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The well-known canonical system has the form

dy(x , z)

dx
= izJH(x)y(x , z), (1)

J :=

[
0 Ip
Ip 0

]
, H(x) = H(x)∗ ≥ 0. (2)

The 2p × 2p matrix solution W of (1) normalized by the condition

W (0, z) = Im, m = 2p

is called the fundamental solution. H is called Hamiltonian.
L2(H, r) is the space of vector functions on (0, r) with the product

(f , f̃ )H =

r∫
0

f̃ (x)∗H(x)f (x)dx .

Introduce also the space L2
p(τ) of vector functions with the product

〈f , f̃ 〉τ =

∞∫
−∞

f̃ (t)∗dτ(t)f (t) <∞,

where τ is a nondecreasing p × p matrix function.



We set Uf :=
[

0 Ip
] r∫
0

W (x , z)H(x)f (x)dx .

Definition. A nondecreasing τ(t) is called a spectral matrix
function of (1) if U maps L2(H) isometrically into L2

p(dτ).

Put ker U =
{

f ∈ L2(H) : Uf ≡ 0
}
, L1 = L2(H)	 ker U.

Definition. A nondecreasing matrix function τ(t) is called
pseudospectral if U maps L1 isometrically into L2

p(dτ).

We describe spectral and pseudospectral functions in terms of
Möbius transformations. The de Branges space B of functions

F =

r∫
0

W (x , z)H(x)f (x)dx (f ∈ H),

where (F , F )B := (f , f )H , is essential in our considerations.



Canonical system dy(x , z)/dx = izJH(x)y(x , z) is important in
itself and includes as particular cases Schrödinger and string
equations and Dirac systems. The history of its study goes back
to H. Poincare and A.M. Lyapunov. In the more recent period
canonical system was studied, in particular, by L. de Branges,
Gelfand-Lidskii, I. Gohberg, I. Kac, M.G. Krein and L. Sakhnovich.
See more details in the Gohberg-Krein book on Volterra operators
(ch. 6) and L. Sakhnovich book, OT: Adv. and Appl., vol. 107.
See also quite recent papers by M. Langer, H. Woracek,
H. Winkler and coauthers.

We note that in the case det H 6= 0 (i.e., in the case of the
strict inequality H(x) > 0) canonical system can be rewritten in
the form −iH−1J d

dx y = zy and U from the previous frame

diagonalizes operators given by the diff.expr. −iH−1J d
dx and

boundary conditions [Ip 0]y(0) = 0, y(r) = 0:

U

(
−iH−1J

d

dx

)
y = zUy .

The singular case, where det H may turn to zero and indivisible
intervals appear, is more complicated but quite interesting.



Consider Möbius transformations

ϕ(z) = i
(
a(z)P1(z) + b(z)P2(z)

)(
c(z)P1(z) + d(z)P2(z)

)−1
,

where z ∈ C+; a, b, c and d are p × p blocks of W (r , z)∗, and
P1, P2 are nonsingular pairs with property-J, i.e., we require in C+:

det
(
c(z)P1(z) + d(z)P2(z)

)
6= 0, W (r , z)∗ =:

[
a(z) b(z)
c(z) d(z)

]
;

P1, P2 are meromorphic, P1(z)∗P1(z) + P2(z)∗P2(z) > 0,[
P1(z)∗ P2(z)∗

]
J

[
P1(z)
P2(z)

]
≥ 0.

Then, ϕ(z) are well-defined and admit Herglotz representation

ϕ(z) = µz + ν +

∞∫
−∞

(
1

t − z
− t

1 + t2

)
dτ(t),

where µ ≥ 0, ν = ν∗, and τ is nondecreasing.
Denote the class of these ϕ by N (r).



Thus, we study operators U acting from L2(H) into L2
p(dτ):

Uf = U(τ)f :=
[

0 Ip
] r∫
0

W (x , z)H(x)f (x)dx , f ∈ L2(H),

and functions ϕ ∈ N (r) with their Herglotz representations:

ϕ(z) = i
(
a(z)P1(z) + b(z)P2(z)

)(
c(z)P1(z) + d(z)P2(z)

)−1
,

ϕ(z) = µz + ν +

∞∫
−∞

(
1

t − z
− t

1 + t2

)
dτ(t). (3)

When P1(z) = P2(z) ≡ Ip we add indices ”0” into equalities above
and write ϕ0, µ0, ν0 and τ0.
Theorem 1. If ϕ ∈ N (r), then U(τ) is contractive.

The description of pseudospectral matrix functions τ requires
some additional conditions.



Recall that ϕ0(z) = i
(
a(z) + b(z)

)(
c(z) + d(z)

)−1
, where a, b, c

and d are the blocks of W (r , z)∗, and that µ0, ν0 and τ0(t) are
uniquely recovered from the Herglotz representation of ϕ0.
Hypothesis I. If c(z)h ≡ 0 (h ∈ Cp), then h = 0.
Theorem 2. (a) Let ϕ ∈ N (r) and let the condition

lim
η→∞

η−1
(
c(−iη)∗ − d(−iη)∗

)
×
(
ϕ(iη)− ϕ0(iη)

)(
c(iη)− d(iη)

)
= 0 (4)

hold. Then, the distribution function τ from the Herglotz
representation of ϕ is pseudospectral.

(b) Let τ be pseudospectral, let µ0 = 0 and let Hypothesis I
be valid. Then there exists ϕ ∈ N (r) with distribution function τ .
For this function ϕ, equality (4) holds.
Positivity condition (see Gohberg-Krein book (1970), Ch. 6):∫ r

0 H(x)dx > 0.
If positivity condition holds, then Hypothesis I is valid and
det
(
c(z)P1(z) + d(z)P2(z)

)
6= 0.



The positivity condition

H(x) ≥ 0,

∫ r

0
H(x)dx > 0 (5)

is essentially weaker than the non-degeneracy condition that
H(x) > 0 almost everywhere.

If H(x) > 0, then all the conditions of Theorem 2 are
fulfilled automatically and we also have ker U = 0.
Theorem 3. Let H(x) > 0 almost everywhere. Then the set of
spectral functions of the canonical system coincides with the set of
distribution functions from Herglotz representations of functions
ϕ ∈ N (r).

Further we consider canonical system on the semiaxis:

dy(x , z)/dx = izJH(x)y(x , z), 0 ≤ x <∞. (6)

Then N (r1) ⊆ N (r2) for r1 > r2.
If (5) holds for some r̂ > 0 (and so for all r > r̂), then⋂

r<∞N (r) 6= ∅.



Recall that we consider canonical system

dy(x , z)/dx = izJH(x)y(x , z),

where 0 ≤ x <∞ and
∫ r̂
0 H(x)dx > 0.

Then, there is ϕ(z) ∈
⋂

r<∞N (r), see the previous frame.
Such ϕ(z) satisfy (for z ∈ C+) the inequality∫ ∞

0

[
Ip iϕ(z)∗

]
W (x , z)∗H(x)W (x , z)

[
Ip

−iϕ(z)

]
dx <∞.

(7)
Definition. Holomorphic functions ϕ satisfying (7) are called Weyl
functions of the canonical system on the semiaxis 0 ≤ x <∞.

Thus, positivity condition yields the existence of the Weyl function.
Uniqueness theorem. Let Hamiltonian H of the canonical system
be locally summable on [0, ∞) and satisfy positivity condition for
some r̂ > 0. Suppose additionally that H(x) ≥ −δJ for some
δ > 0.

Then, there exists a unique Weyl function of the canonical
system on [0, ∞).



Consider canonical system on [0, ∞) and assume that⋂
r<∞N (r) = ϕ(z) (e.g., assume that the conditions of the

Uniqueness theorem from the previous frame hold). Furthermore,
assume that τ , which corresponds to ϕ, satisfies the Szegö cond.

∞∫
−∞

(
1 + t2

)−1
ln
(

det τ ′(t)
)

dt > −∞.

Then (see Krein-Zasukhin theorem), τ ′ admits the factorization

τ ′(t) = υ(t)∗υ(t), (8)

where the analytic (in C+) p × p matrix function υ(z), having the

limit υ(t) on R, belongs D̃S . That is, the entries of υ
(
z(λ)

)±1
,

with the mapping z(λ) of the form z(λ) = (αλ− α)/(λ− 1),
α ∈ C+, belong to the Smirnov class of functions in the unit disc.
Theorem 4. If c(r , z) ∈ D̃S (for all r > r0 and some r0 > 0), then
we have the asymptotics

lim
r→∞

W (r , z)∗JW (r , ζ) =
1

2π

[
−iϕ(z)

Ip

]
υ(z)−1

× (υ(ζ)∗)−1
[
iϕ(ζ)∗ Ip

]
(z , ζ ∈ C+).



Theorem 1 and Theorem 2 (b) are proved using an analog of the
Potapov’s Transformed Fundamental Matrix Inequality. Namely,
assuming that F , F̃ ∈ B and ϕ ∈ N (r) we use the inequality

(F̃ , F̃ )B +
(

RωF − G (z , ω), F̃
)
B

+
(

F̃ ,RωF − G (z , ω)
)
B

+
(
ω − ω

)−1(
Φ(ω)− Φ(ω)

)
≥ 0, ω ∈ C−, (9)

where the functions Φ and G and operator Rω are given by

Φ(ω) :=
(
F ,RωF − G (z , ω)

)
B
,

G (z , ω) :=
W (r , z)∗JW (r , ω)− J

z − ω

[
Ip

−iϕ(ω)∗

]
F2(ω),

RωF = (z − ω)−1
(
F (z)− F (ω)

)
,

and F2(ω) ∈ Cp is the second block of F (ω).

We note that some restrictions of Theorems 1 and 2 for the case
p = 1 were obtained earlier in a paper by L. Golinskii and I.
Mikhailova (edited by V.P. Potapov) using J-theory and Potapov’s
Fundamental Matrix Inequality (nontransformed),
see Oper. Theory: Adv. Appl., vol. 95 (1997), pp. 205-251.



The subcase of canonical systems

dy(x , z)/dx = izJH(x)y(x , z),

where H = γ∗γ and the p ×m (m = 2p) matrix functions γ satisfy
the identity γJγ∗ = −Ip, is equivalent to the self-adjoint Dirac
system

d

dx
u(x , z) = i

(
zj + jV (x)

)
u(x , z), j =

[
Ip 0
0 −Ip

]
, (10)

V =

[
0 v

v∗ 0

]
. (11)

The more general case of the selfadjoint Dirac systems (10), where

j =

[
Im1 0
0 −Im2

]
, m = m1 + m2, (12)

and the potential v is an m1 ×m2 rectangular matrix function, is
of interest.



Using the method of operator identities by L.A. Sakhnovich, we
generalized the results from
A.L. Sakhnovich, Dirac type and canonical systems: spectral and
Weyl-Titchmarsh fuctions, direct and inverse problems,
Inverse Problems 18 (2002), 331–348
for the the cases of selfdjoint and skew-selfadjoint Dirac systems
with rectangular potentials.

Next, we consider the skew-selfadjoint Dirac system

d

dx
u(x , z) = (izj + jV (x))u(x , z), j =

[
Im1 0
0 −Im2

]
(13)

on the interval [0, r ] and semiaxis [0, ∞). The m×m fundamental
solution u of this system is normalized by the condition

u(0, z) = Im.



Direct problem. Weyl functions for Dirac system

du(x , z)/dx = (izj + jV (x))u(x , z) (14)

are considered in some half-plane CM = {z : z ∈ C, =z > M}.
These Weyl functions are constructed via Möbius transformations

ϕ(x , z ,P) =
(

Y21(x , z)P1(z) + Y22(x , z)P2(z)
)

×
(

Y11(x , z)P1(z) + Y12(x , z)P2(z)
)−1

, (15)

where Yik are the blocks of u−1 and parameter matrix functions
P1 and P2 are m1 ×m2 and m2 ×m2, respectively, matrix
functions, which are meromorphic in CM and satisfy inequalities

P1(z)∗P1(z) + P2(z)∗P2(z) > 0, P1(z)∗P1(z) ≥ P2(z)∗P2(z)

for z ∈ CM (excluding, possibly, a discrete set of points).
NB. If ‖v(x)‖ ≤ M for all x ≤ r , then formula (15) for x ≤ r is
well-defined in CM .
Definition. Let system (14) be given on [0, r ] and let ‖v(x)‖ ≤ M
for all x ≤ r . Then Weyl functions are given by (15) with x = r .



Consider Dirac system on the semiaxis [0, ∞).
The set of values of our Möbius transformations

ϕ(x , z ,P) =
(

Y21(x , z)P1(z) + Y22(x , z)P2(z)
)

×
(

Y11(x , z)P1(z) + Y12(x , z)P2(z)
)−1

,

at the fixed points x and z (z ∈ CM) is denoted by N (x , z).
Definition. Let ‖v(x)‖ ≤ M for all x <∞. Then a Weyl function
is a function s.t.∫ ∞

0

[
Im1 ϕ(z)∗

]
u(x , z)∗u(x , z)

[
Im1

ϕ(z)

]
dx <∞, z ∈ CM .

(16)

Theorem 5. There is a unique Weyl function of the
skew-selfadjoint Dirac system on the semiaxis. It is analytic and
contractive in CM and is given by the relation

ϕ(z) =
⋂
x<∞
N (x , z).



Inverse problem. Theorem 6. Let the potential v of the Dirac
system on [0, r ] be bounded. Then v can be uniquely recovered
from the Weyl function ϕ in the following way.
First, we construct the m2 ×m1 matrix function Φ1:

Φ1

(x

2

)
=

1

π
exηl.i.m.a→∞

∫ a

−a
e−ixξ

ϕ(ξ + iη)

2i(ξ + iη)
dξ, η > M.

Next, we construct the bounded in L2
m2

(0, r), invertible and strictly
positive operator S :

S = I +

∫ r

0
s(x , t) · dt, s(x , t) =

∫ min(x ,t)

0
Φ′1(x − ζ)Φ′1(t − ζ)∗dζ.

Finally, we construct an m1 ×m matrix function β:

β(x) =
[
Im1 0

]
−
∫ x

0

(
S−1x Φ′1

)
(t)∗

[
Φ1(t) Im2

]
dt,

where Sx is the block of S , which maps the subspace L2
m2

(0, x)
onto L2

m2
(0, x). We obtain the potential v via the formula

v(x) = β′(x)γ(x)∗,

where the m2 ×m matrix function γ is uniquely recovered from β.



Recall our last formula v = β′γ∗. Here β and γ are the block rows
of the fundamental solution u(x , z) at z = 0:

β(x) =
[
Im1 0

]
u(x , 0), γ(x) =

[
0 Im2

]
u(x , 0).

The matrix function γ is easily recovered from β using equalities

γ(0) =
[
0 Im2

]
, γ′γ∗ ≡ 0, βγ∗ ≡ 0.



Inverse problem on the semiaxis.
Since the Weyl function ϕ of the Dirac system on the semiaxis is
given by ϕ(z) =

⋂
x<∞N (x , z) (see Theorem 5), this Weyl

function is a Weyl function of the same Dirac system on all the
intervals [0, r ]. Thus, our procedure also grants the solution of the
inverse problem on the semiaxis.

Weyl functions for Dirac systems on the semiaxis satisfy for all
r <∞ the inequalities

sup
x≤r ,z∈CM

∥∥∥∥e−izxu(x , z)

[
Im1

ϕ(z)

]∥∥∥∥ <∞. (17)

Inequalities (17) are used as the definiton of the generalized Weyl
functions. In terms of the generalized Weyl functions, we deal with
the inverse problem for the case of locally bounded potentials.
Easy sufficient condition, under which ϕ is a generalized Weyl
function, are also given.


