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Classical approach

We consider

∂0θ(t) + div q(t) = f (t),

q(t) = −k(t) grad θ(t),

for t ∈ R in a domain Ω ⊆ Rn, where ∂0 denotes the temporal
derivative, k : R→ L∞(Ω) suitable function and f is a given
source term.

Plugging in the second equation yields

∂0θ(t)− θ(t) = f (t)

Classically, one proves that −A(t), subject to suitable boundary
conditions, is a generator of an evolution family (U(t, s))t≥s≥0 and
applies Duhamel’s formula.
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Our approach

We consider the system(
∂0

(
1 0
0 0

)
+

(
0 0
0 k(t)−1

)
+

(
0 div

grad 0

))(
θ(t)
q(t)

)
=

(
f (t)

0

)

Thus, we end up with an equation of the form

(∂0M0(m) + M1(m) + A) u = f ,

where A is skew-selfadjoint (b.c.), or more generally

(u, f ) ∈ ∂0M0(m) + M1(m) + A,

where A is a maximal monotone relation.
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The time derivative
Let H be a Hilbert space. For ρ > 0 denote by Hρ(R; H) the space
of H-valued square-integrable functions with respect to the
measure exp(−2ρt)dt.

Define the derivative ∂0,ρ on Hρ(R; H) as the closure of

∂0,ρ|C∞
c (R;H) : C∞c (R; H) ⊆ Hρ(R; H)→ Hρ(R; H)

φ 7→ φ′.

Then, ∂0,ρ is a normal operator with <∂0,ρ = ρ and thus,
‖∂−1

0,ρ‖ ≤
1
ρ .

For u ∈ Hρ(R; H) one has

∂−1
0,ρu(t) =

t∫
−∞

u(s)ds.

In particular, ∂−1
0,ρ is causal.
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The operators M0(m) and M1(m)
Consider two strongly measurable, bounded functions
Mi : R→ L(H) and denote by Mi (m) the associated multiplication
operator on L2,loc(R; H). Throughout, the following assumptions
should hold:

Hypotheses

(a) M0 is Lipschitz-continuous and there exists a set N ⊆ R of
measure zero, such that for all x ∈ H

R \ N 3 t 7→ M0(t)x

is differentiable.

(b) M0(t) is selfadjoint for every t ∈ R.

(c) There exist ρ0 > 0, c > 0 such that

∀ρ ≥ ρ0, t ∈ R \ N : ρM0(t) +
1

2
Ṁ0(t) + <M1(t) ≥ c .
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Monotone relations
Let A ⊆ H ⊕ H be a binary relation. A is called monotone if for all
pairs (u, v), (x , y) ∈ A we have

<〈u − x |v − y〉 ≥ 0.

Remark
Let A,B be two monotone relations. Then

A + B = {(x , y + z) | (x , y) ∈ A, (x , z) ∈ B}

is monotone.

Lemma
Assume that M0,M1 satisfy the hypotheses above. Then, there
exist ρ0, c > 0 such that for all ρ ≥ ρ0 the operator

∂0,ρM0(m) + M1(m)− c

is monotone.
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Uniqueness and Continuous dependence
Let A ⊆ H ⊕ H be monotone and define

Aρ := {(u, v) ∈ Hρ(R; H)2 | (u(t), v(t)) ∈ A a.e.}

for ρ > 0. Then Aρ is monotone.

Corollary

Assume that M0,M1 satisfy the hypotheses. Then there exists
ρ0, c > 0 such that ∂0,ρM0(m) + M1(m) + Aρ − c is monotone,
i.e. for (u, f ), (v , g) ∈ ∂0,ρM0(m) + M1(m) + Aρ we estimate

<〈u − v |f − g〉Hρ(R;H) ≥ c |u − v |2Hρ(R;H),

yielding

|u − v |Hρ(R;H) ≤
1

c
|f − g |Hρ(R;H).
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Existence in the linear case

Assume that A : D(A) ⊆ H → H is skew-selfadjoint (in particular,
A is monotone) and set

Bρ := ∂0,ρM0(m) + M1(m) + Aρ.

GOAL: Find a dense subset G ⊆ Hρ(R; H), where we can show
existence, i.e. for f ∈ G there exists u ∈ D(Bρ) with Bρ(u) = f .
IDEA: Use projection theorem:

Hρ(R; H) = R(Bρ)⊕ N(B∗ρ).

Theorem (Picard,Waurick,Wehowski,T)

There exists ρ0 > 0 such that for all ρ ≥ ρ0 the operator B∗ρ is
injective.
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Existence in the non-linear case

Let now A ⊆ H ⊕ H and set

Bρ := ∂0,ρM0(m) + M1(m) + Aρ.

GOAL: Find a dense subset G ⊆ Hρ(R; H), where we can show
existence, i.e. for f ∈ G there exists u ∈ D(Bρ) with (u, f ) ∈ Bρ.
Problem: The projection theorem does not help!
Way out: Perturbation theory for maximal monotone relations.
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An example: the non-autonomous heat equation The setting Well-posedness of non-autonomous problems

Maximal monotone relations

A monotone relation A ⊆ H ⊕ H is called maximal monotone if for
each y ∈ H there exists x ∈ H with (x , y) ∈ 1 + A.

If A is maximal monotone and (0, 0) ∈ A then Aρ is maximal
monotone for ρ > 0. We will assume (0, 0) ∈ A throughout.

Corollary

Assume that M0,M1 satisfy the hypotheses. Then there exists
ρ0 > 0, c > 0 such that ∂0,ρM0(m) + M1(m)− c is maximal
monotone for all ρ ≥ ρ0.

Proof.
This follows from the solution theory above with A = 0.
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An example: the non-autonomous heat equation The setting Well-posedness of non-autonomous problems

Perturbation results
For A maximal monotone, λ > 0 we define

Aλ : H → H x 7→ λ−1(x − (1 + λA)−1(x))

the Yosida approximation.

Aλ is a monotone, Lipschitz-continuous
mapping.

Proposition

Let A ⊆ H ⊕ H be maximal monotone and B : H → H monotone
and Lipschitz-continuous. Then A + B is maximal monotone.

Theorem
Let A,B ⊆ H ⊕ H be maximal monotone and y ∈ H. Then there
exists x ∈ H such that (x , y) ∈ 1 + A + B if and only if

sup
λ>0
|Bλ(xλ)| <∞,

where (xλ, y) ∈ 1 + A + Bλ.
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An example: the non-autonomous heat equation The setting Well-posedness of non-autonomous problems

The operators M0 and M1 revised

We replace the hypothesis

(c) ∃ρ0, c > 0 ∀ρ ≥ ρ0, t ∈ R\N : ρM0(t)+ 1
2 Ṁ0(t)+<M1(t) ≥ c .

by the stronger hypotheses

(c’) The null-space of M0(t) is t-independent.

(d’) There exists c > 0 such that for all t ∈ R we have M0(t) ≥ c
on N(M(0))⊥ = R(M0(0)) and <M1(t) ≥ c on N(M0(0)).

For δ > 0 we consider the following auxiliary problem:

(u, f ) ∈ ∂0,ρM0(m) + δ − Ṁ0(m) + Aρ.

Note that M1(m) := δ − Ṁ0(m) satisfies (d’).
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An example: the non-autonomous heat equation The setting Well-posedness of non-autonomous problems

A regularity result

Proposition

Let ρ > 0 be large enough and f ∈ D(∂0,ρ), λ > 0. Moreover let
uλ ∈ Hρ(R; H) such that

∂0,ρM0(m)uλ + δuλ − Ṁ0(m)uλ + Aρ,λ(uλ) = f .

Then uλ ∈ D(∂0,ρ).

Proof
Decompose uλ = P0uλ + P1uλ ∈ N(M0(0)) + R(M0(0)). Then
P1uλ ∈ D(∂0,ρ), since M0(m)uλ ∈ D(∂0,ρ). Moreover,

δP0uλ + P0Aρ,λ(P0uλ + P1uλ) = P0f .
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An example: the non-autonomous heat equation The setting Well-posedness of non-autonomous problems

δP0uλ + P0Aρ,λ(P0uλ + P1uλ) = P0f

Define

B : Hρ(R; N(M0(0)))→ Hρ(R; N(M0(0))) : v 7→ P0Aρ,λ(v+P1uλ).

An easy computation shows that B is monotone. Moreover

, using
τhAρ,λ = Aρ,λτh

δτhP0uλ + B(τhP0uλ)

= δτhP0uλ + P0Aρ,λ(τhP0uλ + P1uλ)

= τh(δP0uλ + B(P0uλ)) + P0(Aρ,λ(τhP0uλ + P1uλ)− Aρ,λ(τh(P0uλ + P1uλ)))

= τhP0f + P0(Aρ,λ(τhP0uλ + P1uλ)− Aρ,λ(τh(P0uλ + P1uλ))) =: g .

The monotonicity of B yields

<〈δτhP0uλ + B(τhP0uλ)︸ ︷︷ ︸
=g

−(δP0uλ + B(P0uλ)︸ ︷︷ ︸
=f

)|(τh−1)P0uλ〉 ≥ δ|(τh−1)P0uλ|2.
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τhP0f + P0(Aρ,λ(τhP0uλ + P1uλ)− Aρ,λ(τh(P0uλ + P1uλ))) =: g

Hence, by Cauchy-Schwarz

|(τh − 1)P0uλ| ≤
1

δ
|f − g |

≤ 1

δ
(|(τh − 1)f |+ 1

λ
|(τh − 1)P1uλ|).

Thus, ( 1
h (τh − 1)P0uλ)h>0 is bounded, yielding the differentiability

of P0uλ. �
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Existence for auxiliary problem

Proposition

Let ρ > 0 be large enough and f ∈ D(∂0,ρ). Then there exists
u ∈ Hρ(R; H) such that

(u, f ) ∈ ∂0,ρM0(m) + δ − Ṁ0(m) + Aρ.

Sketch of Proof
Let uλ solve the problem for Aρ replaced by Aρ,λ. By the
perturbation we have to show that supλ>0 |Aρ,λ(uλ)| <∞. Define

Bλ : D(Bλ) ⊆ Hρ(R; H)→ Hρ(R; H) v 7→ ∂0,ρAρ,λ(∂−1
0,ρv)

with maximal domain.Then ∂0,ρuλ ∈ D(Bλ) and

〈Bλ(v)|v〉 ≥ 0 (v ∈ D(Bλ)).
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Moreover,

(∂0,ρM0(m) + δ + Bλ)(∂0,ρuλ) = ∂0,ρf ,

yielding |∂0,ρuλ| ≤ C |∂0,ρf |.

Thus,

|Aρ,λ(uλ)| = |f − (∂0,ρM0(m) + δ − Ṁ0(m))uλ|

= |f − (M0(m)∂0,ρ + Ṁ0(m) + δ − Ṁ0(m))uλ|
≤ |f | − |M0|∞|∂0,ρuλ|+ δ|uλ|.

Since the right-hand side is uniformly bounded in λ we get the
assertion. �

Corollary (Solution Theory for auxiliary problem)

(∂0,ρM0(m) + δ − Ṁ0(m) + Aρ)−1 is a Lipschitz-continuous
mapping on Hρ(R; H) for sufficiently large ρ > 0.
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Solution Theory

Theorem (Wehowski, T)

Let M0,M1 satisfy the hypotheses (a),(b),(c’),(d’) and let
A ⊆ H ⊕ H be maximal monotone with (0, 0) ∈ A. Then,
(∂0,ρM0(m) + M1(m) + Aρ)−1 is a Lipschitz-continuous mapping
on Hρ(R; H) for sufficiently large ρ > 0.

Proof.
The proof follows from the solution theory for the auxiliary
problem and easy perturbation arguments.
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Thank you for your attention!
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