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Dirichlet-to-Neumann type maps

Motivation:

Titchmarsh-Weyl m-function for Sturm-Liouville problems

Dirichlet-to-Neumann map for PDEs

Aims:

gather as much information on the spectrum of an operator as
possible from “measurements on the boundary”

extend results to non-selfadjoint operators as far as possible

Method: make use of abstract theory of boundary triples to

introduce M-function,

relate resolvent to operators on the boundary,

compare resolvents of different realisations.

Ian Wood (Kent) M-functions Biograd, September 2013 2 / 15



Dirichlet-to-Neumann type maps

Motivation:

Titchmarsh-Weyl m-function for Sturm-Liouville problems

Dirichlet-to-Neumann map for PDEs

Aims:

gather as much information on the spectrum of an operator as
possible from “measurements on the boundary”

extend results to non-selfadjoint operators as far as possible

Method: make use of abstract theory of boundary triples to

introduce M-function,

relate resolvent to operators on the boundary,

compare resolvents of different realisations.

Ian Wood (Kent) M-functions Biograd, September 2013 2 / 15



Dirichlet-to-Neumann type maps

Motivation:

Titchmarsh-Weyl m-function for Sturm-Liouville problems

Dirichlet-to-Neumann map for PDEs

Aims:

gather as much information on the spectrum of an operator as
possible from “measurements on the boundary”

extend results to non-selfadjoint operators as far as possible

Method: make use of abstract theory of boundary triples to

introduce M-function,

relate resolvent to operators on the boundary,

compare resolvents of different realisations.

Ian Wood (Kent) M-functions Biograd, September 2013 2 / 15



Boundary triples

(contributions from Kochubei, Gorbachuk & Gorbachuk, Derkach &
Malamud, Vainerman, Lyantze & Storozh, Malamud & Mogilievski...)

A and A′ closed, densely defined operators on Hilbert space H

A ⊆ (A′)∗ =: Amax and A′ ⊆ A∗ =: A′max

there exist “boundary spaces” H, K and “boundary operators”,

Γ1 : D(Amax)→ H and Γ0 : D(Amax)→ K,

Γ′
1 : D(A′

max)→ K and Γ′
0 : D(A′

max)→ H,

which are bounded in graph norm, (Γ1, Γ0), (Γ′1, Γ
′
0) are surjective,

and such that for u ∈ D(Amax) and v ∈ D(A′max) we have

(Amaxu, v)H − (u,A′maxv)H = (Γ1u, Γ
′
0v)H − (Γ0u, Γ

′
1v)K.

{H ⊕K, (Γ1, Γ0), (Γ′1, Γ
′
0)} is a boundary triple for the adjoint pair A,A′.
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Abstract M-functions

B ∈ L(K,H) and AB := Amax|ker(Γ1−BΓ0),

for λ ∈ ρ(AB) define the solution operator as a mapping

Sλ,B : Ran (Γ1 − BΓ0)→ ker(Amax − λ)

where Sλ,B f solves

(Amax − λ)u = 0, (Γ1 − BΓ0)u = f ,

for λ ∈ ρ(AB) define the M-function via

MB(λ) : Ran (Γ1 − BΓ0)→ K, MB(λ)f = Γ0Sλ,B f .
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Relation to resolvent

To be able to study spectral properties of the operator via the M-function,
we need to relate the M-function to the resolvent.

Lemma

λ, λ0 ∈ ρ(AB), then

MB(λ) = Γ0(AB − λ0)(AB − λ)−1Sλ0,B .

Theorem (Krĕın-type formula)

C ∈ L(K,H), λ ∈ ρ(AB) ∩ ρ(AC ). Then

(AB −λ)−1 = (AC −λ)−1−Sλ,C (I + (B −C )MB(λ))(C −B)Γ0(AC −λ)−1
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Results for poles

Theorem

Let µ ∈ C be an isolated eigenvalue of finite algebraic multiplicity of the
operator AB . Assume unique continuation holds, i.e.

ker(Amax−µ)∩ker(Γ1)∩ker(Γ0) = ker(A′max−µ̄)∩ker(Γ′1)∩ker(Γ′0) = {0}.

Then µ is a pole of finite multiplicity of MB(·) and the order of the pole of
R(·,AB) at µ is the same as the order of the pole of MB(·) at µ.

Theorem

Let B ∈ L(K,H), µ ∈ C.

Assume there exists C ∈ L(K,H) such that µ ∈ ρ(AC ).

Then µ is isolated eigenvalue of finite algebraic multiplicity of AB iff µ is
pole of finite multiplicity of MB(·).
In this case, order of the pole of R(·,AB) at µ is same as order of the pole
of MB(·) at µ.
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A matrix differential operator I

The M-function MB does not contain all spectral information on the
operator AB :

Amax =

(
− d2

dx2 + q(x) w(x)

w(x) u(x)

)
, A′max =

(
− d2

dx2 + q(x) w(x)

w(x) u(x)

)
,

where q, u and w are L∞-functions,

and

D(Amax) = D(A′max) = H2(0, 1)× L2(0, 1),

Γ1

(
y
z

)
=

(
−y ′(1)
y ′(0)

)
, Γ0

(
y
z

)
=

(
y(1)
y(0)

)
,

AB := Amax|ker(Γ1−BΓ0) ,

σess(AB) = essran(u) for any B ∈ R2×2.
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A matrix differential operator II

Amax =

(
− d2

dx2 + q(x) w(x)

w(x) u(x)

)

Let

(
y
z

)
∈ ker(Amax − λ). Then

−y ′′ + (q − λ)y + wz = 0 and wy + (u − λ)z = 0,

so z = wy
λ−u and

−y ′′ + (q − λ)y +
w2y

λ− u
= 0.

Thus, if w(x0) = 0, then u(x0) can be changed without affecting y or the
M-function.
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Results for
(
− d2

dx2 + q(x) w(x)

w(x) u(x)

)

Theorem

Let

W = {x ∈ [0, 1] |w(x) 6= 0},

H1 =

(
L2(0, 1)
L2(W)

)
,

λ 6∈ essran (u|W).

Then the bordered resolvent PH1(AB − λI )−1PH1 is analytic precisely
where MB(λ) is analytic.

The inverse problem for

(
− d2

dx2 + q(x) w(x)

w(x) u(x)

)
is not solvable.

Assume

q, u,w analytic,
w(0),w(1) 6= 0.

Then q, u,w can be recovered from the M-function.
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Symmetric case

Definition

A is completely non-selfadjoint or simple, if it has no non-trivial reducing
subspaces on which it generates a selfadjoint operator.

Theorem (Krĕın, Langer 70’s, Ryzhov ’07)

Let A be symmetric, AB self-adjoint and invertible. If A is simple, then
MB(λ)−MB(0) determines AB up to unitary equivalence.

Lemma

A is simple iff

H = Spanδ 6∈σ(AB)(AB − δI )−1Ran(S0,B).
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Non-symmetric case

For µ0 6∈ σ(AB), define the spaces

S = Spanδ 6∈σ(AB)(AB − δI )−1Ran(Sµ0,B), (1)

T = Spanµ6∈σ(AB)Ran(Sµ,B), (2)

where Sµ,B =
(

(Γ1 − BΓ0)|ker(Amax−µI )

)−1
.

Lemma

Under some extra assumptions on the spectrum of extensions of A, we
have that S is independent both of µ0 and B. Moreover, S = T .

Lemma

The space S is a regular invariant subspace for the resolvent of AB ,

i.e. (AB − µI )−1S = S for all µ ∈ ρ(AB).
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M-function and bordered resolvent I

S = Spanδ 6∈σ(AB)(AB − δI )−1Ran(Sµ0,B)

Theorem

λ0 point of analyticity of MB

λ0 ∈ ρ(AB)

Pn,S and Pm,S′ projections onto any finite-dimensional subspaces of S
and S ′

Then Pm,S′(AB − λI )−1Pn,S analytic at λ = λ0.

Theorem

λ0 point of analyticity of MB

λ0 at worst an isolated singularity of (AB − λI )−1

ρ(A′B∗) has finitely many connected components

Then PS′(AB − λI )−1PS is analytic at λ = λ0.
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M-function and bordered resolvent II

S = Spanδ 6∈σ(AB)(AB − δI )−1Ran(Sµ0,B)

Theorem

Assume we know

MB(λ) for all λ ∈ ρ(AB),

Ran (Sµ,B) for some µ ∈ ρ(AB),

Ran (S ′µ′,B∗) for some µ′ ∈ ρ(A ∗B ).

Then we can reconstruct PS′(AB − λ)−1PS for all λ ∈ ρ(AB).
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Result for
(
− d2

dx2 + q(x) w̃(x)

w(x) u(x)

)

Theorem

Assume ww̃ = 0, that θ(x , λ), φ(x , λ) solve −y ′′ + (q − λ)y = 0 and

Eu,w := Spann∈Nw(x)θ(x , u(x))un(x) + Spann∈Nw(x)φ(x , u(x))un(x).

Then

S⊥ =

{(
h
g

)
: g ⊥ Eu,w ,

h(x) =

∫ x

0
(wg)(t)[φ(t, u(t))θ(x , u(t))− θ(t, u(t))φ(x , u(t))]dt

}
In particular,

S =

(
L2(0, 1)

χ{w 6=0}L
2(0, 1)

)
= H1.

iff Eu,w = χ{w 6=0}L
2(0, 1).
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Thank you
for your attention!
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