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Dirichlet-to-Neumann type maps

Motivation:
@ Titchmarsh-Weyl m-function for Sturm-Liouville problems

@ Dirichlet-to-Neumann map for PDEs
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Dirichlet-to-Neumann type maps

Motivation:

@ Titchmarsh-Weyl m-function for Sturm-Liouville problems

@ Dirichlet-to-Neumann map for PDEs
Aims:

@ gather as much information on the spectrum of an operator as

possible from “measurements on the boundary”

@ extend results to non-selfadjoint operators as far as possible
Method: make use of abstract theory of boundary triples to

@ introduce M-function,

@ relate resolvent to operators on the boundary,

@ compare resolvents of different realisations.
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Boundary triples

(contributions from Kochubei, Gorbachuk & Gorbachuk, Derkach &
Malamud, Vainerman, Lyantze & Storozh, Malamud & Mogilievski...)
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Boundary triples

(contributions from Kochubei, Gorbachuk & Gorbachuk, Derkach &
Malamud, Vainerman, Lyantze & Storozh, Malamud & Mogilievski...)

@ A and A’ closed, densely defined operators on Hilbert space H
@ AC(A)* = Apax and A/ C A* =1 A

max
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Boundary triples

(contributions from Kochubei, Gorbachuk & Gorbachuk, Derkach &

Malamud, Vainerman, Lyantze & Storozh, Malamud & Mogilievski...)
@ A and A’ closed, densely defined operators on Hilbert space H
e AC(A) =t Apax and A C A* = Al ..
@ there exist “boundary spaces” H, K and “boundary operators”,
o Iy : D(Amax) = H and To: D(Amax) — K,
o M2 D(Alay) = K and Th: D(Al.) — H,

max max

which are bounded in graph norm, (I'1,Tg), (I}, o) are surjective,
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Boundary triples

(contributions from Kochubei, Gorbachuk & Gorbachuk, Derkach &

Malamud, Vainerman, Lyantze & Storozh, Malamud & Mogilievski...)
@ A and A’ closed, densely defined operators on Hilbert space H
e AC(A) =t Apax and A C A* = Al ..
@ there exist “boundary spaces” H, K and “boundary operators”,
o Iy : D(Amax) = H and To: D(Amax) — K,
o M2 D(Alay) = K and Th: D(Al.) — H,

max max

which are bounded in graph norm, (I'1,Tg), (I}, o) are surjective,
and such that for u € D(Anax) and v € D(A!,.) we have

(Amaxu, V)H - (U’Ainaxv)H = (rlua r,0‘/)3"[ - (r0u7 rllv)lC~
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Boundary triples

(contributions from Kochubei, Gorbachuk & Gorbachuk, Derkach &

Malamud, Vainerman, Lyantze & Storozh, Malamud & Mogilievski...)
@ A and A’ closed, densely defined operators on Hilbert space H
e AC(A) =t Apax and A C A* = Al ..
@ there exist “boundary spaces” H, K and “boundary operators”,
o Iy : D(Amax) = H and To: D(Amax) — K,
o M2 D(Alay) = K and Th: D(Al.) — H,

max max

which are bounded in graph norm, (I'1,Tg), (I}, o) are surjective,
and such that for u € D(Anax) and v € D(A!,.) we have
(Amaxu, V)H - (U’Ainaxv)H = (rlua rIOV)’H - (r0u7 rllv)lC~

{HaK,(T1,T0),(I,T6)} is a boundary triple for the adjoint pair A, A'.
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Boundary triples

(contributions from Kochubei, Gorbachuk & Gorbachuk, Derkach &

Malamud, Vainerman, Lyantze & Storozh, Malamud & Mogilievski...)
@ A and A’ closed, densely defined operators on Hilbert space H
@ AC(A) = Apax and A C A* = A .
@ there exist “boundary spaces” H, K and “boundary operators”,
o 1 D(Amax) = H and T : D(Amax) — K,
o M :D(A ) — K and Ty: D(AL,.) — H,

max max

which are bounded in graph norm, (I'1, o), (I}, o) are surjective,
and such that for u € D(Amax) and v € D(A!,.) we have

freveeen () ) (i) -(6a))- ()

{H® K, (I1,T0),(M,T6)} is a boundary triple for the adjoint pair A, A'.
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Abstract M-functions

e Be E(K:,H) and Ag = Amax‘ker(rlfBro%
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Abstract M-functions

e Be E(K:,H) and AB = AmaX‘ker(l—lfBro)a
e for A\ € p(Ag) define the solution operator as a mapping

5)\’3 : Ran(rl — Bro) — ker(AmaX — /\)
where Sy gf solves

(Amax — AN)u=0, (I'y — Blhp)u=f,
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Abstract M-functions

e Be E(K:,H) and AB = AmaX‘ker(l—lfBro)a
e for A\ € p(Ag) define the solution operator as a mapping

Sxg i Ran ('t — Blg) — ker(Amax — A)
where Sy gf solves
(Amax —A\)u=0, (M1 —Blo)u="1,
e for A\ € p(Ag) define the M-function via

MB()\) . Ran(F1 — Bro) — /C, MB()\)f = FOS,\Bf.
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Relation to resolvent

To be able to study spectral properties of the operator via the M-function,
we need to relate the M-function to the resolvent.
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Relation to resolvent

To be able to study spectral properties of the operator via the M-function,
we need to relate the M-function to the resolvent.

® A\ N\ € p(Ag), then

Mg(\) = To(Ag — Ao)(Ag — A) 1Sy, 5.
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Relation to resolvent

To be able to study spectral properties of the operator via the M-function,
we need to relate the M-function to the resolvent.

Lemma

® A\ N\ € p(Ag), then

Mg(\) = To(Ag — Ao)(Ag — A) 1Sy, 5.

Theorem (Krein-type formula)

o Ce L(K,H), A€ p(Ag) N p(Ac). Then

(AB=A) " = (Ac =)' =S\ c(l+(B=C)Mp(N)(C = B)o(Ac —A) 7!

v
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Results for poles

Theorem

Let u € C be an isolated eigenvalue of finite algebraic multiplicity of the
operator Ag. Assume unique continuation holds, i.e.

ker(Amax — i) Nker(I'y)Nker(Fo) = ker(Al.. — i) Nker(I') Nker(p) = {0}.

Then p is a pole of finite multiplicity of Mg(-) and the order of the pole of
R(:,Ag) at u is the same as the order of the pole of Mg(-) at u.
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Results for poles

Let u € C be an isolated eigenvalue of finite algebraic multiplicity of the
operator Ag. Assume unique continuation holds, i.e.

ker(Amax — i) Nker(I'y)Nker(Fo) = ker(Al.. — i) Nker(I') Nker(p) = {0}.

Then p is a pole of finite multiplicity of Mg(-) and the order of the pole of
R(-,Ag) at y is the same as the order of the pole of Mg(-) at p.

Theorem

o Let Be L(K,H), ueC.

o Assume there exists C € L(KC,H) such that u € p(Ac).
Then u is isolated eigenvalue of finite algebraic multiplicity of Ag iff i is
pole of finite multiplicity of Mg(+).
In this case, order of the pole of R(-, Ag) at u is same as order of the pole
of Mg(-) at p.
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A matrix differential operator |

The M-function Mg does not contain all spectral information on the
operator Ag:

.\ :<—;’;+q(x) w(x)) p :<—5’§2+q(x) w(x)>
e i) ulx) ) o) ul) )

where g, u and w are L°°-functions,
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A matrix differential operator |

The M-function Mg does not contain all spectral information on the
operator Ag:

Amax:(—:;w(x) W(X)>7 p :<—;’;+q(x) w(x))

w(x) u(x) e w(x) u(x)

where g, u and w are L*-functions, and
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A matrix differential operator |

The M-function Mg does not contain all spectral information on the
operator Ag:

Amax:(—:;w(x) W(X)>7 p :<—;’;+q(x) w(x))

w(x) u(x) e w(x) u(x)

where g, u and w are L*-functions, and

D(Amax) = D(A!

max

(- +(0)-(8)

Ag = Amax|ker(r,Bro)

) = H?(0,1) x L%(0,1),

Oess(Ag) = essran(u)  for any B € R**2,
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A matrix differential operator Il

Amax:(—:;m(x) w(x))
wx)  u(x)

Let ( )Z’ ) € ker(Amax — A). Then

—y"+(@—=Ny+wz=0 and wy+ (u—A)z=0,
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A matrix differential operator Il

Amax:(—:;m(x) w(x))
wx)  u(x)

Let ( )Z’ ) € ker(Amax — A). Then

—y"+(@—=Ny+wz=0 and wy+ (u—A)z=0,

S0 z = )\Wy and
=~ ,
w
Yy _ 0.

A—u

—y"+(g— Ny +
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A matrix differential operator Il

Amax:(—:;m(x) w(x))
wx)  u(x)

Let ( )Z’ ) € ker(Amax — A). Then

—y"+(@—=Ny+wz=0 and wy+ (u—A)z=0,

so z =y and

2
Y o,
A—u
Thus, if w(xog) =0, then u(xp) can be changed without affecting y or the
M-function.

—y"+(g— Ny +

lan Wood (Kent) M-functions Biograd, September 2013 8/15



Results for < *%(

o Let
°o W= {x ;Eg, 11])| w(x) # 0},
° ”1:< L2(W) )
o \ & essran (ul,,).

Then the bordered resolvent Py, (Ag — M) 1Py, is analytic precisely
where Mg()) is analytic.

v
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Results for < *%(

o Let
°o W= {x ;Eg, 11])| w(x) # 0},
° ”1:< L2(W) )
o \ & essran (ul,,).

Then the bordered resolvent Py, (Ag — M) 1Py, is analytic precisely
where Mg()) is analytic.

w(x) u(x)

_d
@ The inverse problem for ( a2 e e ) is not solvable.

v
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Results for ( =

Theorem

o Let
°o W= {x EE% 11])| w(x) # 0},
o« = (o))
o \ & essran (ul,,).

Then the bordered resolvent Py, (Ag — \) 1Py, is analytic precisely
where Mg()) is analytic.

~ &5 +a(x) w(x)

@ The inverse problem for
w(x) u(x)

) is not solvable.

o Assume
e g, u,w analytic,
o w(0), w(1) #£0.

Then q, u,w can be recovered from the M-function.

v
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Symmetric case

Definition

A is completely non-selfadjoint or simple, if it has no non-trivial reducing
subspaces on which it generates a selfadjoint operator.
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Symmetric case

A is completely non-selfadjoint or simple, if it has no non-trivial reducing
subspaces on which it generates a selfadjoint operator.

Theorem (Krein, Langer 70's, Ryzhov '07)

Let A be symmetric, Ag self-adjoint and invertible. If A is simple, then
Mg(X) — Mg(0) determines Ag up to unitary equivalence.
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Symmetric case

Definition
A is completely non-selfadjoint or simple, if it has no non-trivial reducing
subspaces on which it generates a selfadjoint operator.

\

Theorem (Krein, Langer 70's, Ryzhov '07)

Let A be symmetric, Ag self-adjoint and invertible. If A is simple, then
Mg(X) — Mg(0) determines Ag up to unitary equivalence.

Lemma

| A\

A is simple iff

H = Spansg,(a,)(As — d1) "1 Ran(So,5).

.
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Non-symmetric case

For o & o(Ag), define the spaces
S = Span;g,(a,) (A — 51)"*Ran(S,,.8), (1)

7-: Spanuga(AB)Ran(S#’B), (2)

-1
where S, g = ((rl - Bro)‘kel’(Amax_H'l)> :
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Non-symmetric case

For o & o(Ag), define the spaces
S = Span(;ga(AB)(AB — 5/)*1Ran(5#0,5), (1)
T = Spanuga(AB)Ran(Sﬂ’B), (2)

1
where 5, g = ((rl - Br0)|ker(Amax—Ml)> '

Under some extra assumptions on the spectrum of extensions of A, we
have that S is independent both of pg and B. Moreover, S =T .

lan Wood (Kent) M-functions Biograd, September 2013 11 /15



Non-symmetric case

For o & o(Ag), define the spaces
S = Span(;ga(AB)(AB — 5/)*1Ran(5#0,5), (1)
T = Spanugg(AB)Ran(Sﬂ’B), (2)

1
where 5, g = ((rl - Br0)|ker(Amax—Ml)> '

Under some extra assumptions on the spectrum of extensions of A, we
have that S is independent both of pg and B. Moreover, S =T .

The space S is a regular invariant subspace for the resolvent of Ag,
ie. (Ag — pl)=18 =S for all i € p(Ag).

lan Wood (Kent) M-functions Biograd, September 2013 11 /15



M-function and bordered resolvent |

S = Spansg,(a,) (A — §1)"*Ran(S,,.5)
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M-function and bordered resolvent |

S = Spansg,(a,) (A — §1)"*Ran(S,,.5)

@ )\g point of analyticity of Mg

® Xo € p(Ag)

@ P, s and P, s/ projections onto any finite-dimensional subspaces of S
and S’

Then Pp.si(A — AI)"1P, s analytic at A = o.
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M-function and bordered resolvent |

S = Spansg,(a,) (A — §1)"*Ran(S,,.5)

@ )\g point of analyticity of Mg

@ Mg € p(AB)

@ P, s and P, s/ projections onto any finite-dimensional subspaces of S
and S’

Then Py, s/(Ag — A)7P, s analytic at A = Ao.

Theorem
@ )\g point of analyticity of Mg
@ )\ at worst an isolated singularity of (Ag — \)~!

o p(As.) has finitely many connected components

Then P5:(Ag — M)~ Pg is analytic at A = Ao.

v
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M-function and bordered resolvent Il

S = Spansg,(az)(As — /) 'Ran(S,, 5)
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M-function and bordered resolvent Il

S = Spansg,(az)(As — /) 'Ran(S,, 5)

Assume we know
e Mg(X) for all X € p(Ag),
e Ran (S, g) for some n € p(Ag),

o Ran (S, g.) for some i’ € p(Ag).

Then we can reconstruct Psi(Ag — X) ™! Ps for all X € p(Ag).
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Result for ( 3z +alx) w(x) )

w(x u(x)

Assume ww = 0, that 0(x, \), ¢(x, ) solve —y"” + (g — \)y = 0 and

Euw = Span,cyw(x)0(x, u(x))u"(x) + Span,cyw(x)d(x, u(x))u"(x).

v
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Result for < 3z +alx) w(x) )

w(x u(x)

Assume ww = 0, that 0(x, \), ¢(x, ) solve —y"” + (g — \)y = 0 and

Euw = Span,cyw(x)0(x, u(x))u"(x) + Span,cyw(x)d(x, u(x))u"(x).
Then

St = {<2>:gJ_EL,7W,

h(x) = /OX(Wg)(f)[qﬁ(t, u(t))(x; u(t)) — 6(t, u(t))o(x, U(t))]df}

v
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Result for < 3z +alx) w(x) )

w(x) u(x)

Assume ww = 0, that 0(x, \), ¢(x, ) solve —y"” + (g — \)y = 0 and

Euw = Span,cyw(x)0(x, u(x))u"(x) + Span,cyw(x)d(x, u(x))u"(x).
Then

St = {<2>:gJ_EL,7W,

h(x) = /OX(Wg)(f)[qﬁ(t, u(t))(x; u(t)) — 6(t, u(t))o(x, U(t))]df}

In particular, 3_ ( L2(0,1) ) =H
X{w#O}Lz(Ov 1) )

iff Eyw = X{weorL2(0,1).

4
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Thank you
for your attention!
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