Low-rank tensor methods
 for high-dimensional eigenvalue problems

Daniel Kressner

CADMOS Chair of Numerical Algorithms and HPC MATHICSE / SMA / SB

EPF Lausanne
http://anchp.epfl.ch

Based on joint work with
Ch. Tobler (MathWorks)
M. Steinlechner (EPFL), A. Uschmajew (EPFL)

Low-rank tensor techniques

- Emerged during last five years in numerical analysis.
- Successfully applied to:
- parameter-dependent / multi-dimensional integrals;
- electronic structure calculations: Hartree-Fock / DFT;
- stochastic and parametric PDEs;
- high-dimensional Boltzmann / chemical master / Fokker-Planck / Schrödinger equations;
- micromagnetism;
- rational approximation problems;
- computational homogenization;
- computational finance;
- stochastic automata networks;
- multivariate regression and machine learning;
- ...
- For references on these applications, see
- L. Grasedyck, DK, Ch. Tobler (2013). A literature survey of lowrank tensor approximation techniques. GAMM-Mitteilungen, 36(1).
- W. Hackbusch (2012). Tensor Spaces and Numerical Tensor Calculus, Springer.

High dimensionality

Continuous problem on d-dimensional domain with $d \gg 1$
$\Downarrow \quad$ Straightforward discretization \Downarrow
Discretized problem of order $O\left(n^{d}\right)$
Other causes of high dimensionality:

- parameter dependencies
- parametrized coefficients
- parametrized topology
- stochastic coefficients
- systems describing joint probability distributions
- ...

Dealing with high dimensionality

Established techniques:

- Sparse grid collocation/Galerkin methods.
- Adaptive (wavelet) methods.
- Monte Carlo method.
- Reduced basis method.

Common trait:

Smart discretization \rightsquigarrow system hopefully of order $\ll O\left(N^{D}\right)$...

This talk:
Strainhtforward discretization \rightsquigarrow system of order $O\left(N^{D}\right)$.

Dealing with high dimensionality

Established techniques:

- Sparse grid collocation/Galerkin methods.
- Adaptive (wavelet) methods.
- Monte Carlo method.
- Reduced basis method.

Common trait:

Smart discretization \rightsquigarrow system hopefully of order $\ll O\left(N^{D}\right)$...
... but not in this talk!
This talk:
Straightforward discretization \rightsquigarrow system of order $O\left(N^{D}\right)$.

Dealing with high dimensionality

Established techniques:

- Sparse grid collocation/Galerkin methods.
- Adaptive (wavelet) methods.
- Monte Carlo method.
- Reduced basis method.

Common trait:

Smart discretization \rightsquigarrow system hopefully of order $\ll O\left(N^{D}\right) \ldots$
... but not in this talk!
This talk:
Straightforward discretization \rightsquigarrow system of order $O\left(N^{D}\right)$.

Example: PDE-eigenvalue problem

Goal: Compute smallest eigenvalue for

$$
\begin{aligned}
\Delta u(\xi)+V(\xi) u(\xi) & =\lambda u(\xi) & & \text { in } \Omega=[0,1]^{d}, \\
u(\xi) & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Assumption: Potential represented as

$$
V(\xi)=\sum_{j=1}^{s} V_{j}^{(1)}\left(\xi_{1}\right) V_{j}^{(2)}\left(\xi_{2}\right) \cdots V_{j}^{(d)}\left(\xi_{d}\right)
$$

\rightsquigarrow finite difference discretization

$$
\mathcal{A} \mathbf{u}=\left(\mathcal{A}_{L}+\mathcal{A}_{V}\right) \mathbf{u}=\lambda \mathbf{u}
$$

with

$$
\begin{aligned}
& \mathcal{A}_{L}=\sum_{j=1}^{d} \underbrace{I \otimes \cdots \otimes I}_{d-j \text { times }} \otimes A_{L} \otimes \underbrace{I \otimes \cdots \otimes I}_{j-1 \text { times }}, \\
& \mathcal{A}_{V}=\sum_{j=1}^{s} A_{V, j}^{(d)} \otimes \cdots \otimes A_{V, j}^{(2)} \otimes A_{V, j}^{(1)} .
\end{aligned}
$$

Example: Henon-Heiles potential

Consider $\Omega=[-10,2]^{d}$ and potential ([Meyer et al. 1990; Raab et al. 2000; Faou et al. 2009])

$$
V(\xi)=\frac{1}{2} \sum_{j=1}^{d} \sigma_{j} \xi_{j}^{2}+\sum_{j=1}^{d-1}\left(\sigma_{*}\left(\xi_{j} \xi_{j+1}^{2}-\frac{1}{3} \xi_{j}^{3}\right)+\frac{\sigma_{*}^{2}}{16}\left(\xi_{j}^{2}+\xi_{j+1}^{2}\right)^{2}\right)
$$

with $\sigma_{j} \equiv 1, \sigma_{*}=0.2$.
Discretization with $n=128$ dof/dimension for $d=20$ dimensions.

- Eigenvector has $n^{d} \approx 10^{42}$ entries.
- Explicit storage of eigenvector would require 10^{25} exabyte! ${ }^{1}$

[^0]
Example: Henon-Heiles potential

Consider $\Omega=[-10,2]^{d}$ and potential ([Meyer et al. 1990; Raab et al. 2000; Faou et al. 2009])

$$
V(\xi)=\frac{1}{2} \sum_{j=1}^{d} \sigma_{j} \xi_{j}^{2}+\sum_{j=1}^{d-1}\left(\sigma_{*}\left(\xi_{j} \xi_{j+1}^{2}-\frac{1}{3} \xi_{j}^{3}\right)+\frac{\sigma_{*}^{2}}{16}\left(\xi_{j}^{2}+\xi_{j+1}^{2}\right)^{2}\right) .
$$

with $\sigma_{j} \equiv 1, \sigma_{*}=0.2$.
Discretization with $n=128$ dof/dimension for $d=20$ dimensions.

- Eigenvector has $n^{d} \approx 10^{42}$ entries.
- Explicit storage of eigenvector would require 10^{25} exabyte! ${ }^{1}$

Solved with accuracy 10^{-12} in less than 1 hour on laptop.

[^1]
Contents

1. Low-rank matrices
2. Low-rank tensor formats
3. Low-rank methods for 2D
4. Low-rank methods for arbitrary dimensions
5. Outlook

Low-rank matrices

Discretization of bivariate function

- Bivariate function: $f(x, y):\left[x_{\min }, x_{\max }\right] \times\left[y_{\min }, y_{\max }\right] \rightarrow \mathbb{R}$.
- Function values on tensor grid $\left[x_{1}, \ldots, x_{n}\right] \times\left[y_{1}, \ldots, y_{m}\right]$.
- Normally collected in looong vector:
$f=\left[\begin{array}{c}f\left(x_{1}, y_{1}\right) \\ f\left(x_{2}, y_{1}\right) \\ \vdots \\ f\left(x_{m}, y_{1}\right) \\ f\left(x_{1}, y_{2}\right) \\ f\left(x_{2}, y_{2}\right) \\ \vdots \\ f\left(x_{m}, y_{2}\right) \\ \vdots \\ \vdots \\ f\left(x_{1}, y_{n}\right) \\ f\left(x_{2}, y_{n}\right) \\ \vdots \\ f\left(x_{m}, y_{n}\right)\end{array}\right]$

Discretization of bivariate function

- Bivariate function: $f(x, y):\left[x_{\min }, x_{\max }\right] \times\left[y_{\min }, y_{\max }\right] \rightarrow \mathbb{R}$.
- Function values on tensor grid $\left[x_{1}, \ldots, x_{n}\right] \times\left[y_{1}, \ldots, y_{m}\right]$.
- Collected in a matrix:

$$
F=\left[\begin{array}{cccc}
f\left(x_{1}, y_{1}\right) & f\left(x_{1}, y_{2}\right) & \cdots & f\left(x_{1}, y_{n}\right) \\
f\left(x_{2}, y_{1}\right) & f\left(x_{2}, y_{2}\right) & \cdots & f\left(x_{2}, y_{n}\right) \\
\vdots & \vdots & & \vdots \\
f\left(x_{m}, y_{1}\right) & f\left(x_{m}, y_{2}\right) & \cdots & f\left(x_{m}, y_{n}\right)
\end{array}\right]
$$

Low-rank approximation

Setting: Matrix $X \in \mathbb{R}^{n \times m}, m$ and n too large to compute/store X explicitly.
Idea: Replace X by $R S^{T}$ with $R \in \mathbb{R}^{n \times r}, S \in \mathbb{R}^{m \times r}$ and $r \ll m, n$.

$$
\min \left\{\left\|X-R S^{T}\right\|_{2}: R \in \mathbb{R}^{n \times r}, S \in \mathbb{R}^{m \times r}\right\}=\sigma_{r+1}
$$

with singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min \{m, n\}}$ of X.

Singular values of random matrices

```
A = rand(200);
semilogy(svd(A))
```


Singular values

No reasonable low-rank approximation possible

Singular values of ground state

- Computed ground state for Henon-Heiles potential for $d=2$.
- Reshaped ground state into matrix.

Ground state

Singular values

Excellent rank-10 approximation possible

When to expect good low-rank approximations
Rule of thumb: Smoothness helps.

When to expect good low-rank approximations

Rule of thumb: Smoothness helps, but is not always needed.

Discretization of bivariate function

- Bivariate function: $f(x, y):\left[x_{\min }, x_{\max }\right] \times\left[y_{\min }, y_{\max }\right] \rightarrow \mathbb{R}$.
- Function values on tensor grid $\left[x_{1}, \ldots, x_{n}\right] \times\left[y_{1}, \ldots, y_{m}\right]$:

$$
F=\left[\begin{array}{cccc}
f\left(x_{1}, y_{1}\right) & f\left(x_{1}, y_{2}\right) & \cdots & f\left(x_{1}, y_{n}\right) \\
f\left(x_{2}, y_{1}\right) & f\left(x_{2}, y_{2}\right) & \cdots & f\left(x_{2}, y_{n}\right) \\
\vdots & \vdots & & \vdots \\
f\left(x_{m}, y_{1}\right) & f\left(x_{m}, y_{2}\right) & \cdots & f\left(x_{m}, y_{n}\right)
\end{array}\right]
$$

Basic but crucial observation: $f(x, y)=g(x) h(y) \rightsquigarrow$

$$
F=\left[\begin{array}{ccc}
g\left(x_{1}\right) h\left(y_{1}\right) & \cdots & g\left(x_{1}\right) h\left(y_{n}\right) \\
\vdots & & \vdots \\
g\left(x_{m}\right) h\left(y_{1}\right) & \cdots & g\left(x_{m}\right) h\left(y_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
g\left(x_{1}\right) \\
\vdots \\
g\left(x_{m}\right)
\end{array}\right]\left[\begin{array}{lll}
h\left(y_{1}\right) & \cdots & h\left(y_{n}\right)
\end{array}\right]
$$

Separability implies rank 1.

Separability and low rank

Approximation by sum of separable functions

$$
f(x, y)=\underbrace{g_{1}(x) h_{1}(y)+\cdots+g_{r}(x) h_{r}(y)}_{=: f_{r}(x, y)}+\text { error }
$$

Define

$$
F_{r}=\left[\begin{array}{ccc}
f_{r}\left(x_{1}, y_{1}\right) & \cdots & f_{r}\left(x_{1}, y_{n}\right) \\
\vdots & & \vdots \\
f_{r}\left(x_{m}, y_{1}\right) & \cdots & f_{r}\left(x_{m}, y_{n}\right)
\end{array}\right]
$$

Then F_{r} has rank $\leq r$ and $\left\|F-F_{r}\right\|_{F} \leq \sqrt{m n} \times$ error.

$$
\sigma_{r+1}(F) \leq\left\|F-F_{r}\right\|_{2} \leq\left\|F-F_{r}\right\|_{F} \leq \sqrt{m n} \times \text { error }
$$

Semi-separable approximation implies low-rank approximation.

Semi-separable approximation by polynomials

Solution of approximation problem

$$
f(x, y)=g_{1}(x) h_{1}(y)+\cdots+g_{r}(x) h_{r}(y)+\text { error. }
$$

not trivial; g_{j}, h_{j} can be chosen arbitrarily!
General construction by polynomial interpolation:

1. Lagrange interpolation of $f(x, y)$ in y-coordinate:

$$
I_{y}[f](x, y)=\sum_{j=1}^{r} f\left(x, \theta_{j}\right) L_{j}(y)
$$

with Lagrange polynomials L_{j} of degree $r-1$ on $\left[x_{\min }, x_{\text {max }}\right]$.
2. Interpolation of $I_{y}[f]$ in x-coordinate:

$$
I_{x}\left[I_{y}[f]\right](x, y)=\sum_{i, j=1}^{r} f\left(\xi_{i}, \theta_{j}\right) L_{i}(x) L_{j}(y) \hat{=} \sum_{i=1}^{r} L_{i, x}(x) L_{j, y}(y)
$$

where $f\left[f\left(\xi_{i}, \theta_{j}\right)\right]_{i, j}$ is "diagonalized" by SVD.

Semi-separable approximation by polynomials

$$
\begin{aligned}
\text { error } & \leq\left\|f-I_{x}\left[I_{y}[f]\right]\right\|_{\infty} \\
& =\left\|f-I_{x}[f]+I_{x}[f]-I_{x}\left[I_{y}[f]\right]\right\|_{\infty} \\
& \leq\left\|f-I_{x}[f]\right\|_{\infty}+\left\|I_{x}\right\|_{\infty}\left\|f-I_{y}[f]\right\|_{\infty}
\end{aligned}
$$

with Lebesgue constant $\left\|I_{x}\right\|_{\infty} \sim \log r$ when using Chebyshev interpolation nodes.
[Temlyakov'1992, Uschmajew/Schneider'2013]:

with Sobolev space B^{s} of periodic functions with partial derivatives up
to order s.

Semi-separable approximation by polynomials

$$
\begin{aligned}
\text { error } & \leq\left\|f-I_{x}\left[I_{y}[f]\right]\right\|_{\infty} \\
& =\left\|f-I_{x}[f]+I_{x}[f]-I_{x}\left[I_{y}[f]\right]\right\|_{\infty} \\
& \leq\left\|f-I_{x}[f]\right\|_{\infty}+\left\|I_{x}\right\|_{\infty}\left\|f-I_{y}[f]\right\|_{\infty}
\end{aligned}
$$

with Lebesgue constant $\left\|I_{x}\right\|_{\infty} \sim \log r$ when using Chebyshev interpolation nodes.
[Temlyakov'1992, Uschmajew/Schneider'2013]:

$$
\sup _{f \in B^{s}} \inf ^{\|}\left\|f(x, y)-\sum_{k=1}^{r} g_{k}(x) h_{k}(y)\right\|_{L^{2}} \sim r^{-s},
$$

with Sobolev space B^{s} of periodic functions with partial derivatives up to order s.

Low-rank tensors

Vectors, matrices, and tensors

Vector

Matrix

Tensor

- scalar $=$ tensor of order 0
- (column) vector $=$ tensor of order 1
- matrix $=$ tensor of order 2
- tensor of order 3
$=n_{1} n_{2} n_{3}$ numbers arranged in $n_{1} \times n_{2} \times n_{3}$ array

Tensors of arbitrary order

A d-th order tensor \mathcal{X} of size $n_{1} \times n_{2} \times \cdots \times n_{d}$ is a d-dimensional array with entries

$$
\mathcal{X}_{i_{1}, i_{2}, \ldots, i_{d}}, \quad i_{\mu} \in\left\{1, \ldots, n_{\mu}\right\} \text { for } \mu=1, \ldots, d
$$

In the following, entries of \mathcal{X} are real (for simplicity) \rightsquigarrow

$$
\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}} .
$$

Multi-index notation:

$$
\mathfrak{I}=\left\{1, \ldots, n_{1}\right\} \times\left\{1, \ldots, n_{2}\right\} \times \cdots \times\left\{1, \ldots, n_{d}\right\} .
$$

Then $i \in \mathfrak{I}$ is a tuple of d indices:

$$
i=\left(i_{1}, i_{2}, \ldots, i_{d}\right) .
$$

Allows to write entries of \mathcal{X} as \mathcal{X}_{i} for $i \in \mathfrak{I}$.

Functions and tensors

Consider a function $f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}$ in d variables x_{1}, \ldots, x_{d}. Tensor $\mathcal{X} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ represents discretization of u :

- \mathcal{X} contains function values of f evaluated on a grid; or
- \mathcal{X} contains coefficients of truncated expansion in tensorized basis functions:

$$
f\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{i \in \mathfrak{I}} \mathcal{X}_{i} \phi_{i_{1}}\left(x_{1}\right) \phi_{i_{2}}\left(x_{2}\right) \cdots \phi_{i_{d}}\left(x_{d}\right) .
$$

Functions and tensors

One of many ways to separate variables of f :

$$
f\left(x_{1}, x_{2}, \ldots, x_{d}\right) \approx \sum_{k=1}^{r} g_{k}\left(x_{1}\right) h_{k}\left(x_{2}, \ldots, x_{d}\right)
$$

Corresponding matrix/tensor decomposition?

Matricization

Stack 1-fibers into an $n_{1} \times\left(n_{2} \cdots n_{d}\right)$ matrix:

$\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$

$$
X^{(1)} \in \mathbb{R}^{n_{1} \times\left(n_{2} n_{3} \cdots n_{d}\right)}
$$

Separation wrt $\left\{x_{1}\right\}$ corresponds to low-rank matrix approximation

$$
X^{(1)} \approx U_{1} V_{1}^{\top} .
$$

Tucker decomposition

- Consider low-rank decompositions corresponding to $\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\}$:

$$
\begin{aligned}
& X^{(1)} \approx U_{1} V_{1}^{\top} \\
& X^{(2)} \approx U_{2} V_{2}^{T} \\
& X^{(3)} \approx U_{3} V_{3}^{T}
\end{aligned}
$$

- Form $r_{1} \times r_{2} \times r_{3}$ core tensor \mathcal{C} :

$$
\operatorname{vec}(\mathcal{C}):=\left(U_{3}^{T} \otimes U_{2}^{T} \otimes U_{1}^{T}\right) \cdot \operatorname{vec}(\mathcal{X})
$$

- Yields Tucker decomposition:

$$
\operatorname{vec}(\mathcal{X}) \approx\left(U_{3} \otimes U_{2} \otimes U_{1}\right) \cdot \operatorname{vec}(\mathcal{C})
$$

Approximation error governed by truncated singular values of $X^{(1)}, X^{(2)}, X^{(3)}$.

Tucker decomposition

- Consider low-rank decompositions corresponding to $\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\}$:

$$
\begin{aligned}
& X^{(1)} \approx U_{1} V_{1}^{\top} \\
& X^{(2)} \approx U_{2} V_{2}^{\top} \\
& X^{(3)} \approx U_{3} V_{3}^{T}
\end{aligned}
$$

- Form $r_{1} \times r_{2} \times r_{3}$ core tensor \mathcal{C} :

$$
\operatorname{vec}(\mathcal{C}):=\left(U_{3}^{T} \otimes U_{2}^{T} \otimes U_{1}^{T}\right) \cdot \operatorname{vec}(\mathcal{X}) .
$$

- Yields Tucker decomposition:

$$
\operatorname{vec}(\mathcal{X}) \approx\left(U_{3} \otimes U_{2} \otimes U_{1}\right) \cdot \operatorname{vec}(\mathcal{C})
$$

Approximation error governed by truncated singular values of $X^{(1)}, X^{(2)}, X^{(3)}$.
Need for storing $r_{1} \times r_{2} \times \cdots \times r_{d}$ core tensor hurts in high dimensions.

Functions and tensors

Another one of many ways to separate variables of f :

$$
f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{d}\right) \approx \sum_{k=1}^{r} g_{k}\left(x_{1}, x_{2}\right) h_{k}\left(x_{2}, \ldots, x_{d}\right)
$$

Corresponding matrix/tensor decomposition?

More general matricizations

Separation wrt $\left\{x_{1}, x_{2}\right\}$ corresponds to low-rank matrix approximation

$$
X^{(1,2)} \approx U_{12} V_{12}^{\top}
$$

for $(1,2)$ matricization of \mathcal{X}.

General matricization for mode decomposition $\{1, \ldots, d\}=t \cup s$:

$$
X^{(t)} \in \mathbb{R}^{\left(n_{t_{1}} \cdots n_{t_{k}}\right) \times\left(n_{s_{1}} \cdots n_{s_{d-k}}\right)}
$$

with
$\left(X^{(t)}\right)_{\left(i_{1}, \ldots, i_{k}\right),\left(i_{s_{1}}, \ldots, i_{s_{d-k}}\right)}:=\mathcal{X}_{i_{1}, \ldots, i_{d}}$.

Tensor network diagrams

Examples:

(i) vector;
(ii) matrix;
(iii) matrix-matrix multiplication;
(iv) Tucker decomposition;
(v) hierarchical Tucker decomposition.

Hierarchical construction

Singular value decomposition: $X^{(t)}=U_{t} \Sigma_{t} U_{s}^{T}$.
Column spaces are nested \rightsquigarrow

$$
\begin{aligned}
t=t_{1} \cup t_{2} & \Rightarrow \operatorname{span}\left(U_{t}\right) \subset \operatorname{span}\left(U_{t_{2}} \otimes U_{t_{1}}\right) \\
& \Rightarrow \exists B_{t}: U_{t}=\left(U_{t_{2}} \otimes U_{t_{1}}\right) B_{t} .
\end{aligned}
$$

Size of U_{t} :

$$
U_{t} \in \mathbb{R}^{n_{t_{1}} \cdots n_{k_{k}} \times r_{t}} \quad \text { with } \quad r_{t}=\operatorname{rank}\left(X^{(t)}\right) .
$$

For $d=4$:

$$
\begin{aligned}
U_{12} & =\left(U_{2} \otimes U_{1}\right) B_{12} \\
U_{34} & =\left(U_{4} \otimes U_{3}\right) B_{34} \\
\operatorname{vec}(\mathcal{X})=X^{(1234)} & =\left(U_{34} \otimes U_{12}\right) B_{1234} \\
\Rightarrow \operatorname{vec}(\mathcal{X}) & =\left(U_{4} \otimes U_{3} \otimes U_{2} \otimes U_{1}\right)\left(B_{34} \otimes B_{12}\right) B_{1234} .
\end{aligned}
$$

Dimension tree

Tree structure for $d=4$:

Reshape:

$$
\begin{aligned}
B_{12} \in \mathbb{R}^{r_{1} r_{2} \times r_{12}} & \Rightarrow \mathcal{B}_{12} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{12}} \\
B_{34} \in \mathbb{R}^{r_{3} \times r_{34}} & \Rightarrow \mathcal{B}_{34} \in \mathbb{R}^{r_{3} \times r_{4} \times r_{34}} \\
B_{1234} & \in \mathbb{R}^{r_{12} r_{34} \times 1}
\end{aligned} \Rightarrow \mathcal{B}_{1234} \in \mathbb{R}^{r_{12} \times r_{34}} .
$$

Dimension tree

- Often, $U_{1}, U_{2}, U_{3}, U_{4}$ are orthonormal. This is advantageous but not required.
- Storage requirements for general d :

$$
\mathcal{O}(d n r)+\mathcal{O}\left(d r^{3}\right)
$$

where $r=\max \left\{r_{t}\right\}, n=\max \left\{n_{\mu}\right\}$.

Singular value tree

Example: Singular value tree of solution to elliptic PDE with 4 parameters.

Computation of inner products

Computation of inner products - contraction step

- htucker command: innerprod (x,y)
- Overall cost: $\mathcal{O}\left(d n r^{2}\right)+\mathcal{O}\left(d r^{4}\right)$.

Hierarchical Tucker decomposition

- Simulation of quantum many-body systems: tree tensor networks [Shi/Duan/Vidal'2006].
- Numerical analysis: [Hackbusch/Kühn'2009], [Grasedyck'2010].
- MATLAB toolbox from http://anchp.epfl.ch/htucker
- For fixed r : Storage linear in d !
- When to expect good low-rank approximations?

Hierarchical Tucker decomposition

- When to expect good low-rank approximations?
- Approximation error from separation wrt to $\left\{x_{1}, \ldots, x_{a}\right\}$:

$$
f\left(x_{1}, \ldots, x_{a}, x_{a+1}, \ldots, x_{d}\right) \approx \sum_{k=1}^{r} g_{k}\left(x_{1}, \ldots, x_{a}\right) h_{k}\left(x_{a+1}, \ldots, x_{d}\right)
$$

for $a=1, \ldots, d-1$.

- [DK/Tobler'2011]: For analytic functions

$$
\operatorname{error} \lesssim \exp \left(-r^{\max \{1 / a, 1 /(d-a)\}}\right) .
$$

- [Temlyakov'1992, Uschmajew/Schneider'2013]: For $f \in B^{s, \text { mix }}$

$$
\text { error } \lesssim r^{-2 s}(\log r)^{2 s(\max \{a, d-a\}-1)}
$$

Smoothness is neither sufficient nor necessary for high dimensions!

Hierarchical Tucker decomposition

- When to expect good low-rank approximations?
- Approximation error from separation wrt to $\left\{x_{1}, \ldots, x_{a}\right\}$:

$$
f\left(x_{1}, \ldots, x_{a}, x_{a+1}, \ldots, x_{d}\right) \approx \sum_{k=1}^{r} g_{k}\left(x_{1}, \ldots, x_{a}\right) h_{k}\left(x_{a+1}, \ldots, x_{d}\right)
$$

for $a=1, \ldots, d-1$.

- [DK/Tobler'2011]: For analytic functions

$$
\text { error } \lesssim \exp \left(-r^{\max \{1 / a, 1 /(d-a)\}}\right)
$$

- [Temlyakov'1992, Uschmajew/Schneider'2013]: For $f \in B^{s, \text { mix }}$

$$
\text { error } \lesssim r^{-2 s}(\log r)^{2 s(\max \{a, d-a\}-1)}
$$

Smoothness is neither sufficient nor necessary for high dimensions!

Low-rank methods for 2D

Rayleigh quotients wrt low-rank matrices

Consider symmetric $n^{2} \times n^{2}$ matrix \mathcal{A}. Then

$$
\lambda_{\min }(\mathcal{A})=\min _{x \neq 0} \frac{\langle x, \mathcal{A} x\rangle}{\langle x, x\rangle} .
$$

We now...

- reshape vector x into $n \times n$ matrix X;
- reinterpret $\mathcal{A} x$ as linear operator $\mathcal{A}: X \mapsto \mathcal{A}(X)$;
- for example if $\mathcal{A}=\sum_{k=1}^{s} B_{k} \otimes A_{k}$ then

$$
\mathcal{A}(X)=\sum_{k=1}^{s} B_{k} X A_{k}^{T}
$$

Rayleigh quotients wrt low-rank matrices

Consider symmetric $n^{2} \times n^{2}$ matrix \mathcal{A}. Then

$$
\lambda_{\min }(\mathcal{A})=\min _{X \neq 0} \frac{\langle X, \mathcal{A}(X)\rangle}{\langle X, X\rangle}
$$

with matrix inner product $\langle\cdot, \cdot\rangle$. We now...

- restrict X to low-rank matrices.

Rayleigh quotients wrt low-rank matrices

Consider symmetric $n^{2} \times n^{2}$ matrix \mathcal{A}. Then

$$
\lambda_{\min }(\mathcal{A}) \approx \min _{X=U V^{\top} \neq 0} \frac{\langle X, \mathcal{A}(X)\rangle}{\langle X, X\rangle} .
$$

- Approximation error governed by low-rank approximability of X.
- Solved by Riemannian optimization techniques or ALS.

ALS

ALS for solving

$$
\lambda_{\min }(\mathcal{A}) \approx \min _{X=U V^{\top} \neq 0} \frac{\langle X, \mathcal{A}(X)\rangle}{\langle X, X\rangle} .
$$

Initially:

- fix target rank r
- $U \in \mathbb{R}^{m \times r}, V^{n \times r}$ randomly, such that V is ONB
$\tilde{\lambda}-\lambda=6 \times 10^{3}$ residual $=3 \times 10^{3}$

ALS

ALS for solving

$$
\lambda_{\min }(\mathcal{A}) \approx \min _{X=U V^{\top} \neq 0} \frac{\langle X, \mathcal{A}(X)\rangle}{\langle X, X\rangle} .
$$

Fix V, optimize for U.

$$
\begin{aligned}
\langle X, \mathcal{A}(X)\rangle & =\operatorname{vec}\left(U V^{T}\right)^{T} \mathcal{A} \operatorname{vec}\left(U V^{T}\right) \\
& =\operatorname{vec}(U)^{T}(V \otimes I)^{T} \mathcal{A}(V \otimes I) \operatorname{vec}(U)
\end{aligned}
$$

\rightsquigarrow Compute smallest eigenvalue of reduced matrix ($r n \times r n$) matrix

$$
(V \otimes I)^{\top} \mathcal{A}(V \otimes I)
$$

Note: Computation of reduced matrix benefits from Kronecker structure of \mathcal{A}.

ALS

ALS for solving

$$
\lambda_{\min }(\mathcal{A}) \approx \min _{X=U V^{\top} \neq 0} \frac{\langle X, \mathcal{A}(X)\rangle}{\langle X, X\rangle} .
$$

Fix V, optimize for U.
$\tilde{\lambda}-\lambda=2 \times 10^{3}$ residual $=2 \times 10^{3}$

ALS

ALS for solving

$$
\lambda_{\min }(\mathcal{A}) \approx \min _{X=U V^{\top} \neq 0} \frac{\langle X, \mathcal{A}(X)\rangle}{\langle X, X\rangle} .
$$

Orthonormalize U, fix U, optimize for V.

$$
\begin{aligned}
\langle X, \mathcal{A}(X)\rangle & =\operatorname{vec}\left(U V^{T}\right)^{T} \mathcal{A} \operatorname{vec}\left(U V^{T}\right) \\
& =\operatorname{vec}\left(V^{T}\right)(I \otimes U)^{T} \mathcal{A}(I \otimes U) \operatorname{vec}\left(V^{T}\right)
\end{aligned}
$$

\rightsquigarrow Compute smallest eigenvalue of reduced matrix ($r n \times r n$) matrix

$$
(I \otimes U)^{\top} \mathcal{A}(I \otimes U)
$$

Note: Computation of reduced matrix benefits from Kronecker structure of \mathcal{A}.

ALS

ALS for solving

$$
\lambda_{\min }(\mathcal{A}) \approx \min _{X=U V^{\top} \neq 0} \frac{\langle X, \mathcal{A}(X)\rangle}{\langle X, X\rangle} .
$$

Orthonormalize U, fix U, optimize for V.
$\tilde{\lambda}-\lambda=1.5 \times 10^{-7}$ residual $=7.7 \times 10^{-3}$

ALS

ALS for solving

$$
\lambda_{\min }(\mathcal{A}) \approx \min _{X=U V^{\top} \neq 0} \frac{\langle X, \mathcal{A}(X)\rangle}{\langle X, X\rangle} .
$$

Orthonormalize V, fix V, optimize for U.
$\tilde{\lambda}-\lambda=1 \times 10^{-12}$
residual $=6 \times 10^{-7}$

ALS

ALS for solving

$$
\lambda_{\min }(\mathcal{A}) \approx \min _{X=U V^{\top} \neq 0} \frac{\langle X, \mathcal{A}(X)\rangle}{\langle X, X\rangle} .
$$

Orthonormalize U, fix U, optimize for V.
$\tilde{\lambda}-\lambda=7.6 \times 10^{-13}$ residual $=7.2 \times 10^{-8}$

Low-rank methods
 for arbitrary dimensions

ALS

Originally from computational quantum physics [Schollwöck 2011] for matrix product states.

Goal:

$$
\min \left\{\frac{\langle\mathcal{X}, \mathcal{A}(\mathcal{X})\rangle}{\langle\mathcal{X}, \mathcal{X}\rangle}: \mathcal{X} \in \mathcal{H} \text {-Tucker }\left(\left(r_{t}\right)_{t \in \mathcal{T}}\right), \mathcal{X} \neq 0\right\}
$$

Method: Choose one node t, fix all other nodes, set new tensor at node t to minimize Rayleigh quotient $\frac{\langle\mathcal{X}, \mathcal{A}(\mathcal{X})\rangle}{\langle\mathcal{X}, \mathcal{X}\rangle}$. This is done for all nodes (a sweep), and sweeps are continued until convergence.

Sketch:

$$
\begin{aligned}
X^{(t)} & =U_{t} V_{t}^{\top}=\left(U_{t_{r}} \otimes U_{t_{1}}\right) B_{t} V_{t}^{T} \\
\operatorname{vec}(\mathcal{X}) & =\left(V_{t} \otimes U_{t_{r}} \otimes U_{t_{t}}\right) \operatorname{vec}\left(B_{t}\right)=\mathcal{U}_{t} \operatorname{vec}\left(B_{t}\right) . \\
\Rightarrow & \min \left\{\frac{y^{\top}\left(\mathcal{U}_{t}^{\top} \mathcal{A} \mathcal{U}_{t}\right) y}{y^{\top}\left(\mathcal{U}_{t}^{\top} \mathcal{U}_{t}\right) y}: y \in \mathbb{R}^{r_{t} r_{t_{r} t_{t}}}, y \neq 0\right\} .
\end{aligned}
$$

ALS - Comments

Ordering of a sweep In principle, nodes of tensor can be traversed in any ordering. Experimentally, makes little difference.
Depth-first-search ordering allows data reuse in the computation of the reduced eigenvalue problems.

Numerical Experiments - Sine potential, $d=10$

ALS

Hierarchical ranks 40.

Numerical Experiments - Henon-Heiles, $d=20$

ALS

Hierarchical rank 40.

Numerical Experiments - $1 /\|\xi\|_{2}$ potential, $d=20$

ALS

Hierarchical rank 30.

Outlook

Outlook: Low-rank tensor completion

Setting:

- Consider tensor \mathcal{X} with very few entries known, described by linear projection P_{Ω}.
- Assume low (multilinear) rank model for \mathcal{X}.

Low-rank reconstruction:

$$
\begin{aligned}
\min _{\mathcal{X}} & \frac{1}{2} \| \mathrm{P}_{\Omega} \mathcal{X}-\text { known entries } \|^{2} \\
\text { subject to } & \mathcal{X} \in \mathcal{M}_{k}:=\left\{\mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}: \operatorname{rank}(\mathcal{X})=\mathbf{k}\right)
\end{aligned}
$$

- \mathcal{M}_{k} is a smooth manifold.
- Becomes Riemannian with metric induced by standard inner product.
- Allows to apply general Riemannian optimization techniques [Absil, Mahony and Sepulchre'05].
- Adaption of nonlinear conjugate gradient method in [DK/Steinlechner/Vandereycken'12].

Outlook: Reconstruction of CT Scan

$199 \times 199 \times 150$ tensor from MRI/CT data base "INCISIX".

Slice of original tensor

Sampled tensor (6.7\%)

HOSVD approx. of rank 21

Low-rank completion of rank 21

Compares very well with existing results wrt low-rank recovery and speed, e.g., Gandy/Recht/Yamada/'2011: Tensor completion and low-n-rank tensor recovery via convex optimization.

Conclusions

Conclusions and Outlook

- Scientific computing with low-rank tensors rapidly evolving field
- Low-rank tensors capable of solving certain high-dimensional eigenvalue problems.
- Precise scope of applications far from clear; many applications remain to be explored. More analysis needed!
Some current trends:
- Tensorization of vectors + low rank (discrete Chebfun?) by Hackbusch, Khoromskij, Oseledets, Tyrtishnikov, ...
- Computational differential geometry on low-rank tensor manifolds by Koch, Lubich, Schneider, Uschmajew, Vandereycken, ...
- Robust low rank (Candes et al.) for tensors \rightsquigarrow suitable way of dealing with singularities?
- ...

Workshop on Matrix Equations and Tensor Techniques EPF Lausanne, October 10th - 11th 2013

http://anchp.epfl.ch/MatrixEquations Organizers: P. Benner, H. Faßbender, L. Grasedyck, D. Kressner.

[^0]: ${ }^{1}$ Global data storage in 2011 calculated at 295 exabyte, see http://www.bbc.co.uk/news/technology-12419672.

[^1]: ${ }^{1}$ Global data storage in 2011 calculated at 295 exabyte, see http://www.bbc.co.uk/news/technology-12419672.

