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Introduction Solution Theory Some Applications Summary

The Shape of Evolutionary Equations.

General Form of Evolutionary Problems:

∂0V +AU = f on R, V = MU.

Evolutionary Equation:

(∂0M +A)U = f .

Solution Theory: Does the operator

(∂0M +A)−1

exist as a continuous linear mapping on a suitable Hilbert space?
Which �suitable� Hilbert space?



Introduction Solution Theory Some Applications Summary

The Shape of Evolutionary Equations.

General Form of Evolutionary Problems:

∂0V +AU = f on R, V = MU.

Evolutionary Equation:

(∂0M +A)U = f .

Solution Theory: Does the operator

(∂0M +A)−1

exist as a continuous linear mapping on a suitable Hilbert space?
Which �suitable� Hilbert space?



Introduction Solution Theory Some Applications Summary

Time Derivative

The Time Derivative as a Normal Operator

Exponential weight function t 7→ exp(−ρ t), ρ ∈ R, generates a
weighted L2-space Hρ,0 (R,C) by completion of the space C̊∞ (R,C)
of smooth complex-valued functions with compact support w.r.t.
〈 · | · 〉

ρ,0 (norm: | · |
ρ,0)

(ϕ,ψ) 7→
∫
R

ϕ (t) ψ (t) exp(−2ρt)dt.

Time-di�erentiation ∂0 as a closed operator in Hρ,0 (R,C) induced
by

C̊∞ (R,C)⊆ Hρ,0 (R,C)→ Hρ,0 (R,C) ,

ϕ 7→ ϕ
′.
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Time Derivative

The Time Derivative as a Normal Operator

Time-di�erentiation ∂0 is a normal operator in Hρ,0 (R,C)

∂0 = Re∂0 + iIm∂0 =
1

2
(∂0 + ∂ ∗0 ) + i

1

2i
(∂0−∂ ∗0 )

with Re∂0, Im∂0 self-adjoint operators with commuting resolvents:

Re∂0 = ρ.

For ρ ∈ R\{0}: continuous invertibility of ∂0, i.e. 0 ∈ ρ (∂0)
(resolvent set):

σ (∂0) = iR+ ρ (spectrum).
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Time Derivative

The Time Derivative as a Normal Operator

Fourier-Laplace transform: unitary extension of
C̊∞ (R,C)⊆ Hρ,0 (R,C)→ H0,0 (R,C) = L2 (R,C)

ϕ 7→Lρϕ

with Lρϕ (x) =
1√
2π

∫
R
exp(−ix t) exp(−ρ t) ϕ (t) dt, x ∈ R.

is spectral representation for Im∂0:

Im∂0 = L −1
ρ m0 Lρ , ∂0 = L −1

ρ (im0 + ρ) Lρ .

Here m0 is the selfadjoint multiplication-by-argument operator in
L2 (R,C): (m0ϕ)(x) = xϕ (x)

for x ∈ R and ϕ ∈ C̊∞ (R,C).
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Time Derivative

The Time Derivative as a Normal Operator

The canonical extension of ∂0 to the X -valued case, X a Hilbert
space, inherits the normality:

∂0 is still a normal operator in Hρ,0 (R,X )

ρ = Re∂0.

With the extended Fourier-Laplace transform

Lρ : Hρ,0 (R,X )→ L2 (R,X )

we still get
∂0 = L −1

ρ (im0 + ρ) Lρ .
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Time Derivative

Material Law Operators as Functions of the Time Derivative

We also have that

∂
−1
0 = L −1

ρ

1

im0 + ρ
Lρ ,

and so

N

∑
k=0

Mk∂
−k
0 = L −1

ρ

N

∑
k=0

Mk

1

(im0 + ρ)k
Lρ

with continuous linear operators Mk on X as coe�cients,
k = 0, . . . ,N.

Note that for ρ ∈ ]0,∞[∥∥∂
−1
0

∥∥=
1

ρ
and

(
∂
−1
0 ϕ

)
(x) =

∫
x

−∞

ϕ (t) dt

for all ϕ ∈ C̊∞ (R) and x ∈ R.
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Time Derivative

Material Law Operators as Functions of the Time Derivative

Material Law Operator:

M = M
(
∂
−1
0

)
.

It is M
(
∂
−1
0

)
:= L −1

ρ M

(
1

im0 + ρ

)
Lρ ,

where M

(
1

im0 + ρ

)
Φ :=

(
ω 7→M

(
1

iω + ρ

)
Φ(ω)

)
for Φ ∈ C̊∞ (R,X ).

Here (M (z))
z∈BC(r ,r) is a uniformly bounded, holomorphic family of

linear operators in H with r ≥ 1
2ρ

> 0. The operator M
(
∂
−1
0

)
will

be referred to as the material law operator. The operator-valued
function M will be referred to as the material law function.
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Basic Solution Theory

Basic Solution Theory Hρ,0 (R,H)

Evolutionary Problem:(
∂0M

(
∂
−1
0

)
+A
)
U = F

When is
(
∂0M

(
∂
−1
0

)
+A
)
(and its adjoint) strictly positive de�nite

in Hρ,0 (R,H) (for all su�ciently large ρ ∈ ]0,∞[)?

Assumptions (E):

A skew-selfadjoint in H (lifted to Hρ,0 (R,H)),

M (z) = M0 + z
(
M1 +M(2) (z)

)
, M(2) a causal material law

function (values in L(H,H)), e.g. analytic at 0,

limsupρ→∞

∥∥M(2) (i · +ρ)
∥∥= 0,

M0 ≥ 0 selfadjoint, strictly positive de�nite on its range,

ReM1 strictly positive de�nite on the null space of M0.
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Basic Solution Theory

The Basic Solution Theorem

Theorem

Let M and A satisfy Assumptions (E). Then we have for all

su�ciently large ρ ∈ ]0,∞[ that for every f ∈ Hρ,0 (R,H) there is a

unique solution U ∈ Hρ,0 (R,H) of the problem(
∂0M

(
∂
−1
0

)
+A
)
U = f .

The solution operator
(

∂0M
(
∂
−1
0

)
+A
)−1

is continuous and causal

on Hρ,0 (R,H).

Causal? For every a ∈ R we have:

If F ∈ Hρ,0 (R, H) vanishes on the time interval ]−∞, a], then so

does
(

∂0M
(
∂
−1
0

)
+A
)−1

F .
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A Comfortable Problem Class

Some Applications to a Particular Class of Problems

The structure of A as a block operator matrix is frequently of the
form

A =

(
0 −G ∗
G 0

)
(1)

with G : D (G )⊆ H0→ H1 a closed, densely de�ned linear operator
between Hilbert spaces H0 and H1, and the material laws are often
given simply as

M
(
∂
−1
0

)
= M0 + ∂

−1
0 M1 ,

where M0 is self-adjoint and strictly positive de�nite in
H := H0⊕H1. The term M(2) can be treated as a perturbation.



Introduction Solution Theory Some Applications Summary

A Comfortable Problem Class

Some Applications to a Particular Class of Problems

Maxwell's equations, acoustics equations, elasticity equations etc.
are of this speci�c form if memory e�ects are not considered:

∂0M0 +M1 +

(
0 −G ∗
G 0

)
.

M0,M1 block diagonal in simple cases.
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A Comfortable Problem Class

Metamaterials and Other Complex Media

Complex materials: general material law operators

M
(
∂
−1
0

)
not block-diagonal

(linear) delay

memory terms (such as temporal convolution operators or
fractional derivatives).

New materials!
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Coupling of Di�erent Physical Phenomena

Coupling of Di�erent Physical Phenomena

Without coupling, block-diagonal operator matrix:

∂0


V0

...

...
Vn

+A


U0

...

...
Un

=


f0
...
...
fn

 ,

where

A =


A0 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 An


skew-selfadjoint in H =

⊕
k=0,...,nHk , since diagonal block entries

Ak : D (Ak)⊆ Hk → Hk , k = 0, . . . ,n, are skew-self-adjoint.
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Coupling of Di�erent Physical Phenomena

The combined material laws now take the simple diagonal form

V =


V0

...

...
Vn

=


M00

(
∂
−1
0

)
0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 Mnn

(
∂
−1
0

)




U0

...

...
Un

 .

Proper coupling: M contains o�-diagonal block entries

M
(
∂
−1
0

)
:=


M00

(
∂
−1
0

)
· · · · · · M0n

(
∂
−1
0

)
...

. . .
...

...
. . .

...

Mn0

(
∂
−1
0

)
· · · · · · Mnn

(
∂
−1
0

)

 .
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Coupling of Di�erent Physical Phenomena

Coupling of Di�erent Physical Phenomena

Canonical Form:

If Ak =

(
0 −G ∗

k

Gk 0

)
,

then, with the unitary permutation matrix

P = (e0 e2 · · · e2ne1e3 · · ·e2n+1) ,

based on
{0, . . . ,2n+1} → {0, . . . ,2n+1}

k 7→ 1−(−1)k

2
(n+1) +

⌊
k

2

⌋ , we obtain

PAP∗ =

(
0 −G ∗
G 0

)
with

G =


G0 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 Gn

 .
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Coupling of Di�erent Physical Phenomena

Example: Plasma Field Equations

Plasma �eld equations, [Felsen-Marcuvitz-1973]: Maxwell equation
and acoustic equation coupled (average electron velocity v , electron
pressure p).

(∂0M0 +M1 +A)


(
p

E

)
(
v

H

)
= F

M0 =


(

1

γp0
0

0 ε0

) (
0 0

0 0

)
(

0 0

0 0

) (
n0m 0

0 µ0

)
 ,M1 =


(

0 0

0 0

) (
0 0

−n0q 0

)
(

0 n0q

0 0

) (
−n0mωc b0× 0

0 0

)
 ,

A =

(
0 −G ∗
G 0

)
, G =

(
˚grad 0

0 ˚curl

)
M0 strictly positive de�nite, M1 skew-selfadjoint.
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Coupling of Di�erent Physical Phenomena

Example: Thermo-Piezo-Electro-Magnetism in

Micromorphic Media

We base our consideration on a model suggested by R.D. Mindlin,
1974. We are led to the system

(∂0M0 +M1 +A)



u̇

ψ̇

E

θ

τ + σ

µ

ι∗symσ

H

Q


=



f

h

−J
g

0
0
0
0
0


.
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Coupling of Di�erent Physical Phenomena

Example: Thermo-Piezo-Electro-Magnetism in

Micromorphic Media

AU :=



0 0 0 0 −∇· 0 0 0 0
0 0 0 0 0 −∇· 0 0 0
0 0 0 0 0 0 0 −curl 0
0 0 0 0 0 0 0 0 ∇·
−∇̊ 0 0 0 0 0 0 0 0

0 −∇̊ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 ˚curl 0 0 0 0 0 0

0 0 0 ∇̊ 0 0 0 0 0





u̇

ψ̇

E

θ

τ + σ

µ

ι∗symσ

H

Q


H = L

2,1 (Ω)⊕L2,2 (Ω)⊕L2,1 (Ω)⊕L2,0 (Ω)⊕L2,2 (Ω)⊕L2,3 (Ω)⊕ sym
[
L
2,2 (Ω)

]
⊕ skew

[
L
2,2 (Ω)

]
⊕L2,1 (Ω) .

τ ∈ sym
[
L2,2 (Ω)

]
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Coupling of Di�erent Physical Phenomena

Example: Thermo-Piezo-Electro-Magnetism in

Micromorphic Media

M0 is continuous, selfadjoint, M1 continuous, such that

ρM0 +ReM1 ≥ c0 > 0

for all su�ciently large ρ ∈ ]0,∞[. Here

M1 :=



0 0 0 0 0 0 0 0 0
0 0 0 0 −skew 0 −ιsym 0 0
0 0 σ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 skew 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 ι∗sym 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 κ


.



Appendix

Summary

The key to well-posedness of evolutionary problems is strict
positive de�niteness.

Causality is a characterizing property for evolutionary
equations.

The framework provides for an abundance of applications in
particular for coupled phenomena with a single highly uni�ed
approach.
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A Side Note: The �Mother� of �All� Evolutionary PDE

The �Mother�:

A =

(
0 −∇∗

∇ 0

)
(2)

with a suitable domain making A skew-selfadjoint in the Hilbert
space

H =

(⊕
k∈N

L2
k

(Ω)

)
⊕

(⊕
k∈N

L2
k

(Ω)

)
.

L2
k

(Ω) tensors of order k with L2 (Ω)-coe�cients.

∇ co-variant derivative and −∇∗ its skew-adjoint (tensorial
divergence).
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The �Mother� of �All� Evolutionary PDE

Dirichlet boundary condition G = ∇̊:

A :=

(
0 −G ∗
G 0

)
Initial boundary value problems of classical mathematical physics
can be produced from this particular �mother� operator A by
choosing suitable projections for constructing �descendants�.
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The �Mother� of �All� Evolutionary PDE

Theorem

Let C : D (C )⊆ H0→ H1 be a closed densely de�ned linear

operator,Hk , k = 0,1, Hilbert spaces. If Bk : Hk → Xk are

continuous linear mappings, Xk Hilbert space, k = 0,1, such that

C ∗B∗1 densely de�ned and B0 is a bijection

or

CB∗0 densely de�ned and B1 is a bijection.

Then

(
B0 0
0 B1

)(
0 −C ∗
C 0

)(
B∗0 0
0 B∗1

)
is skew-selfadjoint.

�Mother� and �descendant�.
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The �Mother� of �All� Evolutionary PDE

Examples:

tensor order (or degree; �Stufe�)

symmetric/alternating

3-dimensional

order 0,1 ���� acoustics

order 1,2 symmetric elastics

order 1,2 alternating electrodynamics

descend in space dimension

vanishing trace condition (divergence-free; incompressible
Stokes equation)
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