◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

On a Multi-Physics Coupling Mechanism.

The 3rd Najman Conference on Spectral Problems for Operators and Matrices

Rainer Picard Department of Mathematics TU Dresden, Germany

Biograd 2013

Some Applications

The Shape of Evolutionary Equations.

General Form of Evolutionary Problems:

$$\partial_0 V + AU = f$$
 on $\mathbb{R}, V = \mathscr{M}U$.

Evolutionary Equation:

$$(\partial_0 \mathcal{M} + A) U = f.$$

Solution Theory: Does the operator

$$(\partial_0 \mathscr{M} + A)^{-1}$$

exist as a continuous linear mapping on a suitable Hilbert space? Which *"suitable"* Hilbert space?

Some Applications

The Shape of Evolutionary Equations.

General Form of Evolutionary Problems:

$$\partial_0 V + AU = f$$
 on $\mathbb{R}, V = \mathscr{M}U$.

Evolutionary Equation:

$$(\partial_0 \mathcal{M} + A) U = f.$$

Solution Theory: Does the operator

$$(\partial_0 \mathscr{M} + A)^{-1}$$

exist as a continuous linear mapping on a suitable Hilbert space? Which *"suitable"* Hilbert space?

Introduction	So	olution Theory	Some 00000	Applications	Summary
Time Derivative					

The Time Derivative as a Normal Operator

Exponential weight function $t \mapsto \exp(-\rho t)$, $\rho \in \mathbb{R}$, generates a weighted L^2 -space $H_{\rho,0}(\mathbb{R},\mathbb{C})$ by completion of the space $\mathring{C}_{\infty}(\mathbb{R},\mathbb{C})$ of smooth complex-valued functions with compact support w.r.t. $\langle \cdot | \cdot \rangle_{\rho,0}$ (norm: $| \cdot |_{\rho,0}$)

$$(\varphi, \psi) \mapsto \int_{\mathbb{R}} \overline{\varphi(t)} \, \psi(t) \exp(-2\rho t) dt.$$

Time-differentiation ∂_0 as a closed operator in $H_{\rho,0}(\mathbb{R},\mathbb{C})$ induced by

$$\dot{\mathcal{C}}_{\infty}\left(\mathbb{R},\mathbb{C}
ight)\subseteq H_{
ho,0}\left(\mathbb{R},\mathbb{C}
ight)
ightarrow H_{
ho,0}\left(\mathbb{R},\mathbb{C}
ight), \ arphi\mapstoarphi'.$$

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

ln1	۲r.	0	d		5		0	n
		0		J			5	

Some Applications

Summary

Time Derivative

The Time Derivative as a Normal Operator

Time-differentiation ∂_0 is a normal operator in $H_{\rho,0}(\mathbb{R},\mathbb{C})$

$$\partial_0 = \mathfrak{Re}\,\partial_0 + \mathrm{i}\,\mathfrak{Im}\,\partial_0 = \overline{rac{1}{2}\left(\partial_0 + \partial_0^*
ight)} + \mathrm{i}rac{1}{2\mathrm{i}}\left(\partial_0 - \partial_0^*
ight)$$

with $\mathfrak{Re} \partial_0$, $\mathfrak{Im} \partial_0$ self-adjoint operators with commuting resolvents:

 $\mathfrak{Re}\,\partial_0=\rho.$

For $\rho \in \mathbb{R} \setminus \{0\}$: continuous invertibility of ∂_0 , i.e. $0 \in \rho(\partial_0)$ (resolvent set):

 $\sigma(\partial_0) = i\mathbb{R} + \rho$ (spectrum).

ln.	tr.	0	d	Ċ	۰.	10	۱n	
			3					

Some Applications

Summary

Time Derivative

The Time Derivative as a Normal Operator

Time-differentiation ∂_0 is a normal operator in $H_{\rho,0}(\mathbb{R},\mathbb{C})$

$$\partial_0 = \mathfrak{Re}\,\partial_0 + \mathrm{i}\,\mathfrak{Im}\,\partial_0 = \overline{rac{1}{2}\left(\partial_0 + \partial_0^*
ight)} + \mathrm{i}rac{1}{2\mathrm{i}}\left(\partial_0 - \partial_0^*
ight)$$

with $\mathfrak{Re}\partial_0$, $\mathfrak{Im}\partial_0$ self-adjoint operators with commuting resolvents:

 $\mathfrak{Re}\,\partial_0=
ho$.

For $\rho \in \mathbb{R} \setminus \{0\}$: continuous invertibility of ∂_0 , i.e. $0 \in \rho(\partial_0)$ (resolvent set):

$$\sigma(\partial_0) = \mathrm{i}\mathbb{R} +
ho$$
 (spectrum).

Solution Theory

Some Applications

Summary

Time Derivative

The Time Derivative as a Normal Operator

Fourier-Laplace transform: unitary extension of $\mathring{C}_{\infty}(\mathbb{R},\mathbb{C}) \subseteq H_{\rho,0}(\mathbb{R},\mathbb{C}) \to H_{0,0}(\mathbb{R},\mathbb{C}) = L^2(\mathbb{R},\mathbb{C})$ $\varphi \mapsto \mathscr{L}_{\rho}\varphi$ with $\mathscr{L}_{\rho}\varphi(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp(-ixt) \exp(-\rho t) \varphi(t) dt, x \in \mathbb{R}.$

is spectral representation for $\Im \mathfrak{m} \partial_0$:

$$\mathfrak{Im}\,\partial_0=\mathscr{L}_\rho^{-1}\mathbf{m}_0\,\mathscr{L}_\rho,\quad \partial_0=\mathscr{L}_\rho^{-1}(\operatorname{i}\mathbf{m}_0+\rho)\,\mathscr{L}_\rho.$$

Here \mathbf{m}_0 is the selfadjoint multiplication-by-argument operator in $L^2(\mathbb{R},\mathbb{C})$: $(\mathbf{m}_0\varphi)(x) = x\varphi(x)$

for $x\in\mathbb{R}$ and $\pmb{arphi}\in\mathring{\mathcal{C}}_{\infty}(\mathbb{R},\mathbb{C}).$

Some Applications

Summary

Time Derivative

The Time Derivative as a Normal Operator

The canonical extension of ∂_0 to the X-valued case, X a Hilbert space, inherits the normality:

 ∂_0 is still a normal operator in $H_{
ho,0}\left(\mathbb{R},X
ight)$

 $\rho = \mathfrak{Re}\,\partial_0.$

With the extended Fourier-Laplace transform

$$\mathscr{L}_{\rho}: H_{\rho,0}(\mathbb{R},X) \to L^{2}(\mathbb{R},X)$$

we still get

$$\partial_0 = \mathscr{L}_{\rho}^{-1}(\mathrm{i}\,\mathbf{m}_0+\rho)\,\mathscr{L}_{\rho}.$$

١t	r	0	d	വ	0	n

Some Applications

Summary

Time Derivative

The Time Derivative as a Normal Operator

The canonical extension of ∂_0 to the X-valued case, X a Hilbert space, inherits the normality:

 ∂_0 is still a normal operator in $H_{
ho,0}\left(\mathbb{R},X
ight)$

$$\rho = \mathfrak{Re} \partial_0.$$

With the extended Fourier-Laplace transform

$$\mathscr{L}_{\rho}: H_{\rho,0}(\mathbb{R},X) \to L^{2}(\mathbb{R},X)$$

we still get

$$\partial_0 = \mathscr{L}_{\rho}^{-1}(\operatorname{i} \mathbf{m}_0 + \rho) \mathscr{L}_{\rho}.$$

ln.	tr.	0	d	Ċ	۰.	10	۱n	
			3					

Some Applications

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Time Derivative

The Time Derivative as a Normal Operator

The canonical extension of ∂_0 to the X-valued case, X a Hilbert space, inherits the normality:

 ∂_0 is still a normal operator in $H_{
ho,0}\left(\mathbb{R},X
ight)$

 $\rho = \mathfrak{Re} \partial_0.$

With the extended Fourier-Laplace transform

$$\mathscr{L}_{\rho}: H_{\rho,0}(\mathbb{R},X) \to L^{2}(\mathbb{R},X)$$

we still get

$$\partial_0 = \mathscr{L}_{\rho}^{-1}(\operatorname{i} \mathbf{m}_0 + \rho) \mathscr{L}_{\rho}.$$

Solution Theory

Some Applications

Time Derivative

Material Law Operators as Functions of the Time Derivative

We also have that

$$\partial_0^{-1} = \mathscr{L}_{\rho}^{-1} \frac{1}{\mathrm{i}\,\mathbf{m}_0 + \rho} \,\mathscr{L}_{\rho},$$

and so

$$\sum_{k=0}^{N} M_k \partial_0^{-k} = \mathscr{L}_{\rho}^{-1} \sum_{k=0}^{N} M_k \frac{1}{\left(\operatorname{i} \mathbf{m}_0 + \rho\right)^k} \, \mathscr{L}_{\rho}$$

with continuous linear operators M_k on X as coefficients, k = 0, ..., N.

• Note that for $ho\in]0,\infty[$

$$\left\|\partial_0^{-1}\right\| = \frac{1}{\rho} \text{ and } \left(\partial_0^{-1} \varphi\right)(x) = \int_{-\infty}^x \varphi(t) dt$$

for all $\varphi \in \mathring{\mathcal{C}}_{\infty}(\mathbb{R})$ and $x \in \mathbb{R}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution Theory

Some Applications

Time Derivative

Material Law Operators as Functions of the Time Derivative

We also have that

$$\partial_0^{-1} = \mathscr{L}_{\rho}^{-1} \frac{1}{\mathrm{i}\,\mathbf{m}_0 + \rho} \,\mathscr{L}_{\rho},$$

and so

$$\sum_{k=0}^{N} M_k \partial_0^{-k} = \mathscr{L}_{\rho}^{-1} \sum_{k=0}^{N} M_k \frac{1}{\left(\mathrm{i}\,\mathbf{m}_0 + \rho\right)^k} \, \mathscr{L}_{\rho}$$

with continuous linear operators M_k on X as coefficients, k = 0, ..., N.

• Note that for $ho\in]0,\infty[$

$$\left\|\partial_0^{-1}
ight\|=rac{1}{
ho}$$
 and $\left(\partial_0^{-1} arphi
ight)(x)=\int_{-\infty}^x arphi(t) \, dt$

for all $\pmb{\varphi}\in \mathring{\mathcal{C}}_{\infty}(\mathbb{R})$ and $x\in\mathbb{R}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution Theory

Some Applications

Time Derivative

Material Law Operators as Functions of the Time Derivative

Material Law Operator:

$$\begin{split} \mathscr{M} &= M\left(\partial_0^{-1}\right). \\ \text{It is} \qquad M\left(\partial_0^{-1}\right) := \mathscr{L}_{\rho}^{-1} M\left(\frac{1}{\operatorname{i} \mathfrak{m}_0 + \rho}\right) \mathscr{L}_{\rho}, \\ \text{where} \qquad M\left(\frac{1}{\operatorname{i} \mathfrak{m}_0 + \rho}\right) \Phi := \left(\omega \mapsto M\left(\frac{1}{\operatorname{i} \omega + \rho}\right) \Phi\left(\omega\right)\right) \end{split}$$

for $\Phi \in \mathring{C}_{\infty}(\mathbb{R}, X)$. Here $(M(z))_{z \in B_{\mathbb{C}}(r,r)}$ is a uniformly bounded, holomorphic family of linear operators in H with $r \geq \frac{1}{2\rho} > 0$. The operator $M(\partial_0^{-1})$ will be referred to as the **material law operator**. The operator-valued function M will be referred to as the **material law function**.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Solution Theory

Some Applications

Time Derivative

Material Law Operators as Functions of the Time Derivative

Material Law Operator:

$$\begin{split} \mathscr{M} &= M\left(\partial_0^{-1}\right). \\ \text{It is} \qquad M\left(\partial_0^{-1}\right) := \mathscr{L}_{\rho}^{-1} M\left(\frac{1}{\operatorname{i} \mathfrak{m}_0 + \rho}\right) \mathscr{L}_{\rho}, \\ \text{where} \qquad M\left(\frac{1}{\operatorname{i} \mathfrak{m}_0 + \rho}\right) \Phi := \left(\omega \mapsto M\left(\frac{1}{\operatorname{i} \omega + \rho}\right) \Phi(\omega)\right) \end{split}$$

for $\Phi \in \mathring{C}_{\infty}(\mathbb{R}, X)$. Here $(M(z))_{z \in B_{\mathbb{C}}(r,r)}$ is a uniformly bounded, holomorphic family of linear operators in H with $r \geq \frac{1}{2\rho} > 0$. The operator $M(\partial_0^{-1})$ will be referred to as the **material law operator**. The operator-valued function M will be referred to as the **material law function**.

Solution Theory

Some Applications

Time Derivative

Material Law Operators as Functions of the Time Derivative

Material Law Operator:

$$\begin{split} \mathscr{M} &= M\left(\partial_0^{-1}\right). \\ \text{It is} \qquad M\left(\partial_0^{-1}\right) := \mathscr{L}_{\rho}^{-1} M\left(\frac{1}{\operatorname{i} \mathbf{m}_0 + \rho}\right) \mathscr{L}_{\rho}, \\ \text{where} \qquad M\left(\frac{1}{\operatorname{i} \mathbf{m}_0 + \rho}\right) \Phi := \left(\omega \mapsto M\left(\frac{1}{\operatorname{i} \omega + \rho}\right) \Phi(\omega)\right) \end{split}$$

for $\Phi \in \mathring{\mathcal{C}}_{\infty}(\mathbb{R},X)$.

Here $(M(z))_{z \in B_{\mathbb{C}}(r,r)}$ is a uniformly bounded, holomorphic family of linear operators in H with $r \ge \frac{1}{2\rho} > 0$. The operator $M(\partial_0^{-1})$ will be referred to as the **material law operator**. The operator-valued function M will be referred to as the **material law function**.

Solution Theory

Some Applications

Time Derivative

Material Law Operators as Functions of the Time Derivative

Material Law Operator:

$$\begin{split} \mathscr{M} &= M\left(\partial_0^{-1}\right). \\ \text{It is} \qquad M\left(\partial_0^{-1}\right) := \mathscr{L}_{\rho}^{-1} M\left(\frac{1}{\operatorname{i} \mathbf{m}_0 + \rho}\right) \mathscr{L}_{\rho}, \\ \text{where} \qquad M\left(\frac{1}{\operatorname{i} \mathbf{m}_0 + \rho}\right) \Phi := \left(\omega \mapsto M\left(\frac{1}{\operatorname{i} \omega + \rho}\right) \Phi\left(\omega\right)\right) \end{split}$$

for $\Phi \in \mathring{C}_{\infty}(\mathbb{R}, X)$. Here $(M(z))_{z \in B_{\mathbb{C}}(r,r)}$ is a uniformly bounded, holomorphic family of linear operators in H with $r \geq \frac{1}{2\rho} > 0$. The operator $M(\partial_0^{-1})$ will be referred to as the **material law operator**. The operator-valued function M will be referred to as the **material law function**.

Solution Theory

Some Applications

Summary

Basic Solution Theory

Basic Solution Theory $H_{\rho,0}(\mathbb{R},H)$

Evolutionary Problem:

$$\overline{\left(\partial_{0} M\left(\partial_{0}^{-1}\right) + A\right)} U = F$$

When is $(\partial_0 M (\partial_0^{-1}) + A)$ (and its adjoint) strictly positive definite in $H_{\rho,0}(\mathbb{R}, H)$ (for all sufficiently large $\rho \in]0, \infty[$)?

• A skew-selfadjoint in H (lifted to $H_{\rho,0}(\mathbb{R},H)$),

- $M(z) = M_0 + z (M_1 + M^{(2)}(z)), M^{(2)}$ a causal material law function (values in L(H, H)), e.g. analytic at 0,
- $\limsup_{\rho \to \infty} \left\| M^{(2)}(\mathbf{i} \cdot + \rho) \right\| = 0,$
- $M_0 \ge 0$ selfadjoint, strictly positive definite on its range,
- $\mathfrak{Re} M_1$ strictly positive definite on the null space of M_0 .

Solution Theory

Some Applications

Summary

Basic Solution Theory

Basic Solution Theory $H_{\rho,0}(\mathbb{R},H)$

Evolutionary Problem:

$$\overline{\left(\partial_{0} M\left(\partial_{0}^{-1}\right) + A\right)} U = F$$

When is $(\partial_0 M(\partial_0^{-1}) + A)$ (and its adjoint) strictly positive definite in $H_{\rho,0}(\mathbb{R}, H)$ (for all sufficiently large $\rho \in]0, \infty[$)?

Assumptions (E):

- A skew-selfadjoint in H (lifted to $H_{\rho,0}(\mathbb{R},H)$),
- $M(z) = M_0 + z (M_1 + M^{(2)}(z)), M^{(2)}$ a causal material law function (values in L(H, H)), e.g. analytic at 0,
- $\limsup_{
 ho \to \infty} \left\| M^{(2)}(\mathbf{i} \cdot +
 ho) \right\| = 0$,
- $M_0 \ge 0$ selfadjoint, strictly positive definite on its range,
- $\Re e M_1$ strictly positive definite on the null space of M_0 .

Some Applications

Basic Solution Theory

The Basic Solution Theorem

Theorem

Let *M* and *A* satisfy **Assumptions** (*E*). Then we have for all sufficiently large $\rho \in]0,\infty[$ that for every $f \in H_{\rho,0}(\mathbb{R},H)$ there is a unique solution $U \in H_{\rho,0}(\mathbb{R},H)$ of the problem

$$\overline{\left(\partial_0 M\left(\partial_0^{-1}\right) + A\right)} U = f.$$

The solution operator $\left(\overline{\partial_0 M(\partial_0^{-1}) + A}\right)^{-1}$ is continuous and causal on $H_{\rho,0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have: If $F \in H_{\rho,0}(\mathbb{R}, H)$ vanishes on the time interval $] -\infty, a]$, then so does $\left(\overline{\partial_0 M(\partial_0^{-1}) + A}\right)^{-1} F$.

Some Applications

Basic Solution Theory

The Basic Solution Theorem

Theorem

Let *M* and *A* satisfy **Assumptions** (*E*). Then we have for all sufficiently large $\rho \in]0,\infty[$ that for every $f \in H_{\rho,0}(\mathbb{R},H)$ there is a unique solution $U \in H_{\rho,0}(\mathbb{R},H)$ of the problem

$$\overline{\left(\partial_0 M\left(\partial_0^{-1}\right) + A\right)} U = f.$$

The solution operator $\left(\overline{\partial_0 M(\partial_0^{-1}) + A}\right)^{-1}$ is continuous and causal on $H_{\rho,0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have: If $F \in H_{\rho,0}(\mathbb{R}, H)$ vanishes on the time interval $] -\infty, a]$, then so does $\left(\overline{\partial_0 M(\partial_0^{-1}) + A}\right)^{-1} F$.

Some Applications

A Comfortable Problem Class

Some Applications to a Particular Class of Problems

The structure of A as a block operator matrix is frequently of the form

$$A = \begin{pmatrix} 0 & -G^* \\ G & 0 \end{pmatrix}$$
(1)

with $G: D(G) \subseteq H_0 \to H_1$ a closed, densely defined linear operator between Hilbert spaces H_0 and H_1 , and the material laws are often given simply as

$$M\left(\partial_0^{-1}\right) = M_0 + \partial_0^{-1} M_1,$$

where M_0 is self-adjoint and strictly positive definite in $H := H_0 \oplus H_1$. The term $M^{(2)}$ can be treated as a perturbation.

Solution Theory

Some Applications

Summary

A Comfortable Problem Class

Some Applications to a Particular Class of Problems

Maxwell's equations, acoustics equations, elasticity equations etc. are of this specific form if memory effects are not considered:

$$\partial_0 M_0 + M_1 + \begin{pmatrix} 0 & -G^* \\ G & 0 \end{pmatrix}.$$

 M_0 , M_1 block diagonal in simple cases.

Solution Theory

Some Applications

Summary

A Comfortable Problem Class

Metamaterials and Other Complex Media

Complex materials: general material law operators

 $M\left(\partial_0^{-1}
ight)$

- not block-diagonal
- (linear) delay
- memory terms (such as temporal convolution operators or fractional derivatives).

Solution Theory

Some Applications

Summary

A Comfortable Problem Class

Metamaterials and Other Complex Media

Complex materials: general material law operators

 $M\left(\partial_0^{-1}
ight)$

- not block-diagonal
- (linear) delay
- memory terms (such as temporal convolution operators or fractional derivatives).

Solution Theory

Some Applications

Summary

A Comfortable Problem Class

Metamaterials and Other Complex Media

Complex materials: general material law operators

 $M\left(\partial_0^{-1}
ight)$

- not block-diagonal
- (linear) delay
- memory terms (such as temporal convolution operators or fractional derivatives).

Solution Theory

Some Applications

Summary

A Comfortable Problem Class

Metamaterials and Other Complex Media

Complex materials: general material law operators

 $M\left(\partial_0^{-1}
ight)$

- not block-diagonal
- (linear) delay
- memory terms (such as temporal convolution operators or fractional derivatives).

Solution Theory

Some Applications

Summary

Coupling of Different Physical Phenomena

Coupling of Different Physical Phenomena

Without coupling, block-diagonal operator matrix:

$$\partial_0 \begin{pmatrix} V_0 \\ \vdots \\ \vdots \\ V_n \end{pmatrix} + A \begin{pmatrix} U_0 \\ \vdots \\ \vdots \\ U_n \end{pmatrix} = \begin{pmatrix} f_0 \\ \vdots \\ \vdots \\ f_n \end{pmatrix},$$

where

$$A = \begin{pmatrix} A_0 & 0 & \cdots & 0 \\ 0 & \ddots & \vdots \\ \vdots & & 0 \\ 0 & \cdots & 0 & A_n \end{pmatrix}$$

skew-selfadjoint in $H = \bigoplus_{k=0,...,n} H_k$, since diagonal block entries $A_k : D(A_k) \subseteq H_k \to H_k$, k = 0,...,n, are skew-self-adjoint.

Solution Theory

Some Applications

Summary

.

Coupling of Different Physical Phenomena

Coupling of Different Physical Phenomena

The combined material laws now take the simple diagonal form

$$V = \begin{pmatrix} V_0 \\ \vdots \\ \vdots \\ V_n \end{pmatrix} = \begin{pmatrix} M_{00} (\partial_0^{-1}) & 0 & \cdots & 0 \\ 0 & \ddots & \vdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & 0 & M_{nn} (\partial_0^{-1}) \end{pmatrix} \begin{pmatrix} U_0 \\ \vdots \\ \vdots \\ U_n \end{pmatrix}$$

Proper coupling: *M* contains off-diagonal block entries

$$M\left(\partial_{0}^{-1}\right) := \begin{pmatrix} M_{00}\left(\partial_{0}^{-1}\right) \cdots \cdots M_{0n}\left(\partial_{0}^{-1}\right) \\ \vdots & \vdots \\ \vdots & \vdots \\ M_{n0}\left(\partial_{0}^{-1}\right) \cdots \cdots M_{nn}\left(\partial_{0}^{-1}\right) \end{pmatrix}$$

lf

Solution Theory

Some Applications

Summary

Coupling of Different Physical Phenomena

Coupling of Different Physical Phenomena

Canonical Form:

$$A_k = \left(\begin{array}{cc} 0 & -G_k^* \\ G_k & 0 \end{array}\right),$$

then, with the unitary permutation matrix

$$P = (e_0 \ e_2 \cdots \ e_{2n} e_1 \ e_3 \cdots e_{2n+1}),$$

based on
$$\begin{cases} 0, \dots, 2n+1 \} \rightarrow \{0, \dots, 2n+1\} \\ k \mapsto \frac{1-(-1)^k}{2} (n+1) + \lfloor \frac{k}{2} \rfloor, \text{ we obtain} \end{cases}$$
$$PAP^* = \begin{pmatrix} 0 & -G^* \\ G & 0 \end{pmatrix} \text{ with}$$
$$G = \begin{pmatrix} G_0 & 0 & \cdots & 0 \\ 0 & \ddots & \vdots \\ \vdots & & 0 \\ 0 & \cdots & 0 & G_n \end{pmatrix}.$$

Solution Theory

Some Applications

Summary

Coupling of Different Physical Phenomena

Example: Plasma Field Equations

Plasma field equations, [Felsen-Marcuvitz-1973]: Maxwell equation and acoustic equation coupled (average electron velocity v, electron pressure p).

$$(\partial_0 M_0 + M_1 + A) \begin{pmatrix} \begin{pmatrix} P \\ E \end{pmatrix} \\ \begin{pmatrix} v \\ H \end{pmatrix} \end{pmatrix} = F$$

$$M_0 = \begin{pmatrix} \begin{pmatrix} \frac{1}{\gamma p_0} & 0 \\ 0 & \varepsilon_0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} n_0 m & 0 \\ 0 & \mu_0 \end{pmatrix} \end{pmatrix}, M_1 = \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ -n_0 q & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & n_0 q \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} -n_0 m \omega_c b_0 \times 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix},$$

$$A = \begin{pmatrix} 0 & -G^* \\ G & 0 \end{pmatrix}, \quad G = \begin{pmatrix} \text{grad } 0 \\ 0 & \text{curl} \end{pmatrix}$$

 M_0 strictly positive definite, M_1 skew-selfadjoint.

Solution Theory

Some Applications

Summary

Coupling of Different Physical Phenomena

Example: Thermo-Piezo-Electro-Magnetism in Micromorphic Media

We base our consideration on a model suggested by R.D. Mindlin, 1974. We are led to the system

$$(\partial_0 M_0 + M_1 + A) \begin{pmatrix} \dot{u} \\ \dot{\psi} \\ E \\ \theta \\ \tau + \sigma \\ \mu \\ \iota_{\text{sym}}^* \sigma \\ H \\ Q \end{pmatrix} = \begin{pmatrix} f \\ h \\ -J \\ g \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Solution Theory

Some Applications

Summary

Coupling of Different Physical Phenomena

Example: Thermo-Piezo-Electro-Magnetism in Micromorphic Media

	(0	0	0	0	$-\nabla \cdot$	0	0	0	0 \	1	/ ü \
	0	0	0	0	0	$- abla\cdot$	0	0	0		ψ
	0	0	0	0	0	0	0	$-\operatorname{curl}$	0		Ė
	0	0	0	0	0	0	0	0	$\nabla \cdot$		θ
$AU \coloneqq$	$-\mathring{ abla}$	0	0	0	0	0	0	0	0		$ au + \sigma$
	0	$-\mathring{ abla}$	0	0	0	0	0	0	0		μ
	0	0	0	0	0	0	0	0	0		$\iota_{ m sym}^*\sigma$
	0	0	curl	0	0	0	0	0	0		Ή
	0	0	0	$\mathring{\nabla}$	0	0	0	0	0 /		\

$$\begin{split} & \mathcal{H} = \mathcal{L}^{2,1}\left(\Omega\right) \oplus \mathcal{L}^{2,2}\left(\Omega\right) \oplus \mathcal{L}^{2,1}\left(\Omega\right) \oplus \mathcal{L}^{2,0}\left(\Omega\right) \oplus \mathcal{L}^{2,2}\left(\Omega\right) \oplus \mathcal{L}^{2,3}\left(\Omega\right) \oplus \text{sym}\left[\mathcal{L}^{2,2}\left(\Omega\right)\right] \oplus \text{skew}\left[\mathcal{L}^{2,2}\left(\Omega\right)\right] \oplus \mathcal{L}^{2,1}\left(\Omega\right). \\ & \tau \in \text{sym}\left[\mathcal{L}^{2,2}\left(\Omega\right)\right] \end{split}$$

Solution Theory

Some Applications

Summary

Coupling of Different Physical Phenomena

Example: Thermo-Piezo-Electro-Magnetism in Micromorphic Media

 M_0 is continuous, selfadjoint, M_1 continuous, such that

$$ho M_0 + \mathfrak{Re} M_1 \ge c_0 > 0$$

for all sufficiently large $ho\in]0,\infty[$. Here

(ロ) (四) (注) (注) (注) (1) (0) (0)

Summary

- The key to well-posedness of evolutionary problems is strict positive definiteness.
- Causality is a characterizing property for evolutionary equations.
- The framework provides for an abundance of applications in particular for coupled phenomena with a single highly unified approach.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Literature

Literature

🔋 L. B. Felsen and N. Marcuvitz.

Radiation and Scattering of Waves (IEEE Press Series on Electromagnetic Wave Theory). Wiley-IEEE Press, January 1994.

P. Neff.

The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. ZAMM, Z. Angew. Math. Mech., 86(11):892–912, 2006.

🔋 Patrizio Neff and Krzysztof Chełmiński.

Infinitesimal elastic-plastic Cosserat micropolar theory. Modelling and global existence in the rate-independent case. *Proc. R. Soc. Edinb., Sect. A, Math.*, 135(5):1017–1039, 2005. Literature

R. Picard and D. McGhee.

Partial differential equations. A unified Hilbert space approach. Berlin: de Gruyter, 2011.

Appendix 00●000

A Side Note: The "Mother" of "All" Evolutionary PDE

A Side Note: The "Mother" of "All" Evolutionary PDE

The "Mother":

$$A = \begin{pmatrix} 0 & -\nabla^* \\ \nabla & 0 \end{pmatrix}$$
(2)

with a suitable domain making A skew-selfadjoint in the Hilbert space

$$H = \left(\bigoplus_{k \in \mathbb{N}} L_k^2(\Omega)\right) \oplus \left(\bigoplus_{k \in \mathbb{N}} L_k^2(\Omega)\right).$$

 $L_k^2(\Omega)$ tensors of order k with $L^2(\Omega)$ -coefficients. ∇ co-variant derivative and $-\nabla^*$ its skew-adjoint (tensorial divergence). Appendix 000●00

A Side Note: The "Mother" of "All" Evolutionary PDE

The "Mother" of "All" Evolutionary PDE

Dirichlet boundary condition $G = \mathring{\nabla}$:

$$A := \left(\begin{array}{cc} 0 & -G^* \\ G & 0 \end{array}\right)$$

Initial boundary value problems of classical mathematical physics can be produced from this particular "mother" operator A by choosing suitable projections for constructing "descendants".

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

A Side Note: The "Mother" of "All" Evolutionary PDE

The "Mother" of "All" Evolutionary PDE

Theorem

Let $C : D(C) \subseteq H_0 \rightarrow H_1$ be a closed densely defined linear operator, H_k , k = 0, 1, Hilbert spaces. If $B_k : H_k \rightarrow X_k$ are continuous linear mappings, X_k Hilbert space, k = 0, 1, such that

 C* B₁^{*} densely defined and B₀ is a bijection or

•
$$CB_0^*$$
 densely defined and B_1 is a bijection.

Then
$$\overline{\left(\begin{array}{cc}B_0&0\\0&B_1\end{array}\right)\left(\begin{array}{cc}0&-C^*\\C&0\end{array}\right)}\left(\begin{array}{cc}B_0^*&0\\0&B_1^*\end{array}
ight)$$
 is skew-selfadjoint.

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

"Mother" and "descendant".

A Side Note: The "Mother" of "All" Evolutionary PDE

The "Mother" of "All" Evolutionary PDE

Examples:

• tensor order (or degree; "Stufe")

• symmetric/alternating

3-dimensional		
order 0,1		acoustics
order 1,2	symmetric	elastics
order 1,2	alternating	electrodynamics

- descend in space dimension
- vanishing trace condition (divergence-free; incompressible Stokes equation)

A Side Note: The "Mother" of "All" Evolutionary PDE

The "Mother" of "All" Evolutionary PDE

Examples:

- tensor order (or degree; "Stufe")
- symmetric/alternating

3-dimensional		
order 0,1		acoustics
order 1,2	symmetric	elastics
order 1,2	alternating	electrodynamics

- descend in space dimension
- vanishing trace condition (divergence-free; incompressible Stokes equation)

A Side Note: The "Mother" of "All" Evolutionary PDE

The "Mother" of "All" Evolutionary PDE

Examples:

- tensor order (or degree; "Stufe")
- symmetric/alternating

3-dimensional		
order 0,1		acoustics
order 1,2	symmetric	elastics
order 1,2	alternating	electrodynamics

- descend in space dimension
- vanishing trace condition (divergence-free; incompressible Stokes equation)

A Side Note: The "Mother" of "All" Evolutionary PDE

The "Mother" of "All" Evolutionary PDE

Examples:

- tensor order (or degree; "Stufe")
- symmetric/alternating

3-dimensional		
order 0,1		acoustics
order 1,2	symmetric	elastics
order 1,2	alternating	electrodynamics

- descend in space dimension
- vanishing trace condition (divergence-free; incompressible Stokes equation)

A Side Note: The "Mother" of "All" Evolutionary PDE

The "Mother" of "All" Evolutionary PDE

Examples:

- tensor order (or degree; "Stufe")
- symmetric/alternating

3-dimensional		
order 0,1		acoustics
order 1,2	symmetric	elastics
order 1,2	alternating	electrodynamics

- descend in space dimension
- vanishing trace condition (divergence-free; incompressible Stokes equation)