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C. Dong in W-algebra W (2,2) and the vertex operator
algebra L (%0) ® L (%O) Commun. Math. Phys. 285
(2009) as a part of classification of simple VOAs
generated by two weight two vectors.

» Structure od Verma modules and irreducible highest
weight modules

» Irreducibility and structure of Vvﬁ,/S,O ® L(c, ew, h, hw).

» VOA, intertwining operators and tensor product
modules
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The twisted Heisenberg-Virasoro Lie algebra H. We Introduction
study representations at level zero, important in rep.
theory of toroidal Lie algebras. Developed by Y. Billig in
Representations of the twisted Heisenberg-Virasoro
algebra at level zero, Canadian Math. Bulletin, 46
(2003)

Irreducibiliy problem of Voi,ﬁ,F ® L(c,0,¢cp,h, hy).
Free-field realization of H.

Explicit formulas for singular vectors. Some intertwining
operators.

Irreduciblity of V;’ﬁvF ® L(c.,0,¢cp, h, hy) solved.
Fusion rules.

W2, 2)-structure on H-modules.
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Algebra W (2,2)

Algebra £ = W(2,2) is a complex Lie algebra with a basis
{Ly, W,,, C., Cy : n € Z} and a Lie bracket

3 _
[Lny Lm] = (n - m) Loym+ 6n,fm%cb
3 _
[Lny Wm] = (n - m) Whim + 5n,7m%CW,

(W, Wa] = [£, C] = [£, C] = 0.

{L,, Cr,: n € Z} spans a copy of the Virasoro algebra.

{W, : n € Z} spans a Virasoro module Vj _;.
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Algebra W (2,2)

Triangular decomposition:

L=L_®Lo® L,

where
L= (CLn + CWn),
n>0
Lo =@ (CL_,+CW.,),
n>0

Lo =span {Ly, Wy, C, Ciy } .
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Structure of Verma
modules

V (¢, cw, h, hy) - the Verma module with highest weight
(h, hw) and central charge (¢;, cw)

v € V (cL, cw, h, hw) - the highest weight vector, i.e.,

Lov = hv, Wyv = hyv,
Cv=cv, Cwv=cwv, Lyiv=0.

However, Wy does not act semisimply on rest of the module
(unlike Iy in the twisted Heisenberg-Virasoro algebra).
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The Verma module

» PBW basis Structure of Verma

modules

(W - WL oL pv:
mg>--->m>1n>--->n>1}

> V(CL,Cw,h, hw) = @ V(C/_,Cw,h, hW)h+n

n>0

> dim V(CL, cw, h, hw)thn = P2 (n) =
Y7o P(n—i)P(i), where P is a partition function,
with P(0) =1
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The Verma module

Structure of Verma

» J(ct, cw, h, hy) - unique maximal submodule in modules
74 (CL, W, h, hw)

> L(CL, cw, h, hw) =

V (ct,ew. h, hw) /J (cL, cw, h, hw) - the unique
irreducible highest weight module

Theorem (Zhang-Dong)

Verma modu/e V(cL, cw, h, hw) is irreducible if and only if
hwyél choranymE]N
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(Sub)singular vectors

» x € V(cL,cw, h hw),, , is called a singular vector if
£+X =0

(Sub)singular vectors

» singular vectors generate submodules in
V (ct,cw, h hw)

» nontrivial submodules in V (¢;, cw, h, hw) contain
singular vectors

» y € V(c,cw. h, hw) is called a subsingular vector if
y is a singular vector in some quotient
V (cL,ew, h, hw) /U ie. if Liy € U for a submodule
vucv (CL, cw, h, hw)
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W-degree on L_
degy, L, =0, degyy W_, =1

induces Z-grading on U(L) and on V(ct, cw, h, hw) (in a
standard PBW basis)

degy W_p, -+ - W_p L, ---L_pv=s

X denotes the lowest nonzero homogeneous component of
x € V(cr,cw, h, hy) (with respect to W-degree)

W=C[W_1,W_,,...]v
Whin =Wn V(e cw, h hw)hin
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Let 0 # x € V(¢ cw, h, hw) and degy, x = k.

(a) Ifx & W and n € N is the smallest, such that L_,
occurs as a factor in one of the terms in X, then the part of
W, x of the W-degree k is given by

n”—1 ox
n <2hW + I Cw) 7BL_,7.
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Lemma (Jiang-Pei (Y. Billig))

Let 0 # x € V(¢ cw, h, hw) and degy, x = k.

(a) Ifx & W and n € N is the smallest, such that L_,
occurs as a factor in one of the terms in X, then the part of
W, x of the W-degree k is given by

n”—1 ox
n <2hW + I Cw) 7BL_,7.

(b) Ifxe W, x & Cv and m € IN is maximal, such that
W_,, occurs as a factor in one of the terms of X, then the
part of L,x of the W-degree k — 1 is given by

oh +m2—1 ox
m{“w 12 VY)aow .
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Singular vectors

From now on we assume that hy = 24 cW for p € IN.

Submodules and
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Lemma (Jiang-Pei (Y. Billig))
There is a singular vector x € V(c, cw, h, hW)h+p such
thatx = W_,vorx=1L_pv.

Theorem

Let hy = %Cw, p € IN. Then there is a singular vector
u' € Wiy p, such that v = W_,v. Moreover, U(L)J is
isomorphic to Verma module V (¢, cw, h+ p, hw).




Examples of singular vectors

module u
V(CL,Cw,h,O) W_1V
V (cLocw. b, —<) (Weo + 2 W2 )y

Ve, ew, h,—%) (W3 + %WQWA + %Wfl)v

V(ew, ew, b, —=23)  (Wea+ W s Wy + 52 W2+
HE WL W2+ 28 W)y
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Characters

From now on, ' denotes the singular vector from
previous theorem.

J (CL,CW h hw) U(E)
L (CL,Cw,h, hw) V(CL cw, h hw)/J (CL cw, h hw)

Since

char V(cy, ew, h, hw) = q" Z P>(n)q"
n>0

the theorem yields

char J'(ci, ew, b, hw) = ¢"P Y Pa(n)q",

n>0
char L'(c;, cw, h, hyy) = char V — char J/ =

a") Y Pa(n)q"

n>0
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L/ (CL, cw, 0, 0) =V (CL, cw, 0, 0) /U (ﬁ) W_l.

i) (L,g + %W,lL,l - 6(137MJ:CL)W31) v is a singular
vector in L’ (cL, cw, 185“, —%) —

Vv <cL, cw. 18, —%W) JU(L) (Wea + & W2y,
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Reducibility of a quotient module

Is L'(cL, cw, h, hw) irreducible?

Example

i) L_jvis a singular vector in

L/ (CL, cw, 0, 0) =V (CL, cw, 0, 0) /U (ﬁ) W_l.

i) (L,g + %W,lL,l - 6(137MJ:CL)W31) v is a singular

vector in L’ (cL, cw, 185“, —%) —

V (et ow, 2B5%, =) /U (L) (Wep + S W2 ).
i) (L2_1 + %WQ) v is a singular vector in
L/(CL, Cw, —%, 0) = V(CL, Cw, —%, 0)/U (ﬁ) W_1V.

Problem
What is the structure of L' (ci, ey, h, hw)?
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Structure of a quotient module L’

Lemma (Jiang, Pei (Y. Billig))
Let 0 # x € J'(cL, cw, h, hw). Then there exist terms in X,
containing factor W_,.

Quotient module L’

Proposition

The set of all PBW vectors W_p,_ -+ - W_pp L_p, -+ - L_p v
modulo J'(c., cw, h, hw) with m; # p forms a basis for
L/(CL, Cw, h, hw).

Theorem

Assume that L'(ci, cw, h, hw) is reducible. Then there is a
singular vector u € L'(¢c;, cw, h, hw) such that T = L‘lpv
for some q € IN.
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Necessary condition

Equating certain coefficients in relation
Lou € J' (cr,cw, h, hw) we get the following result:

Theorem (Necessary condition for the existence of a
subsingular vector)

Let hy = 24p2 cw- If U'(ct, ew, h, hw) contains a singular

vector u such that @ = L9 ,v, for some q € N, then

CL—

h=(1-p% +p(p—1)+ # =t hpq-

For a PBW monomial x = W_p, - - W_p, L, ---L_p v
define L_,-degree degpr x as a number of factors
L_p = L_p.
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Theorem ,

Let hy = lg—fcw. If V(ci, cw, hp,q, hw) contains a
subsingular vector u such that U = L‘lpv, for some q € IN,
then

J(eL, ew, h, hw) {u u}

is the maximal submodule.
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Theorem ,

Let hy = lg—fcw. If V(ci, cw, hp,q, hw) contains a
subsingular vector u such that U = L‘lpv, for some q € IN,
then

J(eL, ew, h, hw) {u u}

is the maximal submodule. Module
L(ct,ew, h hw) = V(c, ew, h,hw)/J(cL, cw, h, hw)
is irreducible with a basis

{X: Wopm, oo Wep Lp, - Lop v i m; #p,dengx < q}




Irreducibility of a quotient module

Theorem ,

Let hy = lg—fcw. If V(ci, cw, hp,q, hw) contains a
subsingular vector u such that U = L‘lpv, for some q € IN,
then

J(eL, ew, h, hw) {u u}

is the maximal submodule. Module
L(cr,ew, h, hw) = Ve, ew, h,hw)/J(cL, cw, h, hw)
is irreducible with a basis
{X =W_p - WL _p, - L_pvim; #p, degpr x < q}
and a character

char L(c;, ey, h, hw) = ¢"(1 — ¢P)(1 — q%) Y Px(n)q".
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Characters (subsingular case)
char V(c., ey, h, hy) = q" Z Py(n)q
n>0

char J'(c;, cw, h, hw) = q"P Y Pa(n
n>0

char L'(ci, ew, h, hw) = ¢"(1 ?) 3 Pa(n)

n>0

char J(ci, cw, hp.q. hw) = ¢"TP(1+ql97P —g%) ¥ Py(n)q

n>0

char L(c;, e, hp,q. hw) = q"(1—g°)(1— q%) Y Pa(n)q

n>0

char J(c., cw, hpq, h )/J’(CL caw, hpq,hW) =
— thq+Pq Z P2

n>0
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Conjecture
Suppose hy = %CW for some p € IN. Then

L'(cL, cw, h, hw) is reducible if and only if

CL—2
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24 '
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Conjecture

Conjecture

Suppose hy = %CW for some p € IN. Then
L'(cL, cw, h, hw) is reducible if and only if

c—2 1-—
h=hpq=(1-p°) L24 +lj(p_l>+<2q)[:)'

Using determinant formula one can prove

Theorem

Module L' (c;, cw, 152,0) is reducible for every g € N, i.e.
there is a subsingular vector u € V (¢, cw, %, 0) such that
u=1L9,.




Examples

Subsingular vectors u in V(ci, cw, 15, 0):

V(CL,Cw,0,0) L,1V
V(CL,Cw,—%,O) (L2_1+%W,2> v
V(CL,Cw,—l,O) <Lil +%Wf3—|—%W72L71) v
(L4_1 + %W—2L2_1 + %W—:%L—I‘F

+ %W—ll + %WEQ) v
<L5_1 + %W—2L3_1 + %W—3L2_1+
V(e ew, —2,0) + %W74L71 + %WEQLA—F
144 2304
+ WW—S + WW—3 W—2) v

V(CL, cw, —%,0)




Examples

Subsingular vectors u in V(ci, cw, 15, 0):

V(CL,Cw,0,0) L,1V
V(e ew,—4,0) (2 + 2wy
V(CL,Cw,—l,O) <Lil +%Wf3—|—%W72L71) v
(L4_1 + %W—2L2_1 + %W—:%L—l"‘

+ %W—ll + %WEQ) v
(L0 + 120w o3, + 80w 512 4+
V(e ew, —2,0) + %W74L71 + %WEQLA—F
144 2304

+ WW—S + WW_3 W—2) v

V(CL, cw, —%,0)

It can be shown that u = (L7; + ZI‘.’;OI w;L" | )v for some

w; € W.




Intermediate series

For a, B € C take Vir-modules
Viap = spanc {v, : n € Z}
with

Levy, = — (n—i—tX—i—lB—l—kﬁ) Vntk,
Cv,=0, k,neZ.
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For a, B € C take Vir-modules
Viap = spanc {v, : n € Z}
with

Levy, = — (n—i—tX—i—lB—l—kﬁ) Vntk,
Cv,=0, k,neZ.

Define £-modules

Va,ﬁ,O = Va,/S with
Cwvy, = Wiv, =0, k,ne Z.




Intermediate series

Va,ﬁ,O = Va+k,ﬁ,0 for keZ

= if « € Z we may assume &« =0
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Intermediate series

Va,ﬁ,O = Va+k,ﬁ,0 for keZ

= if « € Z we may assume &« =0

V0 is reducible if and only if « € Z and B € {0,1}.
Define

V0.0 := V0,00/Cw,

Voio:= P Cvm C Vo1,
m#—1
Vigo = Vapo otherwise.




Intermediate series

Va,ﬁ,O = Va+k,ﬁ,0 for keZ

= if « € Z we may assume &« =0

V0 is reducible if and only if « € Z and B € {0,1}.
Define

V0.0 := V0,00/Cw,

Voio:= P Cvm C Vo1,
m#—1
Vigo = Vapo otherwise.

{Vof,ﬂ,o RS C} - all irreducible modules belonging to
intermediate series.




Irreducible Harish-Chandra modules

Theorem (Liu, D., Zhu, L.)

An irreducible weight L£-module with finite-dimensional
weight spaces is isomorphic either to a highest (or lowest)
weight module, or to Vvi,ﬁ,O for some o, € C.
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Irreducible Harish-Chandra modules

Theorem (Liu, D., Zhu, L.)

An irreducible weight L£-module with finite-dimensional
weight spaces is isomorphic either to a highest (or lowest)
weight module, or to Vai,[%,O for some o, € C.

Intermediate series

What about modules with infinite-dimensional weight
spaces?




Tensor product modules

o

Lk

Vn

S

=
R ¥ ® &

W,
o

X XXX

(
(
(
Cw<

Vn

V/,/s,o ® L(cr, cw ., h, hy) is L-module:

Liva ® x + vy @ Lgx,
vp @ Wpx,

CL<Vn ®X),

cw (v ® x).




Tensor product modules

V/,/s,o ® L(cr, cw ., h, hy) is L-module:

o

Li(vp ® x) Livy, @ x+ vy @ Lix,
Wi (v ® x) vy, @ Wpx,

Cr(vn ®x) cL(vn ® x),

Cw (vh ® x) cw (vh ® x).

All weight subspaces are infinite-dimensional:
! J—
(Vigo®L(cecw.h hW))h—i—m—tx—ﬁ —

= @ CVn_m ® L (CLI CW’ h’ hW)h+n
neZ 4
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» {v, ®v:n€ Z} generates Vof,ﬁ,o ® L(cy, ew, h, hw)

Irreducibility




(Ir)reducibility of the tensor product modules

» {v, ®v:n€ Z} generates Vof,ﬁ,o ® L(cy, ew, h, hw)
» Set Uy =U (L) (va® V).

Irreducibility




(Ir)reducibility of the tensor product modules

» {v, ®v:n€ Z} generates Vof,ﬁ,o ® L(cy, ew, h, hw)
» Set U, =U (L) (vp® V).
Theorem (Irreducibiliy criterion)

V;,ﬁ,o ® L(ct, cw, h, hw) is irreducible if and only if it is
cyclic on every v, @ v, ie., if Uy = Uyy1 forn € Z.
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(Ir)reducibility of the tensor product modules

» {v, ®v:n€ Z} generates Vof,ﬁ,o ® L(cy, ew, h, hw)
» Set Uy =U (L) (va® V).

Theorem (Irreducibiliy criterion)

V;,ﬁ,o ® L(ct, cw, h, hw) is irreducible if and only if it is
cyclic on every v, @ v, ie., if Uy = Uyy1 forn € Z.

Theorem Irreducibility
Let h # hp g for all q. Then module
Voﬁ,ﬁ,o ® L(ct, cw, h, hy) is reducible for any o, p € C.
Moreover:

Un 2 Un+lv VneZ.




Irreducibility of the tensor product modules

Theorem

Let h= hp 4 and let u € V(c,, cw, h, hw) be a subsingular

vector such that = L ). Ifa + (1 —p)B ¢ Z then module
Voi,/%,o ® L(cL, cw, h, hw) is irreducible.
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Irreducibility of the tensor product modules

Theorem

Let h= hp 4 and let u € V(c,, cw, h, hw) be a subsingular
vector such that = L ). Ifa + (1 —p)B ¢ Z then module
V! 60 ® L(ct, ew, h, hW) is irreducible.

Proof.
[Sketch of proof] Using subsingular vector u we find
xeVy (ﬁ) such that Irreducibility

x(vp®v) =

[y

< (n=14+(g—j)p+a+(1- )ﬁ))vn1®v
Jj=0

fa}

O




Irreducible submodules

Theorem

Let h= hpq, and let u € V(c, cw, h, hy) be a subsingular
vector such that U = Lq,p. Ifoo+(1—p)B € Z, module

Voﬁ,ﬁ,o ® L(cL, cw, h, hw) is reducible. There exists k € Z
such that Uy is irreducible.
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Let h= hpq, and let u € V(c, cw, h, hy) be a subsingular
vector such that U = Lq,p. Ifoo+(1—p)B € Z, module

Voﬁ,ﬁ,o ® L(cL, cw, h, hw) is reducible. There exists k € Z
such that Uy is irreducible.

Ujp 2 U—jp for 1<j<q,
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Irreducible submodules

Theorem

Let h= hpq, and let u € V(c, cw, h, hy) be a subsingular
vector such that U = Lq,p. Ifoo+(1—p)B € Z, module

Voﬁ,ﬁ,o ® L(cL, cw, h, hw) is reducible. There exists k € Z
such that Uy is irreducible.

Ujp 2 U—jp for 1<j<q,

Irreducibility

Voﬁ,‘B,O X L(CI_. Cw, h, hw) = U—qpv




Irreducible submodules

Theorem

Let h= hpq, and let u € V(c, cw, h, hy) be a subsingular
vector such that U = Lq,p. Ifoo+(1—p)B € Z, module

Voﬁ,ﬁ,o ® L(cL, cw, h, hw) is reducible. There exists k € Z
such that Uy is irreducible.

Ujp 2 U—jp for 1<j<q,

Irreducibility

Voﬁ,‘B,O X L(CI_. Cw, h, hw) = U—qpv

Ui_p is irreducible.
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Corollary
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Corollary

(i) Vypo® LlcL, cw,0,0) is irreducible if and only if
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Weight (0,0)

Corollary

(i) Vypo® LlcL, cw,0,0) is irreducible if and only if
a2

(ii) Uy is irreducible submodule in Vo/,ﬁ,o ® L(cr, cw,0,0).
If1—p# 177‘7 for g € IN then

(Vé,;s,o ® L(e, CWv0,0)> JUp = L(c,cw,1—B,0),

Highest weight (0,0)

(Vé,l,O &® L(CL, cw, 0, 0)) /Uy = L(CL, cw, 1, 0)




Weight (0,0)

Corollary

(i) Vypo® LlcL, cw,0,0) is irreducible if and only if
a2

(ii) Uy is irreducible submodule in Vo/,ﬁ,o ® L(cr, cw,0,0).
If1—p# 177‘7 for g € IN then

(Vé,;s,o ® L(e, CWv0,0)> JUp = L(c,cw,1—B,0),

Highest weight (0,0)

(V6.10® L(ct, cw.0,0)) /Up = L(cr, cw, 1,0).
Ifge N\ {1}

1—
(VOI 1+g &® L(CL, Cw,0,0)> JUg = L/(CL, cw, Tq,O)
i 2 1




VOA

L(ct, cw,0,0) is the only quotient of V/(¢;, cw,0,0) with
the structure of vertex operator algebra.

VOA W(2,2) and
intertwining
operators
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L(ct, cw,0,0) is the only quotient of V/(¢., cw, 0,0) with
the structure of vertex operator algebra.

Theorem (Zhang-Dong)
Let ¢;,cwy # 0. Then

1. There is a unique VOA structure on L(c;, cw,0,0)
which we denote L (c;, cw ), with the vacuum vector
v, and the Virasoro element w = L_pv. L (c;, cw) is
generated with w and x = W_,v and

VOA W(2,2) and

Y (w' Z) = ZHEZ anfnle Y(X' Z) = ZHEZ anin72' intertwining

operators




VOA

L(ct, cw,0,0) is the only quotient of V/(¢., cw, 0,0) with
the structure of vertex operator algebra.

Theorem (Zhang-Dong)
Let ¢;,cwy # 0. Then
1. There is a unique VOA structure on L(c., cw,0,0)
which we denote L (c;, cw ), with the vacuum vector

v, and the Virasoro element w = L_pv. L (c;, cw) is
generated with w and x = W_,v and

VOA W(2,2) and

Y (w' Z) = ZHEZ anfnle Y(X' Z) = ZHEZ anin72' intertwining

operators

2. Any quotient of V/(ci, cw, h, hw) is an
LY (cy, cw)-module, and
{L(c,cw,h, hw) : h,hw € C} gives a complete list of
irreducible L (c;, cw )-modules.
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» Suppose a nontrivial intertwining operator Z of type
M(CL,Cw,h:;h,W)

(L(CL,CW,hl,O) M(CL,CW.hg,hW)) exists
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vector VOA W(2,2) and
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» Recall that Wov = W_1v =0




Intertwining operators

» M(cL, cw, h, hw) - any highest weight module

» Suppose a nontrivial intertwining operator Z of type
M(CL,Cw,h:;h,W)

(L(CL,CW,hl,O) M(CL,CW.hg,hW)) exists

» Let hy #0 and v € L(c, cw, h1,0) the highest weight
vector VOA W(2,2) and
s
» Recall that Wov = W_1v =0
> I(v,z) = 27" Lypez Vinyz " for w = hy + hy — hs




Intertwining operators

m+1
|:Lmv V(n):| = Z < i > (Liflv)(ernfiJrl) =

i>0
= (L—lv)(m+n+l) +(m+1) (LOV)(m+n) =
= —((X—i—n—i—m—i—l) V(m+n)—|—(m—|— 1)h1V(m+n) =
=—(n+a+@+m)(1=hm))Vimin

VOA W(2,2) and
intertwining
operators




Intertwining operators

m+1
|:Lmv V(n):| = Z < i > (Liflv)(ernfiJrl) =

i>0
= (L—lv)(m+n+l) +(m+1) (LOV)(m+n) =
= —((X—i—n—i—m—i—l) V(m+n)—|—(m—|— 1)h1V(m+n) =
=—(n+a+@+m)(1=hm))Vimin

VOA W(2,2) and
intertwining

m + ]. operators
( : ) (Vviflv)(ernfiJrl) =

i

5
<
2
—_—
I
s 2]

= (Waav) (mypyr) + (m+1) (Wov) gy ) =0

so components v(,) span V, , .




Intertwining operators and reducibility

We get a nontrivial £-homomorphism

D:Vy1 po®M(c, cw, ho, hw) — M(c, cw, hs, hiy),
q)(V(n)@X) = V(n)X.
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Intertwining operators and reducibility

We get a nontrivial £-homomorphism

D:Vy1 po®M(c, cw, ho, hw) — M(c, cw, hs, hiy),
q)(V(n)@X) = V(n)X.

. . . VOA W(2,2) and
dimensions of weight spaces = intertwining

operators

o

Vi1 mo®M(cr, ew, ha, hw) is reducible




Intertwining operators and reducibility

M(cp, cw, h, hw) is LY (c., ey )-module = there exist

M(CL,Cw,h,hw) )
)

intertwining operators of type (L(cL w.0.0) M(cwruhhy
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Intertwining operators and reducibility

M(cp, cw, h, hw) is LY (c., ey )-module = there exist
M(CL,Cw,h,hw) )
CL,Cw,0,0) M(CL,Cw,h,hw)
M(CL,Cw,h,hw) )
M(CL,Cw,h,hw) L(CL,Cw,0,0) )

intertwining operators of type (L(

and transposed operator (
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Intertwining operators and reducibility

M(cp, cw, h, hw) is LY (c., ey )-module = there exist
M(CL,Cw,h,hw) )
CL,Cw,0,0) M(CL,Cw,h,hw)

M(cL.cw . hih
and transposed operator <M(cL,cW,/(1(,:/L1MC/|3V L(Z?Cw,0,0))'

In particular, operators of type

< L(CL,Cw,h,O) )
L(CL, cw, h, 0) L(C/_, Cw, 0, 0)

intertwining operators of type (L(

and
L/(CL,Cw, h,O)
LI<CL, Cw, h, 0) L(CL, Cw, 0, 0)

exist for all h.

VOA W(2,2) and
intertwining
operators




Intertwining operators and reducibility

Since intertwining operators of types

< L(CL,Cw,l—‘B,O) )
L(CL, W, 1— IB,O) L(CL, Cw,0,0)

and

—_

< L CL, Cw %q,O) >
L/(CL,Cw,l_Tq,O) L(CL,Cw,0,0)

exist,

VOA W(2,2) and
intertwining
operators




Intertwining operators and reducibility

Since intertwining operators of types

< L(CL,Cw,l—‘B,O) )
L(CL, W, 1— IB,O) L(CL, Cw,0,0)

and
< L (CL cw, 1 q 0) >
L/(CL, cw, qu, 0) L(CL, cw, 0, 0)
exist, there are nontrivial £-homomorphisms

Voo @ L(c,0,0) — L(c, ew, 1~ B,0),

1—gq )

0 2

V’1+q0®L(c00)—>L(CL,CW,7 0).

VOA W(2,2) and
intertwining
operators




The twisted Heisenberg-Virasoro algebra

Algebra H is a complex Lie algebra with a basis
{Ln, In,Cr,C;,Cry:n € Z} and a Lie bracket

n3—n

Lny Lm] = (n - m) Ln+m + (5n,7m CL;

L, | ] _mln+m - 5,,,7,”(”2 + n) C‘Ll,
In, ] = n(;n,fmcl.
H, C)=[H Cul=[H,C] =

The twisted
Heisenberg-

Virasoro
algebra




The twisted Heisenberg-Virasoro algebra

The twisted
Heisenberg-

Virasoro

Algebra H is a complex Lie algebra with a basis algebra
{Ln, In,Cr,C;,Cry:n € Z} and a Lie bracket

n3—n

Lny Lm] = (n - m) Ln+m + (5n,7m CL;

[
[[—n ] —mlyym — 5n,fm(n2 + n) Cii,
[I ] = n(;n,fmcl.
(H,C)=[H.Cu]=[H.C] =

{Ls, C,: n € Z} spans a copy of the Virasoro algebra.




The twisted Heisenberg-Virasoro algebra

The twisted
Heisenberg-

Virasoro

Algebra H is a complex Lie algebra with a basis algebra
{Ln, In,Cr,C;,Cry:n € Z} and a Lie bracket

n3—n

Lny Lm] = (n - m) Ln+m + (5n,7m CL;

Ly, 1 ] _mln+m - 5,,,7,”(”2 + n) Cur,
In ] = n(;n,fmcl.

[
[
[In,
[H,C] = [H,Cul =[H,C] =

{Ls, C,: n € Z} spans a copy of the Virasoro algebra.

{Ih, C; : n € Z} spans a copy of the Heisenberg algebra.
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Structure of Verma
modules

» V(c, ¢, h, hy) - the Verma module with highest
weight (h, h;) and central charge (c;, ¢/, cr ).
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The Verma module

» V(c, ¢, h, hy) - the Verma module with highest
weight (h, h;) and central charge (c;, ¢/, cr ).

> We study the highest weight representation theory at
level zero (¢; = 0).

> Appears in the representation theory of toroidal Lie
algebras.

Structure of Verma
modules




The Verma module

v

V(ce,cr ey, h, hy) - the Verma module with highest
weight (h, h;) and central charge (c;, ¢/, cr ).

We study the highest weight representation theory at
level zero (¢; = 0).

Appears in the representation theory of toroidal Lie
algebras.

Note that fy acts semisimply on entire module.

Structure of Verma
modules




The Verma module

Theorem (Y. Billig)

Structure of Verma
Assume that ¢; = 0 and ¢, # 0. P
(i) Ifch—L’, ¢ Z or L — 1, then the Verma module

CLi

V(cr, c1,0, h, hy) is irreducible.




The Verma module

Theorem (Y. Billig)

Assume that ¢; = 0 and ¢, # 0.
(i) Ifch—L’, ¢ Z or L — 1, then the Verma module

CLi

V(cr, cy,0, h, hy) is irreducible.
(i) If b e Z\ {1}, then V(c;, 1,0, h, hy) has a singular

CL
vector u at level p = ]Ch—L’I —1.
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The Verma module

Theorem (Y. Billig)
Structure of Verma

Assume that ¢; = 0 and ¢, # 0. e
(i) Ifch—L’, & Z or chT// =1, then the Verma module

V(cr, cy,0, h, hy) is irreducible.
(i) If b e Z\ {1}, then V(c;, 1,0, h, hy) has a singular

CLi
vector u at level p = ]Ch—L’I —1.
The quotient module
L(CL, 0, CL, 1 h, h/) = V(CL, 0, CL,I h, h/)/U('H)u is
irreducible and its character is

char L(c;,0, ¢y, h b)) = q"(1 — )] - ¢) 2.
i>1
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» From now on we assume that ¢, =0 and ¢;; # 0.
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Singular vectors

» From now on we assume that ¢, =0 and ¢;; # 0.

Structure of Verma
modules

> Define deg; x and X as before.
» 7 =C [/_1, o, .. ] v € V(CL, ¢y, 0, h, hL).
Theorem (Y. Billig)

Assume that p = |chTI/ —1| and u € V(cp,¢1,0,h, hy) is a
singular vector.




Singular vectors

» From now on we assume that ¢, =0 and ¢;; # 0.

Structure of Verma

modules

> Define deg; x and X as before.
» 7 =C [/_1, o, .. ] v € V(CL, ¢y, 0, h, hL).

Theorem (Y. Billig)
Assume that p = |chTI/ —1| and u € V(cp,¢1,0,h, hy) is a
singular vector.

(i) U(H) u= V(CL,O, CL,I h+ p, h/).




Singular vectors

» From now on we assume that ¢, =0 and ¢;; # 0.

Structure of Verma

modules

> Define deg; x and X as before.
» 7 =C [/_1, o, .. ] v € V(CL, ¢y, 0, h, hL).
Theorem (Y. Billig)

Assume that p = |chTI/ —1| and u € V(cp,¢1,0,h, hy) is a
singular vector.

(i) U(H) u= V(CL,O, CL’/,h—}-p, h/).
(i) If BL =14 p, then 7 = I_pvand uecZ.

CL




Singular vectors

» From now on we assume that ¢, =0 and ¢;; # 0.

Structure of Verma

modules

> Define deg; x and X as before.
» 7 =C [/_1, o, .. ] v € V(CL, ¢y, 0, h, hL).

Theorem (Y. Billig)
Assume that p = |chTI/ —1| and u € V(cp,¢1,0,h, hy) is a
singular vector.

(i) U(H) u= V(CL,O, CL’/,h—}-p, h/).
(i) If chTI, =1+p thent=/,vanduveT.
(i) If 2L =1—p, thenT = L.
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Once again we define a H-module structure on Virasoro
intermediate series:
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Intermediate series

Once again we define a H-module structure on Virasoro
intermediate series:

Let o, B, F € C define V, g r = @ Cv, with Lie bracket
neZ

Intermediate series

Lovm = —(m+a+ B+ nB) Vimin,
Invm = FVerny

CLVm == C/Vm == CL’/Vm =0.
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| di i
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Intermediate series

Once again we define a H-module structure on Virasoro
intermediate series:

Let o, B, F € C define V, g r = @ Cv, with Lie bracket

neZ
| di i
Ln Vm = — <ITI + © _|_ ‘B + n[B) Vm+ny ntermediate series
Invin = FVmin,
CLVm = C/ Vi — CL’/Vm =0.

As usual,

> Va,ﬁ,F = Vuc-i—k,ﬁ,F for k € Z,

> Vi pF is reducible if and only if & € Z and B € {0,1}
and F =0,




Intermediate series

Once again we define a H-module structure on Virasoro
intermediate series:
Let «, B, F € C define V,X,[;,F = @ Cv, with Lie bracket

neZ
| di i
Ln Vm = — <ITI + © _|_ ‘B + n[B) Vm+ny ntermediate series
Invin = FVmin,
CLVm = C/ Vi — CL’/Vm =0.

As usual,

> VipF = Vigkpr for k€ Z,
> Vi pF is reducible if and only if & € Z and B € {0,1}
and F =0,
n#—1
Véﬁ = VipF otherwise.




Tensor product modules

Consider V;’ﬁ’F ® L(c,0,c¢p,h, hy) module:

Li(vp®@x) = Livp @ x4 v, ® Lix,
In(Vva @x) = Fva @x+ vy @ Ipx, Tensor product
CGva®x) = c(vh®x),
Cvp®x) = 0
CLi(va®x) = c1i(va®x).




Tensor product modules

Consider V;’ﬁ’F ® L(c,0,c¢p,h, hy) module:

Li(vp ® x)
Im(Va ® x)
Cr(vy ® x)
Ci(vh ® x)
Cr.i1(va ® x)

» Generated by {v, @ v:ne Z}.

Liva @ x4+ vy, @ Lix,
Fup ® X + v @ I, Tensorprouc
CL(Vn ® X),
0

CL’/(V,7 (029 X).




Tensor product modules

Consider V;’ﬁ’F ® L(c,0,c¢p,h, hy) module:

Li(va ® x) Levn @ x + v, ® Lix,
In(Vva @x) = Fva @x+ vy @ Ipx, Tensor product
CGva®x) = c(vh®x),
Cvp®x) = 0
CLi(va®x) = c1i(va®x).

» Generated by {v, @ v:ne Z}.
» Set Uy = U(H) (v, ® v).
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Theorem
Vui,ﬁ,F ® L(ct,0,cp,h, hy) is irreducible if and only if
Uy, =Up41 forallne Z.
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Reducibility of a tensor product module

Theorem

Vui,ﬁ,F ® L(ct,0,cp,h, hy) is irreducible if and only if
Uy, =Up41 forallne Z.

Tensor product

Theorem
Vai,ﬁ,F ® V (c,0,cpy, h, hy) is reducible. Modules

V (c,0,coy,h—a—pB—n h), n€Z occur as
subquotients.




Reducibility of a tensor product module

Theorem
Vui,ﬁ,F ® L(ct,0,cp,h, hy) is irreducible if and only if
Uy, =Up41 forallne Z.

Tensor product

Theorem
Vai,ﬁ,F ® V (c,0,cpy, h, hy) is reducible. Modules

V (c,0,coy,h—a—pB—n h), n€Z occur as
subquotients.

For a complete solution of irreducibility problem for
Vvi,ﬁ,F ® L(ct,0,¢p,0,h, hy) we need more detailed formulas
for singular vectors.
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Irreducible H-module L(c;,0, ¢, ,0,0) has the structure of
vertex operator algebra which we denote L7 (c;, ¢ ).
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vertex operator algebra which we denote L7 (c;, ¢ ).
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vertex operator algebra which we denote L7 (c;, ¢ ).
Theorem (Y. Billig)
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The Heisenberg-Virasoro vertex-algebra

Irreducible H-module L(¢.,0, ¢, 0, 0) has the structure of
vertex operator algebra which we denote L7 (c;, ¢ ).
Theorem (Y. Billig)

Let c;; # 0. Then L™ (ci, ¢ ) is a simpe VOA, and
V(CL, 0, CL,I h, h/) and L(CL, 0, CL,I h, h/) are
LM (cy, cp.1)-modules. HeisenbergVirasoro

» LM(c;, ¢ ) can be realized as a subalgebra of the
Heisenberg vertex algebra M(1).

» Moreover, M (1)-modules M (1, y) become
LM (¢, ¢ 1)-modules, and also H-modules.

> (Joint work with D. Adamovi¢)
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Heisenberg vertex-algebra

» L =Zua+ Zp is a hyperbolic lattice such that
() = — (B.B) = 1, (. B) = 0.

» h = C ®z L is abelian Lie algebra and § its affinization.

~

> M(1,7) := U(h) Qucpepace) C where tC[t] ® b acts
trivially on C, b acts as (4, ) for & € h and ¢ acts as 1.
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Heisenberg vertex-algebra

v

L =Zux+ZpB is a hyperbolic lattice such that
(w,0) = = (B.B) =1, (&, p) = 0.

h = C ®yz L is abelian Lie algebra and § its affinization.

v

~

M (1, ’)’) = U(f)) ®U(C[t]®h€9€c) C where tC[t] ® b acts P
trivially on C, b acts as (6,7) for 6 € h and c acts as 1. [l
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e7 is a highest weight vector in M(1, 7).




Heisenberg vertex-algebra

v

L =Zux+ZpB is a hyperbolic lattice such that
(w,0) = = (B.B) =1, (&, p) = 0.

h = C ®yz L is abelian Lie algebra and § its affinization.

v

~

M (1, ’)’) = U(f)) ®U(C[t]®h€9€c) C where tC[t] ® b acts P
trivially on C, b acts as (6,7) for 6 € h and c acts as 1. [l

v

v

e7 is a highest weight vector in M(1, 7).

M (1) := M (1,0) is a vertex-algebra and M(1,y) for
v € b, are irreducible M(1)-modules.

v
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the vertex algebra associated to the lattice L.
» | =a(—1)+ B(—1) is a Heisenberg vector, and
w = a(=1)" = 3p(—1)° + Aa(=2) + up(-2) is a
Virasoro vector:

Heisenberg-Virasoro
VOA




Heisenberg-Virasoro vertex algebra

» C|[L] is a group algebra of L and V| = M(1) ® C|L]
the vertex algebra associated to the lattice L.

» | =a(—1)+ B(—1) is a Heisenberg vector, and
w = 3a(—1)% = 3B(—1)? + Aw(—2) + uB(—2) is a
Virasoro vector:
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Heisenberg-Virasoro vertex algebra L7 (c;, c; /) VoR e Virsere




Heisenberg-Virasoro vertex algebra

» C|[L] is a group algebra of L and V| = M(1) ® C|L]
the vertex algebra associated to the lattice L.

» | =a(—1)+ B(—1) is a Heisenberg vector, and
w = a(=1)" = 3p(—1)° + Aa(=2) + up(-2) is a
Virasoro vector:

» 1(z2)=Y(l,z) =L,ez lhz7" ! and
L(z) = Y(w, z) = ¥ ,cz Lz "2 generate the simple
Heisenberg-Virasoro vertex algebra L7 (c;, c; /)

» We get the twisted Heisenberg-Virasoro Lie algebra H
such that

CL:2—12(/\2—}l2), CL'/:/\—‘M
_2—CL 1 2_CL 1

N 24cy +§CL'I, = 24cy B ECL'I-

Heisenberg-Virasoro
VOA




Free-field realization

» For every r,s € C let e™*t5P is a H-singular vector and
U(H)e™* P is a highest weight module with the
highest weight (h, h;) where

1 1
h:Ar,5:§r2—§s2—/\r+‘us, hy=r—s
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» For every r,s € C let e™*t5P is a H-singular vector and
U(H)e™* P is a highest weight module with the
highest weight (h, h;) where

1 1
h:Ar,5:§r2—§s2—/\r+‘us, hy=r—s

Proposition

(i) Let (h,h)) € C2, hy # c1j. Then there exist unique
r.s € C such that e"™*P js a highest weight vector of the
highest weight (h, h;).
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Free-field realization

» For every r,s € C let e™*t5P is a H-singular vector and
U(H)e™* P is a highest weight module with the
highest weight (h, h;) where

1 1
h:Ar,5:§r2—§s2—/\r+‘us, hy=r—s

Proposition HgsenbergVirasoro
(i) Let (h,h)) € C2, hy # c1j. Then there exist unique
r.s € C such that e"™*P js a highest weight vector of the
highest weight (h, h;).

(ii) Foreveryr,s € C such thatr—s=A—u=cy,
e"tsB js a highest weight vector of weight

CL—2
24

(h, h/) = ( ,CL'/).
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Free-field realization

» Denote by F, s the M(1)-module generated by e™*sF.
» Itis also a L7 (c;, c; 1)-module, therefore a H-module.
» Obviously U(H)e™*5P is a highest weight H—module.




Free-field realization

Denote by F, s the M(1)-module generated by e +sB,
It is also a L7 (c;, c;.;)-module, therefore a H-module.
Obviously U(H)e™ <P is a highest weight {-module.

There is a surjective H—homomorphism

v

v

v

v
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Free-field realization

Denote by F, s the M(1)-module generated by e +sB,
It is also a L7 (c;, c;.;)-module, therefore a H-module.
Obviously U(H)e™ <P is a highest weight {-module.

There is a surjective H—homomorphism

v

v

v

v

Heisenberg-Virasoro
VOA

®:V(c,0,coy,h b)) — U(H)e™ P

such that ®(v, ) = e™5P and that ®|Z is injective.

Proposition
Assume that —1¢& —Z~y. Then
Frs = V(e 0 CL/ h, h;) as L™ (cy, c1.1)-modules.




Free-field realization

» For a vertex-algebra V and V-module M, one can
define a contragradient module M*.
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Free-field realization

» For a vertex-algebra V and V-module M, one can
define a contragradient module M*.

» One can show that .7:;*’5 = ng_r,gy_s.

» Therefore
L(CL, 0, CL,I h, h/>* = L(CL, 0, CL,I h,—h; + 2C/_’/).
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Free-field realization

» For a vertex-algebra V and V-module M, one can
define a contragradient module M*.
» One can show that F/ = Fop—r2—s-

» Therefore
L(CL, 0, CL,I h, h/>* = L(CL, 0, CL,I h,—h; + 2C/_’/).

Proposition

Assume that % —1=—pe —Z-p. Asa

LM (cy, cr.))-module F, s is generated by e"*+sF and a family
of subsingular vectors {v, , : n > 1} of weights h+ np.

There is a filtration F, s = Up>0Z, such that

Zn/Zn 1 = LM (c;,0, ¢, h+np, hy).
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are defined by the following equation:
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» Schur polynomials S, (x1, x2, - -+ ) in variables x1, x2, . . .
are defined by the following equation:

- (i o ) = L)y

> Also
X1 X2 e X Singular vectors
1 —r+ 1 X1 Xo e Xr_1
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Schur polynomials

» Schur polynomials S, (x1, x2, - -+ ) in variables x1, x2, . . .
are defined by the following equation:

> Also
X1 X2 e X Singular vectors
1 —r+ 1 X1 Xo e Xr_1
Sr(Xl'XZV‘“):F 0 —r+2 pel )
0 .. 0 -1 X1

» Schur polynomials naturally appear in formulas for
vertex operator for lattice vertex algebras.




Schur polynomials and singular vectors

Lemma

IfveZcC V(e,0 ¢y, h h)issuch that ®(v) € F,s is a
non-trivial singular vector, then v is a singular vector in
\/(CL, 0, CL.I, h, h/).
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Schur polynomials and singular vectors

Lemma

IfveZcC V(e,0 ¢y, h h)issuch that ®(v) € F,s is a
non-trivial singular vector, then v is a singular vector in
\/(CL, 0, CL.I, h, h/).

: R ) _ Lo} aratsp ;
Since 5, ( o Tar o )e is a singular vector

in U(H)e™ P we have:
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Schur polynomials and singular vectors

Lemma

IfveZcC V(e,0 ¢y, h h)issuch that ®(v) € F,s is a
non-trivial singular vector, then v is a singular vector in
\/(CL, 0, CL.I, h, h/).

Since S, (—% —%, e, —%) e’ s is a singular vector
in U(H)e™ P we have:
Singular vectors
Theorem :
Assume that ¢, ; # 0 and p = % — 1€ Z-g. Then Qv p,
where | ; }
=S5, <_—1'_—2 _—P>
cL CLy L,

is a singular vector of weight p in the Verma module
V(cw,0,cep,h (14 p)cry).




Schur polynomials and singular vectors

> Using technical lemma and some calculation with
e P in F, s we get:
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Schur polynomials and singular vectors

> Using technical lemma and some calculation with
e P in F, s we get:

Theorem
Assume that ¢, j #0 and p =1 — % € Z~o. Then Avyp,
where '

Pl ﬁ+CL—2(p—1)2—pi 5</1 I_,'>/,'p

i=0 \P 24 p e cLi) cL
is a singular vector of weight p in the Verma module
V(c,0,¢c00,h (L —p)ery).




Intertwining operators and tensor product
modules

As with Virasoro and W/(2,2) algebras, the existence of a
nontrivial intertwining operator of type

L(CL, O, CL’/, h/l, h;/)
L(

c,0,¢c0h hy) L(c,0,¢0 b, H)
yields a nontrivial H-homomorphism
q) . VD:,‘B,F ® L(CLv Ov CL,/I h/y h;) - L(CLy Oy CL,IV hl/y h;/)
where

a=h+h—-H, B=1—h F=h.

Fusion rules and
tensor product
modules




Intertwining operators and tensor product
modules

As with Virasoro and W/(2,2) algebras, the existence of a
nontrivial intertwining operator of type

L(CL, O, CL’/, h/l, h;/)
L(

c,0,¢c0h hy) L(c,0,¢0 b, H)
yields a nontrivial H-homomorphism
@ Vogr®L(cr,0,c00, 0 hy) — L(er,0,c0, b, h)
where
a=h+h—-H, B=1—h F=h.

Again, by dimension argument, we get reducibility of
V‘)iquF ® L(CL' Ov CL Iy h,, h;)

Fusion rules and
tensor product
modules




Fusion rules

From the standard fusion rules result for the Heisenberg
vertex algebra M(1) we get intertwining operators in the
category of H—modules:
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Fusion rules

From the standard fusion rules result for the Heisenberg
vertex algebra M(1) we get intertwining operators in the
category of H—modules:

Theorem
Let (h,h)) = (An, i —51), (W, h) = (Ar, 5, 12— ) € C?
such that 2L — 1 M gz,

T CL,i
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Fusion rules

From the standard fusion rules result for the Heisenberg
vertex algebra M(1) we get intertwining operators in the
category of H—modules:

Theorem
Let (h,h)) = (An, i —51), (W, h) = (Ar, 5, 12— ) € C?

h; h; h/+h; .
such thata—l,a I’T_l & Z-~q. Then there is a
non-trivial intertwining operator of the type

LH(CL, O, CL’/, h,/, h/ + h;) Fusion rulzs and
tensor product
L*(cr,0, ¢, b hy) L"(c,0,c00, 1, h)) .

modules
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where h"' = Ay 41y 5145,-




Fusion rules

From the standard fusion rules result for the Heisenberg
vertex algebra M(1) we get intertwining operators in the
category of H—modules:

Theorem
Let (h,h)) = (An, i —51), (W, h) = (Ar, 5, 12— ) € C?

/ /
such that % S PR T /R | & Z-~q. Then there is a
non-trivial intertwining operator of the type

= "ocL
LH(CL, O, CL’/, h,/, h/ + h;) Fusion rulzs and
tensor product
L"(c,0, ¢, b hy) LM(cp,0,¢00,H H)) :

modules

where W' = A, 4+, s,+s,- In particular, the H—module
Vigr® L"(c.,0,cy, i, b)) is reducible where

x=h+h—H' B=1—h F=Hh.




Fusion rules

Corollary
Let (h, h/) = (AI’LSN n— 51), (h/, h;) = (Ar2,52v rp — 52) e C?
and that there are p, q € Z~o, q < p such that
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Fusion rules

Corollary

Let (h, h/) = (AI’LSN n— 51), (h/, h;) = (Ar2,52v rp — 52) e C?
and that there are p, q € Z~o, q < p such that

Then there is a non-trivial intertwining operator of the type

L"(c1, 0, ¢, b, hy + hy) b
LH(CL, 0, CL,I h, h[) LH(CL, 0, CL,I h/, h;)

modules
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where "' = Ay, 5y -




Fusion rules

Corollary

Let (h, h/) = (AI’LSN n— 51), (h/, h;) = (Ar2,52v rp — 52) e C?
and that there are p, q € Z~o, q < p such that

Then there is a non-trivial intertwining operator of the type

modules

L"(c1, 0, ¢, b, hy + hy) b
LH(CL, 0, CL,I h, h[) LH(CL, 0, CL,I h/, h;)

Where W' = A, _1 s,—s - In particular, the H—module
Vigr® L"(c.,0,cy, W, b)) is reducible where

x=h+h—H' B=1—h F=h.




(Ir)reducibility of a tensor product

> Next we use formulas for () and A to get irreducibility
criterion for Vé’ﬁ’F ® L(c,0,¢cpy, h, hy).
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» R. Lu and K. Zhao introduced a useful criterion:
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(Ir)reducibility of a tensor product

> Next we use formulas for () and A to get irreducibility
criterion for Vé’ﬁ’F ® L(c,0,¢cpy, h, hy).

» R. Lu and K. Zhao introduced a useful criterion:

» Define a linear map ¢, : U(H_) — C

¢,(1) =1
(Pn(l(_l)u) = _F(Pn(u)
(Pn(L(_I)u) = (‘X + ﬁ +k+i+n— I;B)(Pn(u)
or ue U(H ), s




(Ir)reducibility of a tensor product

> Next we use formulas for () and A to get irreducibility
criterion for Vé’ﬁ’F ® L(c,0,¢cpy, h, hy).

» R. Lu and K. Zhao introduced a useful criterion:
» Define a linear map ¢, : U(H_) — C

(Pn(l(_l)u) = _F(Pn(u)
(Pn(L(_I)u) = (‘X+ﬁ+ k+i+n— I;B)(Pn(u)
forue U(H )_ e

> /3F ® L"(c;,0,¢cpy, h, hy) is irreducible if and only if
$,(Q) #0 (¢,(A) #0) for every n € Z.

Irreducibility of a
tensor product
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> If p= B 1 e Z-y, then for every n € Z we have

cLi

p

$,(Q) = (—1)P<_cf/>,




Irreducibility criterion

> If p= B 1 e Z-y, then for every n € Z we have

cLi

$,(Q) = (—1)P<_cf/>,

p

Theorem
Let p = % — 1€ Z+g. Module Voi,ﬁ,F & LH(CL, 0, CL.I h, h/)
is irreducible if and only if F # (i — p)cyy, fori=1,..., p.




Irreducibility criterion

> If p= B 1 e Z-y, then for every n € Z we have

cLi

$,(Q) = (—1)P<_cf/>,

p

Theorem
Let p = % — 1€ Z+g. Module Voi,ﬁ,F & LH(CL, 0, CL.I h, h/)
is irreducible if and only if F # (i — p)cyy, fori=1,..., p.

» This expands the list of reducible tensor products
realized with intertwining operators.
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for a certain polynomial g, € C[x].
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> If % —1=—p & —Z-y, then for every n € Z we have

0,80 = (<17 (7 T
o= (7 ) )

for a certain polynomial g, € C[x].

» If F/e ¢ {1,..., p — 1}, then for every n € Z there
is a unique & := &, € C such that ¢ _(A) = 0.




Irreducibiliy criterion

> If % —1=—p & —Z-y, then for every n € Z we have

0,80 = (<17 (7 T
o= (7 ) )

for a certain polynomial g, € C[x].
» If F/e ¢ {1,..., p — 1}, then for every n € Z there
is a unique & := &, € C such that ¢ _(A) = 0.

» This, along with previous results on existence of
intertwining operators result with the following:
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Theorem

Let b —1 = —p € —Z~q. We write V short for

CL,i

Vllﬁv,:v® L(CL, 0, CL Iy h, h/).
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(i) Let F/c s ¢{1,..., p—1} and let ag € C be such
that ¢o(A) = 0. Then V is reducible if and only if & = g
mod Z.




Irreducibiliy criterion

Theorem
Let b —1 = —p € —Z~q. We write V short for

CL,i
Vﬂi,ﬁu‘: &® L(CL, 0, CLI h, h/).
(i) Let F/c s ¢{1,..., p—1} and let ag € C be such
that ¢o(A) = 0. Then V is reducible if and only if & = g
mod Z. In this case W = U(H) (v ® v) is irreducible
submodule of V and V/W? is a highest weight H-module
L(ct,0,cy, b, h) (not necessarily irreducible) where

' =—ag+h+(1-pB), h = F+h.




Irreducibiliy criterion

Theorem
Let b —1 = —p € —Z~q. We write V short for

CL,i

Vllﬁv,:y® L(CL, 0, CL Iy h, h/).

4

(i) Let F/c s ¢{1,..., p—1} and let ag € C be such
that ¢o(A) = 0. Then V is reducible if and only if & = g
mod Z. In this case W = U(H) (v ® v) is irreducible
submodule of V and V/W? is a highest weight H-module
L(ct,0,cy, b, h) (not necessarily irreducible) where

' =—ag+h+(1-pB), h = F+h.

(i) Let F/cy€{2,...,p—1}. Then V is reducible.




Irreducibiliy criterion

Theorem
Let b —1 = —p € —Z~q. We write V short for

CL,i
Vﬂi,ﬁu‘: &® L(CL, 0, CLI h, h/).
(i) Let F/c s ¢{1,..., p—1} and let ag € C be such
that ¢o(A) = 0. Then V is reducible if and only if & = g
mod Z. In this case W = U(H) (v ® v) is irreducible
submodule of V and V/W? is a highest weight H-module

L(ct,0,¢, ", h}) (not necessarily irreducible) where
' =—ag+h+(1-pB), h = F+h.

(i) Let F/cy€{2,...,p—1}. Then V is reducible.
(i) Letp>1and F/c,; =1. Then V is reducible if and

only if 1 — g = %2




Fusion rules

Theorem
Let (h,h;) = (An sy, 1 —s1), (W, h)) = (A5, 12 — 52) such
that

h
— —1=q —L—-1=p, pqgez\{0}.

More fusion rules




Fusion rules

Theorem
Let (h,h;) = (An sy, 1 —s1), (W, h)) = (A5, 12 — 52) such
that

h
— —1=q —L—-1=p, pqgez\{0}.

Let

H Ny
d = dim L"(c,0,c0, b H))
L" (e, 0 e hhy)  L(c,0,c0, b, BY)

More fusion rules




Fusion rules

Theorem

Let (h,h;) = (An sy, 1 —s1), (W, h)) = (A5, 12 — 52) such
that

q ——~—-1=p, pqeZ\{0}.
Let

H Ny
d =dim/ L™ (cr, 0, i W, ) |
L(e O, erihihi) L7 (er,0 e b hp)

Then d =1 if and only if h} = h; + h) and one of the
following holds:

More fusion rules




Fusion rules

Theorem

Let (h,h;) = (An sy, 1 —s1), (W, h)) = (A5, 12 — 52) such
that

q — —1=p, pqgeZ\{0}.
Let

H Ny
d =dim/ L™ (cr, 0, i W, ) |
L(e O, erihihi) L7 (er,0 e b hp)

Then d =1 if and only if h} = h; + h) and one of the
following holds:

. 1 More fusion rules
(I) p.q <0 and h" = AI’1+I’2,51+52




Fusion rules

Theorem

Let (h,h;) = (An sy, 1 —s1), (W, h)) = (A5, 12 — 52) such
that

q — —1=p, pqgeZ\{0}.
Let

H Ny
d =dim/ L™ (cr, 0, i W, ) |
L(e O, erihihi) L7 (er,0 e b hp)

Then d =1 if and only if h} = h; + h) and one of the
following holds:

) More fusion rules
(i) p.g<0and ' = A tr, s+
(i) 1< —g<pand h" = Ap—ns—s




Fusion rules

Theorem

Let (h,h;) = (An sy, 1 —s1), (W, h)) = (A5, 12 — 52) such
that

q — —1=p, pqgeZ\{0}.
Let

H Ny
d =dim/ L™ (cr, 0, i W, ) |
L(e O, erihihi) L7 (er,0 e b hp)

Then d =1 if and only if h} = h; + h) and one of the
following holds:

(l) pv q < 0 and h,/ = Ar1+r2,51+52 More fusion rules
(ii) 1<—-qg<pand h" = Ary—r, -5
(iii) 1< —p<Lg and b’ = Ar2—r1,$2—51




Fusion rules

Theorem

Let (h,h;) = (An sy, 1 —s1), (W, h)) = (A5, 12 — 52) such
that

q — —1=p, pqgeZ\{0}.
Let

H Ny
d =dim/ L™ (cr, 0, i W, ) |
L(e O, erihihi) L7 (er,0 e b hp)

Then d =1 if and only if h} = h; + h) and one of the
following holds:

(I) P, q < 0 and h// — Ar1+r2v51+52 More fusion rules

(i) 1< —g<pand h" = Ap—ns—s

(iii) 1< —p<Lg and b’ = Ar2—r1,$2—51
d = 0 otherwise.




Nontrivial intertwining operators

( (Ar1+r2,51+52v (1 - (P +q— l)CL,I) >
(Ars (L=q)crs) (Brs, (1—p)ers)
for p,g>1

( (Arzfn,szfsw (1 - (q —pP— l)CL,/) >
(A,le, (1 - q)CL,I) (Arz,Sw (1 + P)CL,I)
for1<qg<p

( (Arzfn,szfsw (1 - (P —q—- l)CL,/) >
(A,le, (1 + q)CL,I) (Arz,SQv (1 - P)CL,I)
for1<p<gq

More fusion rules




Vertex-algebra homomorphism

» Vertex-algebra L (c;, cyy) is generated by

Y(Loz)= Y Lz "2 Y(Wop,2)= ) W,z "2
neZ neZ

Free-field
realization of
W(2,2)




Vertex-algebra homomorphism

» Vertex-algebra L (c;, cyy) is generated by
Y(Loz)= Y Lz "2 Y(Wop,2)= ) W,z "2
neZ neZ
» Vertex-algebra L™ (c;, ¢, /) is generated by

Y(L_p,z) = Zsz, (I-1,2) = le

neZ neZ

Free-field
realization of

W(2.2)




Vertex-algebra homomorphism

» Vertex-algebra L (c;, cyy) is generated by

Y(Loz)= Y Lz "2 Y(Wop,2)= ) W,z "2
neZ neZ

» Vertex-algebra L™ (c;, ¢, /) is generated by

Y(L_p,z) = Zsz, (I-1,2) = le

neZ neZ

Theorem
There is a non-trivial homomorphism of vertex algebras

Y. LW(CL,CW) — LH(CL. cLr)
L72 — L,Ql
Wy — (I?; +2¢c,/12)1

Free-field
realization of

where w(2.2)
cw = —24c} .




Vertex-algebra homomorphism

» Every L™ (¢, ¢, /)-module becomes a
LY (cy, cw )-module.

Free-field
realization of
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Vertex-algebra homomorphism

» Every L™ (¢, ¢, /)-module becomes a
LY (cy, cw )-module.

» V(¢ ,0,cp,h hy)isa LY (c, cw)-module and vy p,
is a W(2,2) highest weight vector such that

L(O)Vh'h/ = th.h/' W(O)Vh,h/ = hWVh,h/

where hW = h/(h/ - 2CL,I)-

Free-field
realization of
W(2,2)




Vertex-algebra homomorphism

» Every L™ (¢, ¢, /)-module becomes a
LY (cy, cw )-module.

» V(¢ ,0,cp,h hy)isa LY (c, cw)-module and vy p,
is a W(2,2) highest weight vector such that

L(O)Vh'h/ = th.h/' W(O)Vh,h/ = hWVh,h/

where hW = h/(h/ - 2CL,I)-
» There is a nontrivial W(2, 2)-homomorphism

¥ VW2 (e e, b hw) — V(e 0,c0y, b hy)

Free-field
realization of
W(2,2)




Highest weight H-modules as W(2,2)-modules

Example
Let hw = 52 cw = (P> — 1), = hi(hy —2c1/) as
above. Then there are nontrivial W(2,2)-homomorphisms

VW2 (¢ ¢y, h A cW)
T+x/ \Y,

VH(CL,O, CLI, h, (1 + p) CL'/) VH(CL,O, CLI h, (1 — p) CLI

Free-field
realization of

W(2.2)




Highest weight H-modules as W(2,2)-modules

Theorem
(i) Let % —1¢ —Z~y. Then ¥ is an isomorphism of
W (2, 2)-modules.

Free-field
realization of

W(2.2)




Highest weight H-modules as W(2,2)-modules

Theorem

(i) Let % —1¢ —Z~y. Then ¥ is an isomorphism of
W (2, 2)-modules.

(i) If 2 —1=peZsg then

(s () )

is a singular vector in VW(2'2)(CL, cw, h, hW)h+p-

Free-field
realization of
W(2,2)




Highest weight H-modules as W(2,2)-modules

Theorem

(i) Let % —1¢ —Z~y. Then ¥ is an isomorphism of
W (2, 2)-modules.

(i) If 2 —1=peZsg then

(s () )

is a singular vector in VW(2'2)(CL, cw, h, hW)h+p-

(iii) If% —1=-—p&€ —Z-gthen¥ (u') = 0.

Free-field
realization of
W(2,2)




Highest weight H-modules as W(2,2)-modules

Theorem
(i) Let % —1¢ —Z~y. Then ¥ is an isomorphism of
W (2, 2)-modules.

(i) If 2 —1=peZsg then

CL

(s () )

is a singular vector in VW(2'2)(CL, cw, h, hW)h+p-

(iii) /fﬂ —1=-—p&€ —Z-gthen¥ (u') = 0.

(iv) Let 'L — 1= —pec —Z-¢ and let u be a subsingular

CLI
vector in VW(22) (cL, cw, hpg, hW)h-i—pq Then ¥ (u) is a Free-field

realization of
W(2,2
singular vector in VM (c;,0,cpy, h, (1 —p)cy). &2




The End

THANK YOU!




The End

THANK YOU!

...if you're still awake... :)
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