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1 Introduction

The problem of regression is to estimate the value of a dependent numeric vari-
able based on the values of one or more independent numeric variables. Regres-
sion algorithms can be used for prediction (including forecasting of time-series
data), inference, hypothesis testing, and modeling of causal relationships. Al-
though this problem has been studied extensively in statistics, it has not received
much attention from the data mining community [5, 11].

Statistical approaches try to model the relationship between the dependent
and independent variables as a closed form function. It is the user’s responsibility
to make an intelligent guess about the form of this function. This is done by
studying the application domain, and may involve trial-and-error methods. Once
the function’s form is fixed, its parameters (or coefficients) are estimated so as to
give a “best fit” to the available data. Typically, the function also has an error
term that is used to compensate for unexplained variation in the dependent
variable.

The above nature of statistical approaches requires that regression problems
in each specific application domain are separately studied and solved optimally
for that domain. For example, [6] applies non-linear regression models for lon-
gitudinal data with errors that follow a skew-elliptical distribution. The main
objective of the study was to predict normal versus abnormal pregnancy out-
comes from beta human chorionic gonadotropin data.

Another problem with the statistical approaches is outlier sensitivity. Outliers
(extreme cases) can seriously bias the results by pulling or pushing the regression
curve in a particular direction, leading to biased regression coefficients. Often,
excluding just a single extreme case can yield a completely different set of results.
In this paper we present a new regression algorithm PAGER — Parameterless,
Accurate, Generic, Efficient kNN-based Regression. PAGER has the following
desirable features:

1. Parameterless: We first design a version of PAGER that takes two input
parameters, and then show how these parameters can be automatically set,
thereby resulting in a parameterless algorithm. This removes the burden
from the user of having to set parameter values — a process that typically
involves repeated trial-and-error for every application domain and dataset.
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2. Accurate: Our experimental study in Section 3 shows that PAGER provides
more accurate estimates than its competitors on several datasets. Among the
algorithms we included for comparison are the best available algorithms from
the Weka toolkit [15].

3. Generic: Our approach is generic as it is based on piecewise linear nature
for continuous functions which is valid for most real-life datasets. Hence, it
will work “out-of-the-box” and doesn’t require to be tinkered with for every
application domain and dataset.

4. Efficient: PAGER is based on the nearest neighbour (k-NN) approach and
is thereby equally efficient, provided there are indexes available for easily
finding the k nearest neighbours.

5. Simple: The design of PAGER is simple, as it is based on the k-NN ap-
proach. This makes it easy to implement, maintain, embed and modify as
the situation demands.

6. Outlier Resilient: The output of PAGER for a particular input record R
is dependent only on the nearest neighbours of R and is therefore insensitive
to far-away ouliers.

The remainder of the report is organized as follows: In Section 2 we present
the PAGER algorithm. Then, in Section 3 we experimentally evaluate our algo-
rithm and show the results. Finally, in Section 4, we summarize the conclusions
of our study and identify future work.

2 The PAGER Algorithm

In this section we present the PAGER (Parameterless, Accurate, Generic, Effi-
cient kKNN-based Regression) algorithm. Being derived from nearest neighbour
methods, PAGER is also simple and outlier-resilient. These desirable features
make PAGER a very attractive alternative to existing approaches. In the remain-
der of this section, we use the notation shown in Table 1. First in Section 2.1,
we present a simple version of PAGER that requires two input parameters, and
then improve it by presenting two improved variations in Sections 2.2 and 2.3.

k The number of closest neighbours used for prediction.
Eip The error threshold

D The Training Data

A; Denotes a feature

X The feature vectors space. X= (41,...,A4n).

T A tuple in the X-space. T= (t1,...,tn)

y The response variable.

w; The weight assigned to feature A;.

€; The overall mean error of prediction in the A;, y plane.

Table 1. Notation
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2.1 Fixed Parameter PAGER

This version of PAGER takes two fixed parameters as input: (1) k, and (2)
E4p,. In addition, as mentioned in the problem definition (Section ?7?), the input
contains the training data D and the test tuple T = (¢1,...,t,) in X-space
whose value of the response variable y is to be estimated.

The algorithm then operates as follows:

First, determine the 2 nearest neighbours of T in X-space, say 17 and T5.
Then, for each feature value x;, i = 1,...,n, consider the space composed of
(z4,y), and let L; be the line that passes through T} and T» in the plane of (4;,
y). Using L;, we can estimate the value of y for different values of z;.

Using each L; computed above, estimate the value of y for T'. We get n values
of y (say y1, . ..,yn) that are not necessarily equal. The algorithm finally outputs
a normalized weighted average of these y;:

wyp X + ...t Wy X Yn

wy + ...+ w,

In order to calculate the weights, the following procedure is used:

Using each L;, estimate the value of y for the k£ nearest neighbours of T in
D. Since the actual values of y for these points is known, we compute e;, using
L; in estimating their y.

The lower the value of e;, more closely A; is related to y, and hence such
closely related variables should get higher weights. In order to consider only
dimensions that are closely related to y, we set w; = 0 for dimensions for which
e; > Eu, x min(e;), where Eyy, is the error threshold input to the algorithm. For
all other dimensions the weights are assigned as w; = maz(e;)/e;.

2.2 Parameterless PAGER

We observed that selecting the correct k is a crucial issue as noisy neighbours
contribute to incorrect error estimates. These incorrect error estimates would
further contribute to inaccurate weights for dimensions and hence wrong pre-
dicted values. Moreover, there is no value of k that is globally correct for all test
data points. The correct value depends on the specific location of the input test
point T" and is perhaps dependent on the density of training points around T'.

In order to determine the correct value of k for a given test point T, we
use the following procedure which takes 2 optional parameters as input. These
two parameters correspond to the lower (min) and upper bound (maz) of k. It
is not necessary to set these parameters accurately, and they are used only for
improving run-time efficiency.

This procedure iterates over different values of k, from min to max and
executes the algorithm in the previous section for each value of &k to estimate the
value of y for T'. While running this algorithm, it additionally computes the error
in prediction for all the k — 2 closest neighbours starting from the third closest
neighbour to the k** closest neighbour, ignoring the two neighbours which are
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used for constructing the L;. The mean error of estimation (E}) for a given value
of k is defined using the formula below:

— (E5+4...+ Ey)
E = —
k k—2

where each E; is the error in prediction of the i*"-closest neighbour using
equation 1. The error value Ej, is compared with the error values generated
in previous iterations and the k for which the lowest error value was reported
is chosen. The value of y for this k is the output predicted value. In case the
user doesn’t input max, we can detect the value of k after which mean error
value starts increasing steadily and then use this & for further calculations. The
rationale is that as k increases, initially, error would reduce upto a point and
then steadily increase due to increasing noisy or unrelated far away neighbours.
On the other hand, if the user doesn’t input min, we can set min to 1.

The algorithm of the previous section also had FE,; as one of the parame-
ter. Setting an accurate value for Ey, is not critical — it is only for improving
computational efficiency. This is because Fyy is only used to remove dimensions
with high error. This is not necessary as those dimensions with high error tend
to have a very small weight and hence do not affect the predicted values much.

By removing both k and Ey; parameters, the resulting algorithm becomes
parameterless.

2.3 Weighted Distance PAGER

The algorithms in the previous two subsections rely on euclidean distance metric
for finding the k nearest neighbours.

For two tuples Ty = (t11,...,t1n) and Ty = (to1,...,t2,), the distance is
computed as Y i, (t1; — t2;)2.

We also note that in the previous sections, weights were assigned to different
dimensions according to the accuracy of prediction in these dimensions. Higher
the weights assigned, higher was the accuracy of prediction in those dimensions
and vice versa.

The idea in this PAGER variation is to use the weights of dimensions in the
calculation of distance — and thereby use a weighted euclidean distance. The
nearest neighbour computation of the previous sections is done using this dis-
tance metric. The result of this change is that the distance along more important
(high-weight) dimensions will be magnified i.e. points that are far away along
these dimensions will move even farther and thereby will not be considered as
part of the neighbourhood.

The modified distance metric is computed as Y., (w; * (t1; — t2;))?, where
wi, ..., w, are the weights derived for the best k in the previous iteration.

Specifically, the weighted distance PAGER runs as follows:

The parameterless PAGER of the previous subsection is iterated more than
once where the distance function used in the first iteration is the regular eu-
clidean distance, but in the succeeding iterations a weighted euclidean distance
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is used where the weights are the same as that obtained for the best k£ in the
previous iteration. The rest of the steps followed in that iteration are same as
for parameterless PAGER. Weighted PAGER terminates when the least mean
error of estimation for neighbours is greater than or equal to that obtained in
the previous iterations.

2.4 Efficiency Considerations

The algorithms presented in the previous two subsections repeat the basic al-
gorithm (of Section 2.1) for several iterations. This may seem computationally
extravagant. However, this is not a problem because the value of k that pro-
duces effective accurate results is typically very small (less than 10). This means
that the basic algorithm can be iterated over several times and still maintain
interactive response times.

2.5 Illustration of PAGER

In this section we illustrate with an example as to how given an input tuple, the
task of estimation of the dependant variable takes place. Given an input training
dataset and an input test tuple, the task is to find the corresponding value of the
dependant variable. Let the input tuple be T=(24.1,32.1,29.3,7) with the fourth
attribute to be estimated. Let the training dataset contain 10 points. The points
and their euclidean distance from T are depicted in a tabular form in Table 2.
Let the independant variable dimensions be considered as (Ap, A1, A2) and the
dependant variable y.

Id Tuple Distance
TO 23.7, 32.1, 28.9, 18.7 |0.379
T1 24.0, 32.9, 29.2, 18.4 |0.508
T2 24.5, 32.1, 28.6, 18.0 |0.582
T3 23.4, 32.5, 29.8, 17.4 {0.601
T4 23.2, 32.4, 29.7, 19.0 |0.616
T5 23.2, 31.8, 29.7, 18.3 |0.616
T6 24.1, 32.9, 29.8, 18.8 |0.630
T7 23.9, 31.4, 29.9, 18.9 |0.645
T8 23.6, 32.7, 29.9, 19.1 |0.656
T9 25.0, 31.3, 29.2, 19.1 |0.711

Table 2. Illustrative Dataset

Lines constructed using first two neighbours (T, T7) in each dimension
Let a line be constructed in the plane of Ay and y for the two closest neighbours
To : (23.7, 32.1, 28.9, 18.7), Ty : (24.0, 32.9, 29.2, 18.4). Thus the line to be
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constructed should pass through the points (23.7, 18.7) and (24.0, 18.4). Thus the
equation of the line is y = ax Ag+0, where o = (18.7—18.4)/(23.7—24.0) = —1.0
and 8= (18.7 — a x 23.7) = (18.7+ 1 x 23.7) = 42 4.

Similar lines are constructed passing through Ty and 77 in the plane of A;
and y and similarly, in the plane of Ay and y. The (a,3) values of the lines in
these planes are (—0.375,30.7375) and (—1.0,47.6) respectively.

Using these equations, the y values of neighbours can be estimated by know-
ing the values of their independant variable. As the values of y are already known
for the training points, the errors are also computed in these dimensions. Thus,
the values of error are computed from neighbour T5 onwards (as the 2 neighbours
before this are used for line construction), using the formulas derived for lines in
(Ao, ), (A1,y) and (As,y) planes. Let the error for neighbour 7T; for dimension
Aj be €ij-

Computing the correct number of neighbours We start our computation
from the minimum number of neighbours which in this case was set to 5. The
first two neighbours are ignored for the very fact that the line has been con-
structed using these two neighbours themselves and hence the error will always
be 0 for these points.

Thus the errors (esg, €21, €22) are computed as said above for neighbour (7%)
and similar computation is done for neighbours (T3), (74). After this step, mean
error in each dimension is computed. The mean error in dimensions Ay, A1, Ao
for number of neighbours 5 is given as:

Error(Ag) = (e20 + e30 + €40)/3
Error(A;) = (e21 + €31 + €41)/3
Error(As) = (ea2 + €32 + €42)/3

Now, a low mean error in any dimension indicates that the data along that di-
mension is highly linear and hence the predictions along that dimension are more
accurate. Thus we set a weight for each dimension to be inversely proportional to
the mean error in that dimension. The mean error for number of neighbours(k)
“5” are: (2.600, 1.492, 1.370) in dimensions (Ag, A1, A2) respectively. Here the
constant of proportionality can be taken to be the maximum of the error and
hence the weights are (wy,ws,ws) = (2.6/2.6,2.6/1.492,2.6/1.37) = (1.0, 1.741,
1.897). Those dimensions with errors greater than Fy, x min(Error(A;)) are set
to zero weights.

Using the equations of lines in each dimension, we estimate the values of the
response variable for the given input tuple in the (Ag,y), (A1,y) and (Az2,y)
planes. Let the the predicted values be yq in (Ag,y) plane, y; in (Ay,y) plane,
and so on. Knowing the mean error values in different dimensions, it is intuitive
to assign weights in such a manner that the value of the dependant variable
for the input tuple should be more inclined towards dimensions which are stable
rather than other unstable dimensions. Higher errors indicate lower stability and
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lower errors indicate higher stability. Using this concept, the value of dependant
variable is estimated as (y; X w1 + y2 X w2 + y3 X w3) /(w1 +wa + w3) where wy,
wg and ws are computed previously as (1.0, 1.741, 1.897) and the value of y; is
computed using the line equations as done previously.

The same line equations are again used to predict dependant variable values
of neighbours and the values of errors are recorded. For number of neighbours(k)
5, errors in prediction for Ty, T3, T4 are computed — the mean error is 0.5407 and
the predicted value is 18.4501. Similarly, errors are computed until a maximum
number of neighbours which can be set to a sufficiently large value which in
this case we set to 9. The predicted values and mean errors for neighbours, on
choosing k as 6, 7, 8 and 9 are (18.4862, 0.6365), (18.4754, 0.4228), (18.5662,
0.4216) and (18.5514, 0.4027) respectively.

It has been observed that smaller the mean error values for the neighbours,
more correct are the weight estimates and hence more correct are the predicted
values. This intuition is seen to be accurate in this case as the predicted value
18.5514 is closest to the actual value 18.50 when the mean error of the neighbours
is minimum at 0.4027. The values of weights obtained for the best number of
neighbours are used for similarity computation in the next iteration.

The parameterless nature of PAGER comes from the counter-balancing forces
exerted by the threshold values. Consider, the error-threshold parameter whose
value need not be accurate as those dimensions with higher error typically con-
tribute little by means of smaller weights and hence setting the error-threshold
value is not a serious issue. Two other parameters that are generally set are
minimum number of neighbours and the maximum number of neighbours. Set-
ting the minimum to a small value and the maximum to a high value can be a
reasonable choice due to an exhaustive search in between. The mean error along
the dimensions, the stability of dimensions and the weightings in this case coun-
terbalance each other to provide accurate estimates for the value of predicted
variables thus making the entire process virtually parameterless.

3 Experimental Study

In this section, we evaluate the proposed PAGER, algorithm. We describe the ex-
perimental setting and performance metrics in Section 3.1 and the experimental
results in Section 3.3. The comparitive results are in Table 4.

3.1 Experimental Setting

We compare our algorithm against twelve other algorithms. One of these is the
weighted k-NN based approach [4,8] described in Section ??. The remaining
eleven are available in the Weka toolkit [15] namely Additive Regression, Gaus-
sian Regression, Isotonic Regression, Least Median Square Regression (LMS),
Linear Regression, Multi Layer Perceptron based Regression (MLP), Pace Re-
gression, RBF Regression, Simple Linear Regression, SMO Regression, and SVM
Regression.
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The version of PAGER used is the Weighted Distance PAGER.

We used four datasets in our experimental study, namely CPU (dataset avail-
able with Weka), Housing [2], Concrete [16] and Body-Fat [1]. All the results and
comparison have been done using the leave one out comparison technique which
is a specific case of n-folds cross validation, where the n is set to the number
of instances of the dataset. The metrics used for comparison are RMSE (Root
Mean Square Error) and ABME (Absolute Mean Error). The k-NN technique
of [4, 8] was run on number-of-neighbours=10. The algorithms in Weka were run
with the parameters as can be found in Table 3. The parameters of Weka are
not mentioned here due to lack of space and are available in [15].

Algorithm Parameter settings

Additive Regression (-S 1.0 -I 10 -W weka.classifiers.trees.DecisionStump)

Gaussian Regression (-L 1.0 -N 0 -K weka.classifiers.functions. supportVec-
tor.RBFKernel -C 250007 -G 1.0)

Isotonic Regression (IsotonicRegression)

Least Median Square Regres-|(LeastMedSq -S 4 -G 0)

sion [18]

Linear Regression (LinearRegression -S 0 -R 1.0E-8)

Multi Layer Perceptron [8] (MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20
-H a)

Pace Regression [4][5] (PaceRegression -E eb)

RBF Network (RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1)

Simple Linear Regression (SimpleLinearRegression)

SMOreg Regression [6](7] (SMOreg -S 0.001 -C 1.0 -T 0.001 -P 1.0E-12 -N 0 -

K weka.classifiers.functions. supportVector.PolyKernel -C
250007 -E 1.0)

SVMReg Regression [6][7][15] [(SVMreg -C 1.0 -N 0 -I weka.classifiers.functions. support-
Vector.RegSMOImproved -L 0.001 -W 1 -P 1.0E-12 -T 0.001
-V -K weka.classifiers.functions. supportVector.PolyKernel -
C 250007 -E 1.0)

Table 3. Experimental Settings

3.2 Dataset Description

In this section, we describe each dataset used for experiments.

CPU Dataset The CPU dataset was obtained directly from Weka and has 6 in-
dependant variables and 1 dependant variable. The dataset has 209 tuples. The
task of the predictor is to estimate the relative performance given its machine
cycle time in nanoseconds (integer), minimum main memory in kilobytes (inte-
ger), maximum main memory in kilobytes (integer), cache memory in kilobytes
(integer), minimum channels in units (integer), and maximum channels in units




PAGER: Parameterless, Accurate, Generic, Efficient KNN-based Regression 9
(integer).

Housing Dataset The Housing dataset [2] was obtained from the UCI data
repository and has 13 independant variables and 1 dependant variable. The
dataset has 506 tuples. The Housing Dataset concerns housing values in suburbs
of Boston, which is the variable value to be predicted. The independant vari-
ables are per capita crime rate by town, proportion of residential land zones for
lots over 25,000 sq.ft., proportion of non-retail business acres per town, Charles
River dummy variable (= 1 if tract bounds river; 0 otherwise), nitric oxides
concentration (parts per 10 million), average number of rooms per dwelling,
proportion of owner-occupied units built prior to 1940, weighted distances to
five Boston employment centres, index of accessibility to radial highways, full-
value property-tax rate per $10,000, pupil-teacher ratio by town, B: 1000 (Bk
- 0.63)? where Bk is the proportion of blacks by town, % lower status of the
population, Median value of owner-occupied homes in $1000’s.

Concrete Dataset The Concrete dataset [16] was obtained from the UCI data
repository [2] and has 8 independant variables and 1 dependant variable. The
dataset has 1030 tuples. The UCI dataset site reported that “the concrete com-
pressive strength is a highly nonlinear function of age and ingredients”. This
dataset is therefore particularly challenging and has not been studied before
for regression analysis, to the best of our knowledge. The task is to estimate
the concrete compressive strength(Mpa) of the mixture given quantative at-
tributes Cement (Kg/m?), Blast Furnace Slag (Kg/m?), Fly-Ash (Kg/m?),
Water (Kg/m?), Superplasticizer (Kg/m?), Coarse Aggregate (Kg/m?), Fine
Aggregate(Kg/m?), Age.

BodyFat Dataset The BodyFat dataset was obtained from the CMU data
repository [1] and has 14 independant variables and 1 dependant variable. The
dataset has 252 tuples. The task is to determine the percentage of bodyfat in
an individual given Age (years), Weight (Ibs), Height (inches), Neck circum-
ference (cm), Chest circumference(cm), Abdomen 2 circumference (cm), Hip
circumference (cm), Thigh circumference (cm), Knee circumference (cm), Ankle
circumference (cm), Biceps (extended) circumference (c¢cm), Forearm circumfer-
ence (cm), and Wrist circumference (cm).

3.3 Results

In this section, we report the experimental results obtained for each dataset.

3.4 Discussion of Results

From the experimental results it is evident that on the CPU dataset PAGER
outperforms all other algorithms except the regression algorithm based on Mul-
tilayer Perceptron. The reason for this is analyzed in detail below. On the other
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Regression CPU Dataset | Housing Dataset |Concrete Dataset| Bodyfat Dataset
Algorithm ABME |RMSE |ABME [RMSE [ABME [RMSE |ABME |RMSE
PAGER 9.28 31.04 |2.10 3.47 5.87 7.71 0.38 0.49
Additive 25.46  |59.06 |3.35 4.86 6.67 8.45 0.53 0.64
Gaussian 15.08 |81.57 |2.58 3.89 6.07 7.82 0.42 0.56
Isotonic 23.93 |51.98 [3.81 5.32 10.84 13.52 0.55 0.69
LMS 33.60 107.55 [3.36 5.40 9.28 16.55  (0.43 0.55
Linear 34.61 55.22  |3.37 4.84 8.29 10.46  |0.42 0.54
MLP 6.28 16.70 |[3.10 4.64 6.58 8.61 0.50 0.70
Pace 34.83 |56.12 [3.36 4.82 8.32 10.52  |0.41 0.53
RBF 52.25 119.28 [6.05 8.19 13.43 16.67  |0.61 0.77
Simple Linear [43.13 70.46  |4.52 6.23 11.87 14.50  ]0.50 0.62
SMO 20.70 |64.22 |3.25 5.09 8.23 10.97  |0.43 0.56
SVM 20.71 64.24 |3.24 5.08 8.23 10.97  |0.43 0.56
kNN 18.92 74.83 2.97 4.63 6.55 8.57 0.45 0.58

Table 4. Experimental Results on CPU, Housing, Concrete and Bodyfat Dataset

three datasets i.e. the Housing Dataset, BodyFat Dataset and the Concrete
Dataset, PAGER outperforms all other algorithms. It is particularly notewor-
thy that our algorithm performs very well on the Concrete Dataset which was
claimed to be a challenging, highly non-linear function of its attributes. The suc-
cess of our algorithm is due to our very valid assumption that the data variation
may not be linear throughout but is usually linear in a very small neighbour-
hood of the given input tuple. This assumption is true for majority of the real
life datasets as variations of the dependent variable based on variations in the
values of independent variables typically show a smooth transition.

A positive point in this algorithm that is evident through the illustrated
example is its simplicity and generic nature. The parameterless nature of this
code makes it easy to apply it to any domain even if sufficient domain knowledge
is not available. However, it should be noted that our algorithm works only for
numeric data with no missing values.

Even though our algorithm has performed well on the datasets as compared
to the other algorithm one aspect that deserves attention in future is the neigh-
bourhood selection mechanism. The current weighting of dimensions depends
on the actual and estimated values of the response variable of neighbours. Table
5 shows that the best number of neighbours that can be selected varies very
sharply from 5 to as high as 98 which is the reason why a static neighbour selec-
tion is highly infeasible. Below we present an analysis of our result for the CPU
dataset where we were outperformed by the Multi-layer Perceptron approach,
and state some of the improvements that can take place. In Table 5, it can be
observed that for the 100th tuple the number of neighbours that we selected was
98 where as the best value was 12. This can be due to the fact that one of the
closer neighbours had a very noisy dependant variable value while the succeed-
ing neighbours had comparatively smaller errors in prediction. Thus, the mean
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Table 5. Results on CPU Dataset

absolute error decreased as the number of neighbours increased. This decrease
in mean error can be attributed to the fact that the error contributed by the
noisy neighbour was supressed by the increasing number of neighbours and hence
the algorithm chose the number of neighbours as 98. Another case that can be
observed is that of tuple 151 where the best number of neighbours is 98, while
the number of neighbours chosen is 5, due to which there is an extremely large
error in prediction. These two cases show the importance the neighbour selection
procedure lends to the algorithms. Other similar cases exist as can be clearly
seen from the figure. Despite the fact that incorrect number of neighbours are
chosen in some cases, it can be observed in Table 5 that difference between the
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“mean absolute error of PAGER” v/s “mean absolute error if the algorithm in
4.1 is applied with the best number of neighbours”, is small for most of the input
tuples thus demonstrating the accuracy and parameterless nature of PAGER.

Even though the comparitive results show that PAGER outperforms or is
comparable to other algorithms as cited in the experimental results there is
much scope for improvement especially in the neighbour selection domain.

4 Conclusions

In this paper we have presented and evaluated PAGER, a new algorithm for
regression based on nearest neighbour methods. Evaluation was done against
12 competing algorithms on 4 standard real-life datasets. Although simple, it
outperformed all competing algorithms on all datasets but one. Unlike most
other algorithms, PAGER can be used “out-of-the-box” without having to ex-
tensively tune or tweak it for each application domain and dataset. In fact, if
the parameterless version is used, it requires absolutely no tuning.

Future work includes determinining high quality neighbours and the correct
number of neighbours. This requires developing techniques such as neighbour
selection algorithms, noisy neighbour elimination among others. Another future
direction is to construct a curve or the closest fitting line from %k neighbours
instead of a line which is presently constructed from the two neighbours. It is
also of interest to design algorithms that work when the independent variables
are categorical, or come from a mixture of categorical and numeric domains.
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