

From the standard fusion rules result for the Heisenberg vertex algebra $M(1)$ we get intertwining operators in the category of \mathcal{H}-modules:

Theorem
$\operatorname{Let}\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ such that $\frac{h_{1}}{c_{L, l}}-1, \frac{h_{1}^{\prime}}{c_{L, l}}-1, \frac{h_{1}+h_{1}^{\prime}}{c_{L, l}}-1 \notin \mathbb{Z}_{>0}$. Then there is a non-trivial intertwining operator of the type

$$
\left(\begin{array}{c}
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h^{\prime \prime}, h_{l}+h_{l}^{\prime}\right) \\
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)
\end{array} L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h^{\prime}, h_{l}^{\prime}\right)\right) ~: ~
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

From the standard fusion rules result for the Heisenberg vertex algebra $M(1)$ we get intertwining operators in the category of \mathcal{H}-modules:

Theorem

$\operatorname{Let}\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ such that $\frac{h_{1}}{c_{L, l}}-1, \frac{h_{1}^{\prime}}{c_{L, l}}-1, \frac{h_{1}+h_{1}^{\prime}}{c_{L, l}}-1 \notin \mathbb{Z}_{>0}$. Then there is a non-trivial intertwining operator of the type

$$
\binom{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}+h_{l}^{\prime}\right)}{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h, h_{l}\right) \quad L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h^{\prime}, h_{l}^{\prime}\right)}
$$

where $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$. In particular, the \mathcal{H}-module $V_{\alpha, \beta, F}^{\prime} \otimes L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)$ is reducible where

$$
\alpha=h+h^{\prime}-h^{\prime \prime}, \beta=1-h, F=h_{l} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Corollary

Let $\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ and that there are $p, q \in \mathbb{Z}_{>0}, q \leq p$ such that

$$
\frac{h_{I}}{c_{L, I}}-1=-q, \quad \frac{h_{l}^{\prime}}{c_{L, I}}-1=p
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Corollary
Let $\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ and that there are $p, q \in \mathbb{Z}_{>0}, q \leq p$ such that

$$
\frac{h_{I}}{c_{L, l}}-1=-q, \quad \frac{h_{l}^{\prime}}{c_{L, l}}-1=p .
$$

Then there is a non-trivial intertwining operator of the type

$$
\left(\begin{array}{c}
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}+h_{l}^{\prime}\right) \\
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)
\end{array} L^{\mathcal{H}}\left(c_{L}, 0, c_{L, \prime}, h^{\prime}, h_{l}^{\prime}\right)\right) ~(
$$

where $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Corollary
Let $\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right) \in \mathbb{C}^{2}$ and that there are $p, q \in \mathbb{Z}_{>0}, q \leq p$ such that

$$
\frac{h_{l}}{c_{L, l}}-1=-q, \quad \frac{h_{I}^{\prime}}{c_{L, I}}-1=p .
$$

Then there is a non-trivial intertwining operator of the type

$$
\left(\begin{array}{c}
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}+h_{l}^{\prime}\right) \\
L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)
\end{array} L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)\right) ~(~) ~
$$

where $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$. In particular, the \mathcal{H}-module $V_{\alpha, \beta, F}^{\prime} \otimes L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime \prime}\right)$ is reducible where

$$
\alpha=h+h^{\prime}-h^{\prime \prime}, \beta=1-h, F=h_{l} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

(Ir)reducibility of a tensor product

- Next we use formulas for Ω and Λ to get irreducibility criterion for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

(Ir)reducibility of a tensor product

- Next we use formulas for Ω and Λ to get irreducibility criterion for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
- R. Lu and K. Zhao introduced a useful criterion:

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

(Ir)reducibility of a tensor product

- Next we use formulas for Ω and Λ to get irreducibility criterion for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$.
- R. Lu and K. Zhao introduced a useful criterion:
- Define a linear map $\phi_{n}: U\left(\mathcal{H}_{-}\right) \rightarrow \mathbb{C}$

$$
\begin{aligned}
& \phi_{n}(1)=1 \\
& \phi_{n}(I(-i) u)=-F \phi_{n}(u) \\
& \phi_{n}(L(-i) u)=(\alpha+\beta+k+i+n-i \beta) \phi_{n}(u)
\end{aligned}
$$

for $u \in U\left(\mathcal{H}_{-}\right)_{-k}$.

The twisted
Heisenberg-

Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

(Ir)reducibility of a tensor product

- Next we use formulas for Ω and Λ to get irreducibility criterion for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
- R. Lu and K. Zhao introduced a useful criterion:
- Define a linear map $\phi_{n}: U\left(\mathcal{H}_{-}\right) \rightarrow \mathbb{C}$

$$
\begin{aligned}
& \phi_{n}(1)=1 \\
& \phi_{n}(I(-i) u)=-F \phi_{n}(u) \\
& \phi_{n}(L(-i) u)=(\alpha+\beta+k+i+n-i \beta) \phi_{n}(u)
\end{aligned}
$$

for $u \in U\left(\mathcal{H}_{-}\right)_{-k}$.

- $V_{\alpha, \beta, F}^{\prime} \otimes L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{I}\right)$ is irreducible if and only if $\phi_{n}(\Omega) \neq 0\left(\phi_{n}(\Lambda) \neq 0\right)$ for every $n \in \mathbb{Z}$.

The twisted
Heisenberg-
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibility criterion

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibility criterion

- If $p=\frac{h_{1}}{c_{L, l}}-1 \in \mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\phi_{n}(\Omega)=(-1)^{p}\binom{-\frac{F}{c_{L, \prime}}}{p} .
$$

Theorem
Let $p=\frac{h_{l}}{c_{L, l}}-1 \in \mathbb{Z}_{>0}$. Module $V_{\alpha, \beta, F}^{\prime} \otimes L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ is irreducible if and only if $F \neq(i-p) c_{L, I}$, for $i=1, \ldots, p$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibility criterion

- If $p=\frac{h_{1}}{c_{L, l}}-1 \in \mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\phi_{n}(\Omega)=(-1)^{p}\binom{-\frac{F}{c_{L, l}}}{p} .
$$

Theorem
Let $p=\frac{h_{l}}{c_{L, l}}-1 \in \mathbb{Z}_{>0}$. Module $V_{\alpha, \beta, F}^{\prime} \otimes L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$ is irreducible if and only if $F \neq(i-p) c_{L, I}$, for $i=1, \ldots, p$.

- This expands the list of reducible tensor products realized with intertwining operators.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and

Irreducibility of a

Irreducibiliy criterion

- If $\frac{h_{I}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\begin{gathered}
\phi_{n}(\Lambda)=(-1)^{p-1}\binom{F / c_{L, 1}-1}{p-1}(\alpha+n+\beta)+ \\
\quad(-1)^{p-1}(1-\beta)\binom{F / c_{L, 1}-2}{p-1}+g_{\rho}(F)
\end{gathered}
$$

for a certain polynomial $g_{p} \in \mathbb{C}[x]$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

- If $\frac{h_{I}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\begin{gathered}
\phi_{n}(\Lambda)=(-1)^{p-1}\binom{F / c_{L, I}-1}{p-1}(\alpha+n+\beta)+ \\
\quad(-1)^{p-1}(1-\beta)\binom{F / c_{L, 1}-2}{p-1}+g_{\rho}(F)
\end{gathered}
$$

for a certain polynomial $g_{p} \in \mathbb{C}[x]$.

- If $F / c_{L, I} \notin\{1, \ldots, p-1\}$, then for every $n \in \mathbb{Z}$ there is a unique $\alpha:=\alpha_{n} \in \mathbb{C}$ such that $\phi_{n}(\Lambda)=0$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

- If $\frac{h_{l}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$, then for every $n \in \mathbb{Z}$ we have

$$
\begin{gathered}
\phi_{n}(\Lambda)=(-1)^{p-1}\binom{F / c_{L, I}-1}{p-1}(\alpha+n+\beta)+ \\
(-1)^{p-1}(1-\beta)\binom{F / c_{L, 1}-2}{p-1}+g_{\rho}(F)
\end{gathered}
$$

for a certain polynomial $g_{p} \in \mathbb{C}[x]$.

- If $F / c_{L, I} \notin\{1, \ldots, p-1\}$, then for every $n \in \mathbb{Z}$ there is a unique $\alpha:=\alpha_{n} \in \mathbb{C}$ such that $\phi_{n}(\Lambda)=0$.
- This, along with previous results on existence of intertwining operators result with the following:

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a

Irreducibiliy criterion

Theorem

Let $\frac{h_{I}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$. We write V short for
$V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

Theorem
Let $\frac{h_{l}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$. We write V short for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$.
(i) Let $F / c_{L, I} \notin\{1, \ldots, p-1\}$ and let $\alpha_{0} \in \mathbb{C}$ be such that $\phi_{0}(\Lambda)=0$. Then V is reducible if and only if $\alpha \equiv \alpha_{0}$ $\bmod \mathbb{Z}$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

Theorem

Let $\frac{h_{I}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$. We write V short for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)$.
(i) Let $F / c_{L, I} \notin\{1, \ldots, p-1\}$ and let $\alpha_{0} \in \mathbb{C}$ be such that $\phi_{0}(\Lambda)=0$. Then V is reducible if and only if $\alpha \equiv \alpha_{0}$ $\bmod \mathbb{Z}$. In this case $W^{0}=U(\mathcal{H})\left(v_{0} \otimes v\right)$ is irreducible submodule of V and V / W^{0} is a highest weight \mathcal{H}-module $\widetilde{L}\left(c_{L}, 0, c_{L, l}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)$ (not necessarily irreducible) where

$$
h^{\prime \prime}=-\alpha_{0}+h+(1-\beta), \quad h_{l}^{\prime \prime}=F+h_{l}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

Theorem

Let $\frac{h_{l}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$. We write V short for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.
(i) Let $F / c_{L, I} \notin\{1, \ldots, p-1\}$ and let $\alpha_{0} \in \mathbb{C}$ be such that $\phi_{0}(\Lambda)=0$. Then V is reducible if and only if $\alpha \equiv \alpha_{0}$ $\bmod \mathbb{Z}$. In this case $W^{0}=U(\mathcal{H})\left(v_{0} \otimes v\right)$ is irreducible submodule of V and V / W^{0} is a highest weight \mathcal{H}-module $\widetilde{L}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)$ (not necessarily irreducible) where

$$
h^{\prime \prime}=-\alpha_{0}+h+(1-\beta), \quad h_{l}^{\prime \prime}=F+h_{l} .
$$

(ii) Let $F / c_{L, I} \in\{2, \ldots, p-1\}$. Then V is reducible.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using Λ
More fusion rules
Free-field
realization of
W $(2,2)$

Irreducibiliy criterion

Theorem

Let $\frac{h_{I}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$. We write V short for $V_{\alpha, \beta, F}^{\prime} \otimes L\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using Λ
More fusion rules
(iii) Let $p>1$ and $F / c_{L, I}=1$. Then V is reducible if and only if $1-\beta=\frac{c_{L}-2}{24}$.

Free-field
realization of
W $(2,2)$

Fusion rules

Theorem

Let $\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma

$$
\frac{h_{1}}{c_{L, I}}-1=q, \frac{h_{I}^{\prime}}{c_{L, l}}-1=p, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem

Let $\left(h, h_{l}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=q, \frac{h_{1}^{\prime}}{c_{L, l}}-1=p, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Let

Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{I}}{c_{L, I}}-1=q, \frac{h_{I}^{\prime}}{c_{L, l}}-1=p, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Let

$$
d=\operatorname{dim} I\binom{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)}{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right) \quad L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime}, h_{l}^{\prime}\right)} .
$$

Then $d=1$ if and only if $h_{l}^{\prime \prime}=h_{l}+h_{l}^{\prime}$ and one of the following holds:

Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=q, \frac{h_{1}^{\prime}}{c_{L, l}}-1=p, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules
Then $d=1$ if and only if $h_{l}^{\prime \prime}=h_{l}+h_{l}^{\prime}$ and one of the following holds:
(i) $p, q<0$ and $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=q, \frac{h_{1}^{\prime}}{c_{L, l}}-1=p, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules
Then $d=1$ if and only if $h_{l}^{\prime \prime}=h_{l}+h_{l}^{\prime}$ and one of the following holds:
(i) $p, q<0$ and $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$
(ii) $1 \leq-q \leq p$ and $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=q, \frac{h_{1}^{\prime}}{c_{L, l}}-1=p, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

Let

$$
d=\operatorname{dim} I\binom{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h^{\prime \prime}, h_{l}^{\prime \prime}\right)}{L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h, h_{l}\right) \quad L^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h^{\prime}, h_{l}^{\prime}\right)} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules
Then $d=1$ if and only if $h_{l}^{\prime \prime}=h_{l}+h_{l}^{\prime}$ and one of the following holds:
(i) $p, q<0$ and $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$
(ii) $1 \leq-q \leq p$ and $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$
(iii) $1 \leq-p \leq q$ and $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Fusion rules

Theorem
Let $\left(h, h_{1}\right)=\left(\Delta_{r_{1}, s_{1}}, r_{1}-s_{1}\right),\left(h^{\prime}, h_{l}^{\prime}\right)=\left(\Delta_{r_{2}, s_{2}}, r_{2}-s_{2}\right)$ such that

$$
\frac{h_{1}}{c_{L, I}}-1=q, \frac{h_{1}^{\prime}}{c_{L, l}}-1=p, \quad p, q \in \mathbb{Z} \backslash\{0\} .
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules
Then $d=1$ if and only if $h_{l}^{\prime \prime}=h_{l}+h_{l}^{\prime}$ and one of the following holds:
(i) $p, q<0$ and $h^{\prime \prime}=\Delta_{r_{1}+r_{2}, s_{1}+s_{2}}$
(ii) $1 \leq-q \leq p$ and $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$
(iii) $1 \leq-p \leq q$ and $h^{\prime \prime}=\Delta_{r_{2}-r_{1}, s_{2}-s_{1}}$
$d=0$ otherwise.

Nontrivial intertwining operators

$$
\begin{gathered}
\binom{\left(\Delta_{r_{1}+r_{2}, s_{1}+s_{2}},\left(1-(p+q-1) c_{L, I}\right)\right.}{\left(\Delta_{r_{1}, s_{1}},(1-q) c_{L, I}\right) \quad\left(\Delta_{r_{2}, s_{2}},(1-p) c_{L, I}\right)} \\
\text { for } p, q \geq 1 \\
\binom{\left(\Delta_{r_{2}-r_{1}, s_{2}-s_{1}},\left(1-(q-p-1) c_{L, I}\right)\right.}{\left(\Delta_{r_{1}, s_{1}},(1-q) c_{L, I}\right) \quad\left(\Delta_{r_{2}, s_{2}},(1+p) c_{L, I}\right)} \\
\text { for } 1 \leq q \leq p \\
\binom{\left(\Delta_{r_{2}-r_{1}, s_{2}-s_{1}},\left(1-(p-q-1) c_{L, l}\right)\right.}{\left(\Delta_{r_{1}, s_{1}},(1+q) c_{L, I}\right) \quad\left(\Delta_{r_{2}, s_{2}},(1-p) c_{L, I}\right)} \\
\text { for } 1 \leq p \leq q
\end{gathered}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

- Vertex-algebra $L^{W}\left(c_{L}, c_{W}\right)$ is generated by

$$
Y\left(L_{-2}, z\right)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}, Y\left(W_{-2}, z\right)=\sum_{n \in \mathbb{Z}} W_{n} z^{-n-2}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

- Vertex-algebra $L^{W}\left(c_{L}, c_{W}\right)$ is generated by

$$
Y\left(L_{-2}, z\right)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}, Y\left(W_{-2}, z\right)=\sum_{n \in \mathbb{Z}} W_{n} z^{-n-2}
$$

- Vertex-algebra $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ is generated by

$$
Y\left(L_{-2}, z\right)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}, \quad Y\left(I_{-1}, z\right)=\sum_{n \in \mathbb{Z}} I_{n} z^{-n-1}
$$

The twisted
Heisenberg-
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

- Vertex-algebra $L^{W}\left(c_{L}, c_{W}\right)$ is generated by

$$
Y\left(L_{-2}, z\right)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}, Y\left(W_{-2}, z\right)=\sum_{n \in \mathbb{Z}} W_{n} z^{-n-2}
$$

- Vertex-algebra $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$ is generated by

$$
Y\left(L_{-2}, z\right)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}, \quad Y\left(I_{-1}, z\right)=\sum_{n \in \mathbb{Z}} I_{n} z^{-n-1}
$$

Theorem
There is a non-trivial homomorphism of vertex algebras

$$
\begin{aligned}
\Psi: L^{W}\left(c_{L}, c_{W}\right) & \rightarrow L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right) \\
L_{-2} & \mapsto L_{-2} \mathbf{1} \\
W_{-2} & \mapsto\left(I_{-1}^{2}+2 c_{L, I} I_{-2}\right) \mathbf{1}
\end{aligned}
$$

where

The twisted
Heisenberg-
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

$$
c_{W}=-24 c_{L, I}^{2}
$$

Vertex-algebra homomorphism

- Every $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module becomes a $L^{W}\left(c_{L}, c_{W}\right)$-module.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

- Every $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module becomes a $L^{W}\left(c_{L}, c_{W}\right)$-module.
- $V^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ is a $L^{W}\left(c_{L}, c_{W}\right)$-module and $v_{h, h_{l}}$ is a $W(2,2)$ highest weight vector such that

$$
L(0) v_{h, h_{l}}=h v_{h, h_{l}}, \quad W(0) v_{h, h_{l}}=h_{W} v_{h, h_{l}}
$$

where $h_{W}=h_{l}\left(h_{I}-2 c_{L, I}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Vertex-algebra homomorphism

- Every $L^{\mathcal{H}}\left(c_{L}, c_{L, I}\right)$-module becomes a $L^{W}\left(c_{L}, c_{W}\right)$-module.
- $V^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h, h_{l}\right)$ is a $L^{W}\left(c_{L}, c_{W}\right)$-module and $v_{h, h_{l}}$ is a $W(2,2)$ highest weight vector such that

$$
L(0) v_{h, h_{l}}=h v_{h, h_{l}}, \quad W(0) v_{h, h_{l}}=h_{W} v_{h, h_{l}}
$$

where $h_{W}=h_{l}\left(h_{I}-2 c_{L, I}\right)$.

- There is a nontrivial $W(2,2)$-homomorphism

$$
\Psi: V^{W(2,2)}\left(c, c_{W}, h, h_{W}\right) \rightarrow V^{\mathcal{H}}\left(c_{L}, 0, c_{L, l}, h, h_{l}\right)
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a

Highest weight H -modules as $\mathrm{W}(2,2)$-modules

Example

Let $h_{W}=\frac{1-p^{2}}{24} c_{W}=\left(p^{2}-1\right) c_{L, I}^{2}=h_{I}\left(h_{I}-2 c_{L, I}\right)$ as above. Then there are nontrivial $W(2,2)$-homomorphisms

$$
\begin{gathered}
V^{W(2,2)}\left(c, c_{W}, h, \frac{1-p^{2}}{24} c_{W}\right) \\
\Psi_{+} \swarrow \\
V^{\Psi_{-}} \\
V^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h,(1+p) c_{L, I}\right) \\
V^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h,(1-p) c_{L, I}\right)
\end{gathered}
$$

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product

Free-field

realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Highest weight H -modules as $\mathrm{W}(2,2)$-modules

Theorem
(i) Let $\frac{h_{1}}{c_{L, I}}-1 \notin-\mathbb{Z}_{>0}$. Then Ψ is an isomorphism of $W(2,2)$-modules.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Highest weight H -modules as $\mathrm{W}(2,2)$-modules

Theorem

(i) Let $\frac{h_{1}}{c_{L, l}}-1 \notin-\mathbb{Z}_{>0}$. Then Ψ is an isomorphism of W (2,2)-modules.
(ii) If $\frac{h_{1}}{c_{L, l}}-1=p \in \mathbb{Z}_{>0}$ then

$$
\Psi^{-1}\left(S_{p}\left(-\frac{I(-1)}{c_{L, I}},-\frac{I(-2)}{c_{L, I}}, \cdots\right) v_{h, h_{l}}\right)=u^{\prime}
$$

is a singular vector in $V^{W(2,2)}\left(c_{L}, c_{W}, h, h_{W}\right)_{h+p}$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Highest weight H -modules as $\mathrm{W}(2,2)$-modules

Theorem

(i) Let $\frac{h_{1}}{c_{L, l}}-1 \notin-\mathbb{Z}_{>0}$. Then Ψ is an isomorphism of $W(2,2)$-modules.
(ii) If $\frac{h_{1}}{c_{L, l}}-1=p \in \mathbb{Z}_{>0}$ then

$$
\Psi^{-1}\left(S_{p}\left(-\frac{I(-1)}{c_{L, I}},-\frac{I(-2)}{c_{L, I}}, \cdots\right) v_{h, h_{l}}\right)=u^{\prime}
$$

is a singular vector in $V^{W(2,2)}\left(c_{L}, c_{W}, h, h_{W}\right)_{h+p}$.
The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series

Tensor product

Free-field

realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
(iii) If $\frac{h_{I}}{c_{L, I}}-1=-p \in-\mathbb{Z}_{>0}$ then $\Psi\left(u^{\prime}\right)=0$.

Irreducibility of a tensor product

Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

Highest weight H -modules as $\mathrm{W}(2,2)$-modules

Theorem

(i) Let $\frac{h_{1}}{c_{L, l}}-1 \notin-\mathbb{Z}_{>0}$. Then Ψ is an isomorphism of $W(2,2)$-modules.
(ii) If $\frac{h_{1}}{c_{L, l}}-1=p \in \mathbb{Z}_{>0}$ then

$$
\Psi^{-1}\left(S_{p}\left(-\frac{I(-1)}{c_{L, I}},-\frac{I(-2)}{c_{L, I}}, \cdots\right) v_{h, h_{l}}\right)=u^{\prime}
$$

is a singular vector in $V^{W(2,2)}\left(c_{L}, c_{W}, h, h_{W}\right)_{h+p}$.
(iii) If $\frac{h_{I}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$ then $\Psi\left(u^{\prime}\right)=0$.
(iv) Let $\frac{h_{1}}{c_{L, l}}-1=-p \in-\mathbb{Z}_{>0}$ and let u be a subsingular vector in $V^{W(2,2)}\left(c_{L}, c_{W}, h_{p q}, h_{W}\right)_{h+p q}$. Then $\Psi(u)$ is a singular vector in $V^{\mathcal{H}}\left(c_{L}, 0, c_{L, I}, h,(1-p) c_{L, I}\right)$.

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product
Free-field
realization
Heisenberg-Virasoro
VOA
Singular vectors
Fusion rules and tensor product modules

Irreducibility of a tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The End

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product

THANKYOU!

Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

The End

The twisted
Heisenberg-
Virasoro
algebra
Structure of Verma modules

Intermediate series
Tensor product

THANKYOU!

Free-field
realization
Heisenberg-Virasoro VOA
Singular vectors
Fusion rules and
tensor product
modules
Irreducibility of a
tensor product
Using Ω
Using A
More fusion rules
Free-field
realization of
W $(2,2)$

