Najman Conference on Spectral Problems for Operators and Matrices

September 16-20, 2013

Spectral properties of discrete alloy-type models

Martin Tautenhahn

(joint work with A. Elgart, K. Leonhardt, N. Peyerimhoff and I. Veselić)

16.09.2013

Motivation	Model	Localization	Poisson statistics

Motivation

Discrete alloy-type model

Localization

Poisson statistics

Motivation	Model	Localization	Poisson statistics

Motivation

Discrete alloy-type model

Localization

Poisson statistics

$$\begin{split} H &= -\Delta + V \text{ on } \\ \mathcal{H} &= L^2(\mathbb{R}^d), \ell^2(\mathbb{Z}^d) \end{split}$$

Motivation	Model	Localization	Poisson statistics

$$\begin{split} H &= -\Delta + V \text{ on } \\ \mathcal{H} &= L^2(\mathbb{R}^d), \ell^2(\mathbb{Z}^d) \end{split}$$

Solution of Schrödinger Eq.:

$$\psi(\cdot, t) = e^{-itH}\psi_0$$
$$\psi_0 \in \mathcal{H}$$
$$\|\psi_0\|_{\mathcal{H}} = 1$$

$$\begin{split} H &= -\Delta + V \text{ on } \\ \mathcal{H} &= L^2(\mathbb{R}^d), \ell^2(\mathbb{Z}^d) \end{split}$$

Solution of Schrödinger Eq.:

$$\psi(\cdot, t) = e^{-itH}\psi_0$$
$$\psi_0 \in \mathcal{H}$$
$$\|\psi_0\|_{\mathcal{H}} = 1$$

$$\begin{split} H &= -\Delta + V \text{ on } \\ \mathcal{H} &= L^2(\mathbb{R}^d), \ell^2(\mathbb{Z}^d) \end{split}$$

Solution of Schrödinger Eq.:

 $\psi(\cdot, t) = e^{-itH}\psi_0$ $\psi_0 \in \mathcal{H}$

 $\|\psi_0\|_{\mathcal{H}} = 1$

Long time behaviour with initial state $\psi_0 \in \mathcal{H} = \ell^2(\mathbb{Z}^d)$

$$\begin{split} \forall \ K \subset \mathbb{Z}^d \ \text{finite:} \ \sum_{k \in K} \left| \psi(t,k) \right|^2 &\to 0 \ \text{if} \ t \to \infty \\ \forall \ \varepsilon > 0 \ \exists \ K \subset \mathbb{Z}^d \ \text{finite} \ \forall t \colon \sum_{k \in K} \left| \psi(t,k) \right|^2 \geq 1 - \varepsilon \end{split}$$

$$\begin{split} H &= -\Delta + V \text{ on } \\ \mathcal{H} &= L^2(\mathbb{R}^d), \ell^2(\mathbb{Z}^d) \end{split}$$

Solution of Schrödinger Eq.:

- $\psi(\cdot, t) = e^{-itH}\psi_0$ $\psi_0 \in \mathcal{H}$
- $\|\psi_0\|_{\mathcal{H}} = 1$

Long time behaviour with initial state $\psi_0 \in \mathcal{H} = \ell^2(\mathbb{Z}^d)$

$$\forall \ K \subset \mathbb{Z}^d \text{ finite: } \sum_{k \in K} |\psi(t,k)|^2 \to 0 \text{ if } t \to \infty \qquad \Leftarrow \quad \psi_0 \in \mathcal{H}_{\mathrm{ac}}$$
$$\forall \ \varepsilon > 0 \ \exists \ K \subset \mathbb{Z}^d \text{ finite } \forall t \colon \sum_{k \in K} |\psi(t,k)|^2 \ge 1 - \varepsilon \qquad \Leftarrow \quad \psi_0 \in \mathcal{H}_{\mathrm{pp}}$$

Long time behaviour depends on spectral properties of $H = -\Delta + V!$

Motivation	Model	Localization	Poisson statistics
Examp	es		
	periodic potential, $H_{ m per}=-\Delta+1$	$V_{ m per}$, e.g.	
	• • • • • • •		
		$V_{\mathrm{per}}(x) = \sum_{k \in \mathbb{Z}^d} u(x)$	(x-k)
	\vee \vee \vee		
	$H_{ m per}$ has only absolutely continuous	us spectrum, i.e. $\mathcal{H}=\mathcal{H}$	/ ac

Motivation	Model	Localization	Poisson statistics
Example	S		
•	family $(H_{\omega})_{\omega}$, $\omega \in (\Omega, \mathcal{A}, \mathbb{P})$, H_{ω} =	= $-\Delta + V_{\omega}$, e.g.	
	• • • • • •		
		$V_{\omega}(x) = \sum_{k \in \mathbb{Z}^d} \omega_k u(x-k)$	
	$\omega = (\omega_k)_{k \in \mathbb{Z}^d}$ sequence of i.i.d. rate	ndom variables	

Motivation	Model	Localization	Poisson statisti
Examples			
► fa	mily $(H_{\omega})_{\omega}$, $\omega \in (\Omega, \mathcal{A}, \mathbb{P})$, H_{ω}	$\omega_{\omega}=-\Delta+V_{\omega}$, e.g.	
	• • • • • •	•	
		\mathbb{P} $V_{\omega}(x) = \sum_{k \in \mathbb{Z}^d} \omega_k u(x-x)$	k)
ω	$= (\omega_k)_{k \in \mathbb{Z}^d}$ sequence of i.i.d.	random variables	

▶ Anderson localization [And58]: There are intervals $I \subset \mathbb{R}$ containing only pure point spectrum for almost all ω (caught by disorder), i.e.

$$\sigma_{\mathrm{c}}(H_{\omega}) \cap I = \emptyset$$
 a.s.

- Poisson statistics [Min94]:
 - distribution of eigenvalues (if localization occurs)?
 - point process assiciated to rescaled eigenvalues converges to a Poisson process

Motivation	Model	Localization	Poisson statistics

Motivation

Discrete alloy-type model

Localization

Poisson statistics

Motivation	Model	Localization	Poisson statistic
Discrete alloy-	type model		
		on $\ell^2(\mathbb{Z}^d)$, where	

$$H_{\omega} = -\Delta + \lambda V_{\omega} \begin{cases} (\Delta \psi)(x) = \sum_{|e|_{1}=1} \psi(x+e), \\ (V_{\omega}\psi)(x) = V_{\omega}(x)\psi(x), \\ V_{\omega}(x) = \sum_{k \in \mathbb{Z}^{d}} \omega_{k}u(x-k). \end{cases}$$

- $\omega = (\omega_k)_{k \in \mathbb{Z}^d}$ sequence of i.i.d. random variables, $\omega_0 \sim \mu, \mu$ probability measure on \mathbb{R} with compact support
- often: μ has density $\rho \in L^{\infty}(\mathbb{R}), W^{1,1}(\mathbb{R}), W^{2,1}(\mathbb{R})$
- single-site potential $u \in \ell^1(\mathbb{Z}^d; \mathbb{R})$

• $\lambda \ge 0$ strength of disorder

Motivation	Model	Localization	Poisson statistics
Discrete al	loy-type model		
Matrix	representation for $d = 1$		
$H_{\omega} =$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} -1 & & & \\ v_{x+1} & \ddots & & \\ \ddots & \ddots & \ddots & \\ & \ddots & \ddots & \ddots & \\ & \ddots & \ddots & & \end{bmatrix}, $	$v_x = \lambda \sum_{k \in \mathbb{Z}} \omega_k u(x-k)$

Motivation	Model	Localization	Poisson statistic
Discrete alloy	/-type model		
Matrix rep	presentation for $d = 1$		
$H_{\omega} = \left(\left(\right) \right)$	$v_{x-1} - 1$ $v_{x-1} - 1$ $-1 v_x$ -1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$, v_x = \lambda \sum_{k \in \mathbb{Z}} \omega_k u(x - k)$

• $\Gamma \subset \mathbb{Z}^d$, $H_{\Gamma} : \ell^2(\Gamma) \to \ell^2(\Gamma)$ restriction of H_{ω} to Γ

Motivation	Model	Localization	Poisson statistic
Discrete allo	y-type model		
Matrix re	presentation for $d = 1$		
$H_{\omega} = $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0 \\ -1 \\ v_{x+1} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} $	$, v_x = \lambda \sum_{k \in \mathbb{Z}} \omega_k u(x-k)$

• $\Gamma \subset \mathbb{Z}^d$, $H_{\Gamma} : \ell^2(\Gamma) \to \ell^2(\Gamma)$ restriction of H_{ω} to Γ

e.g. d = 1 and $\Gamma = \{x - 1, x, x + 1\}$

Motivation	Model	Localization	Poisson statistics
Discrete alloy-t	ype model		
Matrix repre	sentation for $d = 1$		
$H_{\omega} = \left(\begin{array}{c} & \cdot & \cdot \\ & \cdot & \cdot$	$ \begin{array}{c} \ddots & \ddots \\ \ddots & \ddots \\ -1 & v \\ 0 & - \end{array} $	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_x = \lambda \sum_{k \in \mathbb{Z}} \omega_k u(x - k)$

• $\Gamma \subset \mathbb{Z}^d$, $H_{\Gamma} : \ell^2(\Gamma) \to \ell^2(\Gamma)$ restriction of H_{ω} to Γ

e.g. d = 1 and $\Gamma = \{x - 1, x, x + 1\}$

• $G_{\Gamma}(z) = (H_{\Gamma} - z)^{-1}$, $G_{\Gamma}(z; x, y) = \langle \delta_x, G_{\Gamma}(z) \delta_y \rangle$,

Discrete alloy-type model $V_{\omega}(x) = \sum \omega_k u(x-k)$

Important special cases

```
Anderson model: u = \delta_0, i.e. V_{\omega}(x) = \omega_x
```

```
monotone case: u \ge 0
```

non-monotone case: u changes sign

long range case: supp u unbounded

Abstract approach for correlated Anderson model [DK91,ASFH01]

- $V_{\omega}(x) = \eta_x(\omega)$, with random field $\eta = (\eta_x)_{x \in \mathbb{Z}^d}$
- \blacktriangleright random field η is assumed to be "conditional $\tau\text{-H\"older}$ continuous"
- Question: does the discrete alloy-type model satisfy this assumption?

/lotiv	ation Model	Localization	Poisson statis
Dis	crete alloy-type model $V_{\omega}(x)$ =	$=\sum \omega_k u(x-k)$	
	Important special cases		
	Anderson model: $u = \delta_0$, i.e. $V_{\omega}(x)$	$) = \omega_x$	(loc,poi)
	monotone case: $u \ge 0$		(loc)
	non-monotone case: u changes sign	n	
	long range case: $supp u$ unbounded	d	

Abstract approach for correlated Anderson model [DK91,ASFH01] (loc,poi)

- $V_{\omega}(x) = \eta_x(\omega)$, with random field $\eta = (\eta_x)_{x \in \mathbb{Z}^d}$
- \blacktriangleright random field η is assumed to be "conditional $\tau\text{-H\"older}$ continuous"
- > Question: does the discrete alloy-type model satisfy this assumption?

Motivation	Model	Localization	Poisson statistics
Regularity properties I			

Let $\eta:\Omega\times\mathbb{Z}^d\to\mathbb{R}$ a random field. We say that this field is conditional τ -Hölder continuous, iff

Assumption (τ)

There are constants $\tau \in (0,1]$ and C > 0 such that

 $\sup_{x \in \mathbb{Z}^d} \sup_{a \in \mathbb{R}} \operatorname{essup}_{(\eta_k)_{k \neq x}} \mathbb{P}(\eta_x \in [a, a + \varepsilon] \mid (\eta_k)_{k \neq x}) \le C \varepsilon^{\tau}.$

Since this model is well studied [DK91,AM93] we ask

Question:

Does the discrete alloy-type model given by

$$\eta_x(\omega) = \sum_{k \in \mathbb{Z}^d} \omega_k u(x-k)$$

satisfy this Assumption (τ) ?

Motivation	Model	Localization	Poisson statistics

Regularity properties II

Theorem (T & Veselić 2013)

Let d = 1 and either

- $\operatorname{supp} u = \{0, \dots, n-1\}$ and $\operatorname{supp} \mu$ bounded, or
- supp $u = \{0, 1\}$, u(0) = 1, $u(1)^2 = 1$ and μ normal distribution.

Then the random field $\eta = (\eta_x)_{k \in \mathbb{Z}^d}$ defined by

$$\eta_x = \sum_{k \in \mathbb{Z}^d} \omega_k u(x-k)$$

does not satisfy Assumption (A).

Theorem (Kandler 2006, Ph.D. thesis)

Let η_k , $k \in \mathbb{Z}$ be a random field with compactly supported covariance function. Then there exists a discrete alloy type potential, with compactly supported $u: Z \to \mathbb{R}$, which has the same covariance function.

Motivation	Model	Localization	Poisson statistics

Motivation

Discrete alloy-type model

Localization

Poisson statistics

Motivation	Model	Localization		Poisson statistics
Expected spect	tral types for $H_\omega=1$	$-\Delta + \lambda V_{\omega}$		
1. Let $\lambda > 0$. T $\sigma_{\rm c}(H_{\omega}) \cap \{($	$ \begin{array}{l} \text{Fhen } \exists \ E_0 \in (2d, 2d + \lambda) \\ -\infty, -E_0] \cup [E_0, \infty) \end{array} $		pp-Spektrum	/
2. Let $d \ge 3$ ar $\exists E_{m} = E_{m}$ (conjecture)	and $\lambda > 0$ suff. small. The $(\lambda) < E_0 : [-E_{\rm m}, E_{\rm m}]$ is	then $\sigma_{\rm ac} \neq \emptyset$ a.s.	ac-Spektrum?	
3 . $\exists \lambda_0 > 0 : \forall$	$\lambda > \lambda_0 : \sigma_{\rm c}(H_\omega) = \emptyset$ a	a.s. $-2d$	0	$2d \mathbb{R}$

Notivation	Model	Localization		Poisson statistics
Expected	I spectral types for $H_\omega = -\Delta + \lambda$	ΔV_{ω}		
1. Let $\lambda \sigma_{ m c}(H)$	$0 > 0$. Then $\exists E_0 \in (2d, 2d + \lambda) :$ $\omega \cap \{(-\infty, -E_0] \cup [E_0, \infty)\} = \emptyset$ a.s.	\bigwedge^{λ}	pp-Spektrum	/
2. Let d $\exists E_{m}$ (conjection)	$\lambda \geq 3$ and $\lambda > 0$ suff. small. Then $\lambda = E_{\rm m}(\lambda) < E_0: [-E_{\rm m}, E_{\rm m}] \cap \sigma_{\rm ac} \neq \emptyset$ ecture)	a.s. λ_0	ac-Spektrum?	
3 . $\exists \lambda_0$	$>0:orall \lambda > \lambda_0: \sigma_{ m c}(H_\omega) = \emptyset$ a.s.	-2d	0	$2d \mathbb{R}$

Motivation	Model	Localization		Poisson statistics
Expected spectral type	es for $H_\omega = -\Delta + \lambda$	ΔV_{ω}		
1. Let $\lambda > 0$. Then $\exists E$ $\sigma_{\rm c}(H_{\omega}) \cap \{(-\infty, -E)\}$	$E_0 \in (2d, 2d + \lambda) :$ $E_0] \cup [E_0, \infty)\} = \emptyset$ a.s.	λ	pp-Spektrum	/
2. Let $d \ge 3$ and $\lambda > 0$ $\exists E_{m} = E_{m}(\lambda) < E_{0}$ (conjecture)	suff. small. Then $: [-E_{\rm m}, E_{\rm m}] \cap \sigma_{\rm ac} \neq \ell$	a.s. λ_0	ac-Spektrum?	
3. $\exists \lambda_0 > 0 : \forall \lambda > \lambda_0$: $\sigma_{\mathrm{c}}(H_{\omega})=\emptyset$ a.s.	-2d	0	$2d$ $\mathbb R$

Motivation	Model	Localization	Poisson statistics
Expected spect	tral types for $H_\omega =$	$-\Delta + \lambda V_{\omega}$	
1. Let $\lambda > 0$. T $\sigma_{\rm c}(H_{\omega}) \cap \{($	Then $\exists E_0 \in (2d, 2d + -\infty, -E_0] \cup [E_0, \infty)$	$\begin{array}{c} \lambda):\\ = \emptyset \text{ a.s.} \end{array}$	pp-Spektrum
2. Let $d \ge 3$ ar $\exists E_m = E_m$ (conjecture)	and $\lambda > 0$ suff. small. T $(\lambda) < E_0 : [-E_{\rm m}, E_{\rm m}]$	Then $\cap \sigma_{\rm ac} \neq \emptyset$ a.s.	ac-Spektrum?
3. $\exists \lambda_0 > 0 : \forall$	$\lambda > \lambda_0 : \sigma_{\rm c}(H_\omega) = \emptyset$	a.s2d	$0 \qquad 2d \mathbb{R}$

Motivation	Model	Localization	Poisson statistics
Expected spec	tral types for $H_\omega =$	$-\Delta + \lambda V_{\omega}$	
1. Let $\lambda > 0$. $\sigma_{\rm c}(H_{\omega}) \cap \{($	Then $\exists E_0 \in (2d, 2d + 2d)$ $(-\infty, -E_0] \cup [E_0, \infty)$	$\begin{array}{c} \lambda \end{pmatrix} : \\ = \emptyset \text{ a.s.} \\ \end{array} $	pp-Spektrum
2. Let $d \ge 3$ and $\exists E_{\rm m} = E_{\rm m}$ (conjecture)	and $\lambda > 0$ suff. small. The $(\lambda) < E_0 : [-E_{\mathrm{m}}, E_{\mathrm{m}}]$ is the formula of the constant of the consta	hen $\neg \sigma_{\rm ac} \neq \emptyset$ a.s.	ac-Spektrum?
3 . $\exists \lambda_0 > 0 : \forall$	$\lambda > \lambda_0 : \sigma_{\mathrm{c}}(H_\omega) = \emptyset$	a.s2d	$0 \qquad 2d \mathbb{R}$

- (1) and (3) well studied for $u \ge 0$,
- \blacktriangleright if u changes sign far less is known

Motivation	Model	Localization	1	Poisson statistics
Expected spectral	types for $H_{\omega} =$	$-\Delta + \lambda V_{\omega}$		
1. Let $\lambda > 0$. Then $\sigma_{\rm c}(H_{\omega}) \cap \{(-\infty)\}$	$ \begin{array}{l} n \exists E_0 \in (2d, 2d + \\ o, -E_0] \cup [E_0, \infty) \end{array} $	$\begin{array}{c} \lambda):\\ = \emptyset \text{ a.s.} \end{array}$	pp-Spektrum	
2. Let $d \ge 3$ and λ $\exists E_{\rm m} = E_{\rm m}(\lambda)$ (conjecture)	$\lambda > 0$ suff. small. T $< E_0: [-E_{ m m}, E_{ m m}]$	hen $\cap \sigma_{\rm ac} \neq \emptyset$ a.s.	ac-Spektrum?	
3. $\exists \lambda_0 > 0 : \forall \lambda > 0$	$>\lambda_0$: $\sigma_{ m c}(H_\omega)=\emptyset$	a.s.	-2d 0	$2d \mathbb{R}$

- (1) and (3) well studied for $u \ge 0$,
- if u changes sign far less is known

Aim:

Study (1) and (3) in the non-monotone (long range) case!

Both methods originally strongly rely on assumption $u \ge 0$. If u changes sign:

- no results via FMM
- few results via MSA, e.g. [Klopp '95], [Veselić '02], [Krü12]

New results for sign changing u:

- FMM [Elgart, T., Veselić '11] [Elgart, Shamis, Sodin 13]
- Wegner estimate [Peyerimhoff, T., Veselić '11]
- initial scale estimate and localization [Leonhardt, Peyerimhoff, T., Veselić '11]

New results for sign changing u:

- FMM [Elgart, T., Veselić '11] [Elgart, Shamis, Sodin 13]
- Wegner estimate [Peyerimhoff, T., Veselić '11]
- initial scale estimate and localization [Leonhardt, Peyerimhoff, T., Veselić '11]

What is a Wegner estimate?

• consider box $\Lambda_L = [-L, L]^d \cap \mathbb{Z}^d$ and operator H_{Λ_L} on $\ell^2(\Lambda_L)$.

1\/1		**		10		
1 4 1	v		v		0	

What is a Wegner estimate?

• consider box $\Lambda_L = [-L, L]^d \cap \mathbb{Z}^d$ and operator H_{Λ_L} on $\ell^2(\Lambda_L)$.

What is a Wegner estimate?

• consider box $\Lambda_L = [-L, L]^d \cap \mathbb{Z}^d$ and operator H_{Λ_L} on $\ell^2(\Lambda_L)$.

Wegner estimate [Weg81] is upper bound on the expected number of eigenvalues of H_{ΛL} in intervall [a, b]:

 $\forall L \in \mathbb{N} \text{ und } [a,b] \subset \mathbb{R} : \quad \mathbb{E} \left(\operatorname{Tr} \chi_{[a,b]}(H_{\Lambda_L}) \right) \leq C_{\mathrm{W}}(b-a) |\Lambda_L|^m$

with constants $C_W > 0$ and $m \in [1, \infty)$.

Motivation	Model	Localization	Poisson statistics
Magner estimate			

Wegner estimate

Theorem 6 (Wegner estimate, [PTV11])

Let

•
$$|u(k)| \leq C e^{-\alpha ||k||_1}$$
 for all $k \in \mathbb{Z}^d$ and

 $\blacktriangleright \ \rho \in W^{1,1}(\mathbb{R}).$

Then there exist constants $C_u > 0$ und $m \in \mathbb{N}$, such that for all $L \in \mathbb{N}$ and all $[a,b] \subset \mathbb{R}$

 $\mathbb{E}\big(\operatorname{Tr}\chi_{[a,b]}(H_{\Lambda_L})\big) \le C_u \|\rho\|_{W^{1,1}}(b-a)(2L+1)^{2d+m}.$

Motivation	Model	Localization	Poisson statistics

Wegner estimate

Theorem 6 (Wegner estimate, [PTV11])

Let

•
$$|u(k)| \leq C e^{-\alpha \|k\|_1}$$
 for all $k \in \mathbb{Z}^d$ and

 $\blacktriangleright \ \rho \in W^{1,1}(\mathbb{R}).$

Then there exist constants $C_u > 0$ und $m \in \mathbb{N}$, such that for all $L \in \mathbb{N}$ and all $[a,b] \subset \mathbb{R}$

$$\mathbb{E}\left(\operatorname{Tr}\chi_{[a,b]}(H_{\Lambda_L})\right) \le C_u \|\rho\|_{W^{1,1}} (b-a)(2L+1)^{2d+m}.$$

Remark

- allows long range interaction and non-monotonicity
- generalizes Wegner estimate of [Veselić 2010] where either
 - ▶ d = 1,
 - ▶ supp u finite, or

$$\blacktriangleright \ \overline{u} := \sum_{k \in \mathbb{Z}^d} u(k) > 0$$

is assumed.

Motivation	Model	Localization	Poisson statistics
Localization			

$\mathsf{Wegner} + \mathsf{Initial \ scale \ estimate} \Rightarrow \mathsf{Localization}$

strong disorder (λ large) Wegner implies initial scale estimate weak disorder ($\lambda > 0$) u has small negative part

Motivation	Model	Localization	Poisson statistics
Localization			
Wegner + Initial	scale estima	ate \Rightarrow Localization	

strong disorder (λ large) Wegner implies initial scale estimate weak disorder ($\lambda > 0$) u has small negative part

Let u decay exponentially and $\rho \in W^{1,1}(\mathbb{R})$.

Theorem (Large disorder, [LPTV13])

Let λ be suff. large. Then, for almost all $\omega \in \Omega$, $\sigma_{c}(H_{\omega}) = \emptyset$.

Motivation	Model	Localization	Poisson statistics
Localization			
Wegner + Initial	scale estima	$te \Rightarrow Localization$	

strong disorder (λ large) Wegner implies initial scale estimate weak disorder ($\lambda > 0$) u has small negative part

Let u decay exponentially and $\rho \in W^{1,1}(\mathbb{R})$.

Theorem (Large disorder, [LPTV13])

Let λ be suff. large. Then, for almost all $\omega \in \Omega$, $\sigma_{c}(H_{\omega}) = \emptyset$.

Theorem (weak disorder, small negative part, [LPTV13])

Let
$$\overline{u} = \sum u(k) > 0$$
 and $\operatorname{supp} \mu = [0, \omega_+]$. There is $\delta, \varepsilon > 0$, such that if

 $u = u_{+} - \delta u_{-}$ with $||u_{-}||_{1} \leq 1$,

then, for almost all $\omega \in \Omega$, $\sigma_{c}(H_{\omega}) \cap [-\varepsilon, \varepsilon] = \emptyset$.

Motivation	Model	Localization	Poisson statistics

Motivation

Discrete alloy-type model

Localization

Poisson statistics

Motivation	Model	Localization	Poisson statistics
Minami's estimate			

Poisson statistics

- Molchanov 1981 : (1-dim model in continuum)
- Minami 1996: i.i.d. Anderson model on \mathbb{Z}^d , i.e. $u = \delta_0$
- Germinet & Klopp 2011: abstract framework for \mathbb{Z}^d -models

Main ingredient for proving Poisson statistics in the localized regime is

Minami's estimate

There is $C_{\rm Min}>0$ such that for all $x,y\in\Lambda\subset\mathbb{Z}^d$ and $z\in\mathbb{C}$ with ${\rm Im}\,z>0$ there holds

$$\mathbb{E}\left(\det\left(\operatorname{Im}\begin{pmatrix}G_{\Lambda}(z;x,x) & G_{\Lambda}(z;x,y)\\G_{\Lambda}(z;y,x) & G_{\Lambda}(z;y,y)\end{pmatrix}\right)\right) \leq C_{\operatorname{Min}}$$

No proof for d > 1 & $u \neq \delta_0$.

Motivation	Model	Localization	Poisson statistics

Minami's estimate

Assumption (A)

- ▶ supp u finite
- μ has density $\rho \in W^{2,1}(\mathbb{R})$
- Fourier transform $\hat{u}: [0, 2\pi)^d \to \mathbb{C}$

$$\hat{u}(\theta) = \sum_{k \in \mathbb{Z}^d} u(k) \mathrm{e}^{\mathrm{i}k \cdot \theta}$$

does not vanish.

Theorem (T. & Veselić 2013)

Let Assumption (A) be satisfied. Then Minami's estimate holds.

Firs result on Minami's estimare with

- correlated potential values ($u \neq \delta_0$)
- non-monotone dependence on random parameters (u may change its sign)

 $\hat{u}:[0,2\pi)^d\to\mathbb{C},\ \hat{u}(\theta)=\sum_{k\in\mathbb{Z}^d}u(k)\mathrm{e}^{i\langle k,\theta\rangle}$ does not vanish

Motivation	Model	Localization	Poisson statistics
$\hat{u}: [0, 2\pi)^d \to \mathbb{C}, \ \hat{u}(\theta)$	$=\sum_{k\in\mathbb{Z}^d}u(k)\mathrm{e}^{i\langle k,\theta angle}$	odes not vanish	
$[0,2\pi)^2$	û		e

If
$$\overline{u} = \sum_{k \in \mathbb{Z}^d} u(k) = 0$$
, then $\hat{u}(0) = 0$ and Assumption (A) is not satisfied

Motivation	Model	Localization	Poisson statistic
$\hat{u}: [0, 2\pi)^d \to \mathbb{C}, \ \hat{u}(\theta)$	$=\sum_{k\in\mathbb{Z}^d}u(k)\mathrm{e}^{i\langle k,\theta angle}$	does not vanish	
	û	Im	

If
$$\overline{u}=\sum_{k\in\mathbb{Z}^d}u(k)=0,$$
 then $\hat{u}(0)=0$ and Assumption (A) is not satisfied

Sufficient condition

$$|u(0)| > \sum_{k \neq 0} |u(k)| \quad \Rightarrow \quad \hat{u}(\theta) = u(0) + \sum_{k \neq 0} u(k) \mathrm{e}^{i\langle k, \theta \rangle} \neq 0 \quad \forall \, \theta$$

Corresponds to case $u = \delta_0 + \tilde{u}$ with $\sum_k |\tilde{u}(k)| < 1$.

Motivation	Model	Localization	Poisson statistics
$\hat{u}: [0, 2\pi)^d \to \mathbb{C}, \ \hat{u}(\theta)$	$=\sum_{k\in\mathbb{Z}^d}u(k)\mathrm{e}^{i\langle k, heta angle}$	does not vanish	
$[0,2\pi)^2$	û		Re

If
$$\overline{u}=\sum_{k\in\mathbb{Z}^d}u(k)=0,$$
 then $\hat{u}(0)=0$ and Assumption (A) is not satisfied

Sufficient condition

$$|u(0)| > \sum_{k \neq 0} |u(k)| \quad \Rightarrow \quad \hat{u}(\theta) = u(0) + \sum_{k \neq 0} u(k) \mathrm{e}^{i\langle k, \theta \rangle} \neq 0 \quad \forall \, \theta$$

Corresponds to case $u = \delta_0 + \tilde{u}$ with $\sum_k \tilde{|u(k)|} < 1$.

Motivation	Model	Localization	Poisson statistics
Idea of proof			
Schur complement f	ormula gives		
$egin{pmatrix} G_\Lambda(z;x,z) \ G_\Lambda(z;y,z) \end{pmatrix}$	$ \begin{array}{l} c) & G_{\Lambda}(z;x,y) \\ c) & G_{\Lambda}(z;y,y) \end{array} = \left(M \right. $	$+ \begin{pmatrix} V_{\omega}(x) & 0\\ 0 & V_{\omega}(y) \end{pmatrix} \end{pmatrix}^{-1}$	
M depends on $V_{\omega}(k)$	c), $k \in \Lambda \setminus \{x,y\}.$		

Motivation N	Aodel	Localization	Poisson statistics
Idea of proof			
Schur complement for	mula gives		
$egin{pmatrix} G_\Lambda(z;x,x) \ G_\Lambda(z;y,x) \end{pmatrix}$	$ \begin{array}{l} G_{\Lambda}(z;x,y)\\ G_{\Lambda}(z;y,y) \end{array} = \left(M \end{array} $	$+ egin{pmatrix} V_\omega(x) & 0 \ 0 & V_\omega(y) \end{pmatrix}$	$\left(\right) \right) \right)^{-1}.$
M depends on $V_{\omega}(k)$,	$k\in\Lambda\setminus\{x,y\}.$ We ta	ke expectation:	

Motivation	Model	Localization	Poisson statistics	
Idea of proof				
Schur complement fo	ormula gives			
$egin{pmatrix} G_\Lambda(z;x,x) \ G_\Lambda(z;y,x) \end{pmatrix}$) $G_{\Lambda}(z; x, y)$) $G_{\Lambda}(z; y, y)$ = $\left(M\right)$	$+ egin{pmatrix} V_{\omega}(x) & 0 \\ 0 & V_{\omega}(y) \end{pmatrix} \Big)^{-1}.$		
M depends on $V_{\omega}(k),k\in\Lambda\setminus\{x,y\}.$ We take expectation:				
	$\begin{pmatrix} M + \begin{pmatrix} V_{\omega}(x) & 0 \\ 0 & V_{\omega}(y) \end{pmatrix}$	$\left(\right) \right) \right)^{-1}$		

Motivation	Model	Localization	Poisson statistics	
Idea of proof				
Schur complement formula gives				
$egin{pmatrix} G_\Lambda(z;x,x) \ G_\Lambda(z;y,x) \end{pmatrix}$) $G_{\Lambda}(z; x, y)$) $G_{\Lambda}(z; y, y)$ = $\left(M\right)$	$+ egin{pmatrix} V_{\omega}(x) & 0 \ 0 & V_{\omega}(y) \end{pmatrix} ig)^{-1}.$		
M depends on $V_{\omega}(k),k\in\Lambda\setminus\{x,y\}.$ We take expectation:				
det Im $\begin{pmatrix} M + \begin{pmatrix} V_{\omega}(x) & 0\\ 0 & V_{\omega}(y) \end{pmatrix} \end{pmatrix}^{-1}$				

Motivation	Model	Localization	Poisson statistics	
Idea of proof				
Schur complement f	ormula gives			
$egin{pmatrix} G_\Lambda(z;x,x) \ G_\Lambda(z;y,x) \end{pmatrix}$	$ \begin{array}{l} (z) G_{\Lambda}(z;x,y) \\ (z) G_{\Lambda}(z;y,y) \end{array} = \left(M \right) $	$+ \begin{pmatrix} V_{\omega}(x) & 0 \\ 0 & V_{\omega}(y) \end{pmatrix} \end{pmatrix}^{-}$	1	
M depends on $V_{\omega}(k$), $k\in\Lambda\setminus\{x,y\}.$ We ta	ake expectation:		
$E := \int_{\mathbb{R}^n} \det \operatorname{Im} \left(M + \begin{pmatrix} V_{\omega}(x) & 0\\ 0 & V_{\omega}(y) \end{pmatrix} \right)^{-1} \prod_{k \in \Lambda_+} \rho(\omega_k) \mathrm{d}\omega_k \leq C_{\min}$				

Motivation	Model	Localization	Poisson statistics
Idea of proof			
Schur complement f	ormula gives		
$egin{pmatrix} G_\Lambda(z;x,x) \ G_\Lambda(z;y,x) \end{pmatrix}$	$\begin{pmatrix} f \\ f $	$+ \begin{pmatrix} V_{\omega}(x) & 0\\ 0 & V_{\omega}(y) \end{pmatrix} \end{pmatrix}$	-1
M depends on $V_\omega(k$), $k\in\Lambda\setminus\{x,y\}$. We ta	ke expectation:	
$E := \int_{\mathbb{R}^n} \det \operatorname{Im}$	$ \begin{pmatrix} M + \begin{pmatrix} V_{\omega}(x) & 0 \\ 0 & V_{\omega}(y) \end{pmatrix} \end{pmatrix} $	$\left(\right) \right)^{-1} \prod_{k \in \Lambda_{+}} \rho(\omega_{k}) \mathrm{d}\omega_{k}$	$\leq C_{\min}$
Lemma [Min94,GV	06]		

Let $M = (m_{i,j})_{i,j=1}^2$ with $\operatorname{Im} M < 0$. Then

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \det \left(\operatorname{Im} \left[M + \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix} \right]^{-1} \right) \mathrm{d}v_1 \mathrm{d}v_2 \le \pi.$$

Motivation	Model	Localization	Poisson statistics
Idea of proof			
Schur complement fo	ormula gives		
$egin{pmatrix} G_\Lambda(z;x,x) \ G_\Lambda(z;y,x) \end{pmatrix}$) $G_{\Lambda}(z; x, y)$) $G_{\Lambda}(z; y, y)$ = $\left(M\right)$	$+ egin{pmatrix} V_\omega(x) & 0 \ 0 & V_\omega(y) \end{pmatrix}$	$\left(\right) \right)^{-1}$.
M depends on $V_\omega(k$), $k\in\Lambda\setminus\{x,y\}.$ We ta	ke expectation:	
$E := \int_{\mathbb{R}^n} \det \operatorname{Im}$	$= \begin{pmatrix} M + \begin{pmatrix} V_{\omega}(x) & 0 \\ 0 & V_{\omega}(y) \end{pmatrix}$	$\left(\right) \right)^{-1} \prod_{k \in \Lambda_+} \rho(\omega_k) \mathrm{d}$	$\omega_k \le C_{\min}$
Linear transformati	on $A: \Lambda_+ \to \Lambda_+$		

$$\blacktriangleright A_{\Lambda_+}(x,y) = u(x-k) \ x \in \Lambda, \ y \in \Lambda_+$$

• A_{Λ_+} invertible

Motivation	Model	Localization	Poisson statistics
Idea of proof			
Schur complei	ment formula gives		
$egin{pmatrix} G_\Lambda \ G_\Lambda \end{pmatrix}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$= \left(M + \begin{pmatrix} V_{\omega}(x) & 0 \\ 0 & V_{\omega}(y) \end{pmatrix} \right)$	$(j) \bigg) \bigg)^{-1}.$
M depends or	h $V_{\omega}(k)$, $k \in \Lambda \setminus \{x, y\}$	}. We take expectation:	
$E := \int_{\mathbb{R}^n}$	$\det \operatorname{Im} \left(M + \begin{pmatrix} V_{\omega}(x) \\ 0 \end{pmatrix} \right)$	$\begin{pmatrix} 0 & 0 \\ & V_{\omega}(y) \end{pmatrix}^{-1} \prod_{k \in \Lambda_+} ho(\omega_k)$	$d\omega_k \leq C_{\min}$
	linea	r transformation	
	η_{Λ_+}	$=A_{\Lambda_+}\omega_{\Lambda_+}$	
E	$= \int_{\mathbb{R}^n} \det \operatorname{Im} \left(M + \left(\right. \right. \right. \right)$	$\begin{pmatrix} \eta_x & 0\\ 0 & \eta_y \end{pmatrix} \right)^{-1} k(\eta_{\Lambda_+}) \prod_{k \in \Lambda_+}$	$\mathrm{d}\eta_k.$
Since $\eta_k = V_{\omega}$	$k(k)$ for all $k \in \Lambda$, M	is (analytically) independer	nt of η_x, η_y .

$$\begin{split} E &= \int_{\mathbb{R}^n} \left(M + \begin{pmatrix} \eta_x & 0\\ 0 & \eta_y \end{pmatrix} \right)^{-1} k(\eta_{\Lambda_+}) \prod_{k \in \Lambda_+} \mathrm{d}\eta_k. \\ &\leq \int_{\mathbb{R}^{n-2}} \sup_{\eta_x, \eta_y} k(\eta_{\Lambda_+}) \int_{\mathbb{R}^2} \det \mathrm{Im} \left(M + \begin{pmatrix} \eta_x & 0\\ 0 & \eta_y \end{pmatrix} \right)^{-1} \mathrm{d}\eta_x \mathrm{d}\eta_y \prod_{k \in \Lambda_+ \setminus \{x,y\}} \mathrm{d}\eta_k. \end{split}$$

$$E = \int_{\mathbb{R}^n} \left(M + \begin{pmatrix} \eta_x & 0\\ 0 & \eta_y \end{pmatrix} \right)^{-1} k(\eta_{\Lambda_+}) \prod_{k \in \Lambda_+} \mathrm{d}\eta_k.$$

$$\leq \int_{\mathbb{R}^{n-2}} \sup_{\eta_x, \eta_y} k(\eta_{\Lambda_+}) \int_{\mathbb{R}^2} \det \mathrm{Im} \left(M + \begin{pmatrix} \eta_x & 0\\ 0 & \eta_y \end{pmatrix} \right)^{-1} \mathrm{d}\eta_x \mathrm{d}\eta_y \prod_{k \in \Lambda_+ \setminus \{x, y\}} \mathrm{d}\eta_k.$$

Lemma [Min94,GV06]

Let $M = (m_{i,j})_{i,j=1}^2$ with $\operatorname{Im} M < 0$. Then $\int_{\mathbb{R}} \int_{\mathbb{R}} \det \left(\operatorname{Im} \left[M + \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix} \right]^{-1} \right) \mathrm{d}v_1 \mathrm{d}v_2 \le \pi.$

$$E = \int_{\mathbb{R}^n} \left(M + \begin{pmatrix} \eta_x & 0\\ 0 & \eta_y \end{pmatrix} \right)^{-1} k(\eta_{\Lambda_+}) \prod_{k \in \Lambda_+} \mathrm{d}\eta_k.$$

$$\leq \int_{\mathbb{R}^{n-2}} \sup_{\eta_x, \eta_y} k(\eta_{\Lambda_+}) \int_{\mathbb{R}^2} \det \mathrm{Im} \left(M + \begin{pmatrix} \eta_x & 0\\ 0 & \eta_y \end{pmatrix} \right)^{-1} \mathrm{d}\eta_x \mathrm{d}\eta_y \prod_{k \in \Lambda_+ \setminus \{x, y\}} \mathrm{d}\eta_k.$$

Lemma [Min94,GV06]

Let $M = (m_{i,j})_{i,j=1}^2$ with $\operatorname{Im} M < 0$. Then

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \det \left(\operatorname{Im} \left[M + \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix} \right]^{-1} \right) \mathrm{d} v_1 \mathrm{d} v_2 \leq \pi.$$

It remains to show that Assumption (A) implies

- A_{Λ_+} is invertible
- there is $C_u > 0$ such that for all $\Lambda_+ \subset \mathbb{Z}^d$

$$\int_{\mathbb{R}^{n-2}} \sup_{\eta_x, \eta_y} k(\eta_{\Lambda_+}) \prod_{k \in \Lambda_+ \setminus \{x,y\}} \mathrm{d}\eta_k \le C_u$$