Weak Solutions for a Degenerate Elliptic Dirichlet Problem

Aurelian Gheondea

Bilkent University, Ankara

IMAR, Bucharest

Spectral Problems for Operators and Matrices The Third Najman Conference

Biograd, 18th of September, 2013

1 / 25

ヘロト 不良 トイヨト イヨト

Branko Najman (1946–1996)

Picture taken by G.M. Bergmann at Oberwolfach in 1980. http://owpdb.mfo.de/detail?photo_id=5675

Triplets of Hilbert Spaces

- Closely Embedded Hilbert Spaces
- Triplets of Closely Embedded Hilbert Spaces

2 A Dirichlet Problem Associated to a Class of Degenerate Elliptic PDE

- Spaces
- The Assumptions
- The Main Result

Closely Embedded Hilbert Spaces

Let \mathcal{H} and \mathcal{H}_+ be two Hilbert spaces. The Hilbert space \mathcal{H}_+ is called closely embedded in \mathcal{H} if:

- (ce1) There exists a linear manifold $\mathcal{D} \subseteq \mathcal{H}_+ \cap \mathcal{H}$ that is dense in \mathcal{H}_+ .
- (ce2) The embedding operator j_+ with domain \mathcal{D} is closed, as an operator $\mathcal{H}_+ \to \mathcal{H}.$

Axiom (ce1) means that on \mathcal{D} the algebraic structures of \mathcal{H}_+ and \mathcal{H} agree.

Axiom (ce2) means that the operator j_+ with $Dom(j_+) = D \subseteq H_+$ defined by $i_{+}x = x \in \mathcal{H}$, for all $x \in \mathcal{D}$, is closed.

The Kernel Operator

Let \mathcal{H}_+ be a Hilbert space that is closely embedded in \mathcal{H} , and let j_+ denote the corresponding closed embedding. Then $A = j_+ j_+^* \in \mathcal{C}(\mathcal{H})^+$ and

$$\langle j_+h,k\rangle = \langle h,Ak\rangle_+, \quad h \in \text{Dom}(j_+), \ k \in \text{Dom}(A),$$
 (2.1)

more precisely, A has the range in \mathcal{H}_+ and it can also be viewed as the adjoint of the embedding j_+ . The operator A is called the *kernel operator* associated to the closed embedding of \mathcal{H}_+ in \mathcal{H} .

L. Schwartz — for continuous embeddings

イロト 不得下 イヨト イヨト 二日

The Space $\mathcal{R}(T)$

Let $T \in C(G, H)$ be a closed and densely defined linear operator, where G is another Hilbert space. On Ran(T) we consider a new inner product

$$\langle Tu, Tv \rangle_T = \langle u, v \rangle_{\mathcal{G}},$$
 (2.2)

where $u, v \in \text{Dom}(T) \ominus \text{Ker}(T)$. With respect to this new inner product Ran(T) can be completed to a Hilbert space that we denote by $\mathcal{R}(T)$, closely embedded in \mathcal{H} , and in such a way that $j_T : \mathcal{R}(T) \to \mathcal{H}$ has the property that $j_T j_T^* = TT^*$.

6 / 25

The Space $\mathcal{D}(T)$

Let $T \in \mathcal{C}(\mathcal{H},\mathcal{G})$ with Ker(T) a closed subspace of \mathcal{H} . Define the norm

 $|x|_T := ||Tx||_{\mathcal{G}}, x \in \text{Dom}(T) \ominus \text{Ker}(T),$ (2.3)

and let $\mathcal{D}(\mathcal{T})$ be the Hilbert space completion of the pre-Hilbert space $Dom(T) \ominus Ker(T)$ with respect to the norm $|\cdot|_T$ associated the inner product $(\cdot, \cdot)_T$

$$(x,y)_T = \langle Tx, Ty \rangle_{\mathcal{G}}, \quad x,y \in \mathsf{Dom}(T) \ominus \mathsf{Ker}(T).$$
 (2.4)

Define i_{T} from $\mathcal{D}(T)$ and valued in \mathcal{H} by

$$i_T x := x, \quad x \in \text{Dom}(i_T) = \text{Dom}(T) \ominus \text{Ker}(T).$$
 (2.5)

The operator i_T is closed and $\mathcal{D}(T)$ is closely embedded in \mathcal{H} , with the underlying closed embedding i_{T} . The operator Ti_T admits a unique isometric extension $\widehat{T}: \mathcal{D}(T) \rightarrow \mathcal{G}$ 7 / 25

Triplets of Closely Embedded Hilbert Spaces

By definition, $(\mathcal{H}_+; \mathcal{H}; \mathcal{H}_-)$ is called a triplet of closely embedded Hilbert spaces if:

- (th1) \mathcal{H}_+ is a Hilbert space closely embedded in the Hilbert space \mathcal{H} , with the closed embedding denoted by j_+ , and such that $\operatorname{Ran}(j_+)$ is dense in \mathcal{H} .
- (th2) \mathcal{H} is closely embedded in the Hilbert space \mathcal{H}_{-} , with the closed embedding denoted by j_{-} , and such that $\operatorname{Ran}(j_{-})$ is dense in \mathcal{H}_{-} .

(th3) $Dom(j_+^*) \subseteq Dom(j_-)$ and for every vector $y \in Dom(j_-) \subseteq \mathcal{H}$ we have

$$\|y\|_{-} = \sup\left\{\frac{|\langle x, y \rangle_{\mathcal{H}}|}{\|x\|_{+}} \mid x \in \mathsf{Dom}(j_{+}), \ x \neq 0\right\}$$

The kernel operator $A = j_+j_+^*$ is a positive selfadjoint operator in \mathcal{H} that is one-to-one. Then, $H = A^{-1}$ is a positive selfadjoint operator in \mathcal{H} and it is called the Hamiltonian of the triplet. Note that, as a consequence of (th3), we actually have $\text{Dom}(j_+^*) = \text{Dom}(j_-)$.

Generation of Triplets of Hilbert Spaces: Factoring the Hamiltonian

Theorem

Let H be a positive selfadjoint operator in the Hilbert space \mathcal{H} , that admits an inverse $A = H^{-1}$, possibly unbounded. Then there exists $T \in \mathcal{C}(\mathcal{H}, \mathcal{G})$, with $\operatorname{Ran}(T)$ dense in \mathcal{G} and $H = T^*T$. In addition, let $S = T^{-1} \in \mathcal{C}(\mathcal{G}, \mathcal{H})$. Then:

- (i) The Hilbert space H₊ := D(T) := R(S) is closely embedded in H with its embedding i_T having range dense in H, and its kernel operator A = i_T i^{*}_T coincides with H⁻¹.
- (ii) \mathcal{H} is closely embedded in the Hilbert space $\mathcal{H}_{-} = \mathcal{R}(T^*)$ with its embedding $j_{T^*}^{-1}$ having range dense in $\mathcal{R}(T^*)$. The kernel operator $B = j_{T^*}^{-1} j_{T^*}^{-1*}$ of this embedding is unitary equivalent with $A = H^{-1}$.

Generation of Triplets of Hilbert Spaces: Weak Solutions

Theorem (continued)

(iii) The operator $V = i_T^* | \operatorname{Ran}(T^*)$, that is,

 $\langle i_T x, y \rangle_{\mathcal{H}} = (x, Vy)_T, \quad x \in \text{Dom}(T), y \in \text{Ran}(T^*),$ (2.6)

extends uniquely to a unitary operator \widetilde{V} between the Hilbert spaces $\mathcal{R}(T^*)$ and $\mathcal{D}(T)$.

(iv) The operator H, when viewed as a linear operator with domain dense in $\mathcal{D}(T)$ and range in $\mathcal{R}(T^*)$, extends uniquely to a unitary operator $\widetilde{H}: \mathcal{D}(T) \to \mathcal{R}(T^*)$, and $\widetilde{H} = \widetilde{V}^{-1}$.

超す イヨト イヨト ニヨ

Generation of Triplets of Hilbert Spaces: Dual Space

Theorem (continued)

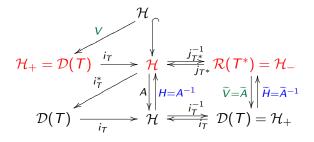
(v) The operator $\Theta\colon \mathcal{R}(T^*)\to \mathcal{D}(T)^*$ defined by

$$(\Theta\alpha)(x) := (\widetilde{V}\alpha, x)_{\mathcal{T}}, \quad \alpha \in \mathcal{R}(\mathcal{T}^*), \ x \in \mathcal{D}(\mathcal{T}),$$
(2.7)

provides a canonical and unitary identification of the Hilbert space $\mathcal{R}(T^*)$ with the conjugate space $\mathcal{D}(T)^*$, in particular, for all $y \in \text{Dom}(T^*)$

$$\|y\|_{\mathcal{T}^*} = \sup\{\frac{|\langle y, x \rangle_{\mathcal{H}}|}{|x|_{\mathcal{T}}} \mid x \in \mathsf{Dom}(\mathcal{T}) \setminus \{0\}\}.$$
 (2.8)

Generation of Triplets of Hilbert Spaces: The General Picture



HHamiltonianBerezansky — continuous embeddings $A = H^{-1}$ Kernel Operator $H = T^*T$ Factor Operator $A = SS^*$ Factor Operator

The Gradient

Let Ω be an open (nonempty) set of the \mathbb{R}^N . Let $D_j = i\frac{\partial}{\partial x_j}$, (j = 1, ..., N) be the operators of differentiation with respect to the coordinates of points $x = (x_1, ..., x_N)$ in \mathbb{R}^N . For a multi-index $\alpha = (\alpha_1, ..., \alpha_N) \in \mathbb{Z}_+^N$, let $x^{\alpha} = x_1^{\alpha_1} \cdots x_N^{\alpha_N}$, $D^{\alpha} = D_1^{\alpha_1} \cdots D_N^{\alpha_N}$. $\nabla_I = (D^{\alpha})_{|\alpha|=I}$ denotes the gradient of order *I*, where *I* is a fixed nonnegative integer. Letting m = m(N, I) denote the number of all multi-indices $\alpha = (\alpha_1, ..., \alpha_N)$ such that $|\alpha| = \alpha_1 + \cdots + \alpha_N = I$, ∇_I can be viewed as an operator acting from $L_2(\Omega)$ into $L_2(\Omega; \mathbb{C}^m)$ defined on its maximal domain, the Sobolev space $W_2^I(\Omega)$, by

$$abla_I u = (D^{\alpha} u)_{|\alpha|=I}, \quad u \in W_2^I(\Omega).$$

The Underlying Spaces

 $W_2^{I}(\Omega)$ consists of those functions $u \in L_2(\Omega)$ whose distributional derivatives $D^{\alpha}u$ belong to $L_2(\Omega)$ for all $\alpha \in \mathbb{Z}_+^N, |\alpha| \leq I$ and with norm

$$\|u\|_{W_{2}^{l}(\Omega)} = \left(\sum_{|\alpha| \le m} \|D^{\alpha}u\|_{L_{2}(\Omega)}^{2}\right)^{1/2},$$
(3.1)

 $W_2^{\prime}(\Omega)$ becomes a Hilbert space that is continuously embedded in $L_2(\Omega)$. $\overset{\circ}{W_2}^{\prime}(\Omega)$ denotes the closure of $C_0^{\infty}(\Omega)$ in the space $W_2^{\prime}(\Omega)$.

帰▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣々の

More Spaces

The space $\overset{\circ}{L}'_p(\Omega)$, $(1 \le p < \infty)$ is defined as the completion of $C_0^{\infty}(\Omega)$ under the metric corresponding to

$$\|u\|_{p,l} := \|\nabla_l u\|_{L_p(\Omega)} = \left(\int_{\Omega} \left(\sum_{|\alpha|=l} |D^{\alpha} u(x)|^2\right)^{p/2} \mathrm{d} x\right)^{1/p}, \quad u \in C_0^{\infty}(\Omega).$$

The elements of $\stackrel{\circ}{L_p}^{\prime}(\Omega)$ can be realized as locally integrable functions on Ω vanishing at the boundary $\partial\Omega$ and having distributional derivatives of order l in $L_p(\Omega)$. Moreover, these functions, after modification on a set of zero measure, are

absolutely continuous on every line which is parallel to the coordinate axes.

The Principal Symbol

On Ω there is defined an $m \times m$ matrix valued measurable function a, more precisely, $a(x) = [a_{\alpha\beta}(x)]$, $|\alpha|, |\beta| = l$, $x \in \Omega$, where the scalar valued functions $a_{\alpha,\beta}$ are measurable on Ω for all multi-indices $|\alpha|, |\beta| = l$. (C1) For almost all (with respect to the n-dimensional standard Lebesgue measure) $x \in \Omega$, the matrix a(x) is nonnegative (positive semidefinite), that is,

$$\sum_{|\alpha|,|\beta|=l} a_{\alpha\beta}(x)\overline{\eta}_{\beta}\eta_{\alpha} \geq 0, \text{ for all } \eta = (\eta_{\alpha})_{|\alpha|=l} \in \mathbb{C}^{m}.$$

According to the condition (C1), there exists an $m \times m$ matrix valued measurable function b on Ω , such that

$$a(x) = b(x)^*b(x)$$
, for almost all $x \in \Omega$,

where $b(x)^*$ denotes the Hermitian conjugate matrix of the matrix b(x).

Conditions

(C2) There is a nonnegative measurable function c on Ω such that, for almost all $x \in \Omega$ and all $\xi = (\xi_1, \ldots, \xi_N) \in \mathbb{C}^N$,

 $|b(x)\widetilde{\xi}| \geq c(x)|\widetilde{\xi}|,$

where $\tilde{\xi} = (\xi^{\alpha})_{|\alpha|=I}$ is the vector in \mathbb{C}^m with $\xi^{\alpha} = \xi_1^{\alpha_1} \dots \xi_N^{\alpha_N}$.

(C3) All the entries $b_{\alpha\beta}$ of the $m \times m$ matrix valued function b are functions in $L_{1,\text{loc}}(\Omega)$.

(C4) The function c in (C2) has the property that $1/c \in L_2(\Omega)$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The Operator T

Under the conditions (C1)–(C4), we consider the operator T acting from $L_2(\Omega)$ to $L_2(\Omega; \mathbb{C}^m)$ and defined by

 $(Tu)(x) = b(x)\nabla_I u(x), \quad \text{for almost all } x \in \Omega,$ (3.2)

on its domain

$$\mathsf{Dom}(T) = \{ u \in \overset{\circ}{W_2}^l (\Omega) \mid b \nabla_l u \in L_2(\Omega; \mathbb{C}^m) \}.$$
(3.3)

The Problem

Our aim is to describe, in view of the abstract model, the triplet of closely embedded Hilbert spaces $(\mathcal{D}(\mathcal{T}); L_2(\Omega); \mathcal{R}(\mathcal{T}^*))$ associated with the operator \mathcal{T} defined at (3.2) and (3.3).

In terms of these results, we obtain information about weak solutions for the corresponding operator equation involving the Hamiltonian operator $H = T^*T$ of the triplet, which in fact is a Dirichlet boundary value problem in $L_2(\Omega)$ with homogeneous boundary values.

The Problem

This problem is associated to the differential sesqui-linear form

$$a[u, v] = \int_{\Omega} \langle a(x) \nabla_{l}(x), \nabla_{l}(x) \rangle \, dx \qquad (3.4)$$
$$= \sum_{|\alpha|=|\beta|=l} \int_{\Omega} a_{\alpha\beta}(x) D^{\beta} u(x) \overline{D^{\alpha} v(x)} dx, \quad u, v \in C_{0}^{\infty}(\Omega),$$

which, as will be seen, can be extended up to elements of $\mathcal{D}(T)$. The problem can be reformulated as follows : given $f \in \mathcal{D}(T)^*$ (which is canonically identified withe $\mathcal{R}(T^*)$), find $v \in \mathcal{D}(T)$ such that

$$a[u, v] = \langle u, f \rangle \text{ for all } u \in \mathcal{D}(T), \tag{3.5}$$

where $\langle \cdot, \cdot \rangle$ denotes the duality between $\mathcal{D}(T)$ and $\mathcal{D}(T)^*$. The problem in (3.5) can be considered only for $u \in \overset{\circ}{W_2}(\Omega)$, or, even more restrictively, only for $u \in C_0^{\infty}(\Omega)$.

Aurelian Gheondea (BU & IMAR)

Theorem

.

For Ω a domain in \mathbb{R}^N and $l \in \mathbb{N}$, let $a(x) = [a_{\alpha\beta}(x)] = b(x)^*b(x)$, $|\alpha|, |\beta| = l, x \in \Omega$, satisfy the conditions (C1)–(C4), and consider the differential sesqui-linear form

$$\begin{aligned} \mathsf{a}[u,v] &= \int_{\Omega} \langle \mathsf{a}(x) \nabla_{l}(x), \nabla_{l}(x) \rangle \, \mathsf{d} \, x \\ &= \sum_{|\alpha| = |\beta| = l} \int_{\Omega} \mathsf{a}_{\alpha\beta}(x) D^{\beta} u(x) \overline{D^{\alpha} v(x)} \, \mathsf{d} \, x, \quad u, v \in C_{0}^{\infty}(\Omega), \end{aligned}$$

Aurelian Gheondea (BU & IMAR)

Theorem (Continuation)

Then:

(1) The operator T acting from $L_2(\Omega)$ to $L_2(\Omega; \mathbb{C}^m)$ and defined by $(Tu)(x) = b(x)\nabla_l u(x)$ for $x \in \Omega$ and $u \in \text{Dom}(T) = \{ u \in \overset{\circ}{W_2}^l (\Omega) \mid b\nabla_l u \in L_2(\Omega; \mathbb{C}^m) \}$ is closed, densely defined, and injective. (2) The pre-Hilbert space Dom(T) with norm $|u|_T = (\int_{\Omega} |b(x)\nabla_l u(x)|^2 dx)^{\frac{1}{2}}$, has a unique Hilbert space completion, denoted by $\mathcal{H}_a^l(\Omega)$, that is continuously embedded into $\overset{\circ}{L_1}^l (\Omega)$.

• • = • • = • = •

The Main Result

Theorem (Continuation)

(3) The conjugate space of $\overset{\circ}{\mathcal{H}}_{a}^{l}(\Omega)$, denoted by $\overset{\circ}{\mathcal{H}}_{a}^{-l}(\Omega)$, can be realized in such a way that, for any $f \in \overset{\circ}{\mathcal{H}}_{a}^{-l}(\Omega)$ there exist elements $g \in L_{2}(\Omega; \mathbb{C}^{m})$ such that

$$f(u) = \int_{\Omega} \langle g(x), b(x) \nabla_{l} u(x) \rangle \, \mathrm{d} \, x, \quad u \in \overset{\circ}{W}_{2}^{l}(\Omega), \quad (3.6)$$

and

 $\|f\|_{\overset{\circ}{\mathcal{H}}_{a}^{-\prime}(\Omega)} = \inf\{\|g\|_{L_{2}(\Omega;\mathbb{C}^{m})} \mid g \in L_{2}(\Omega;\mathbb{C}^{m}) \text{ such that (3.6) holds }\}.$

• • = • • = • =

Theorem (Continuation)

(4) $(\overset{\circ}{\mathcal{H}}_{a}^{\prime}(\Omega); L_{2}(\Omega); \overset{\circ}{\mathcal{H}}_{a}^{-\prime}(\Omega))$ is a triplet of closely embedded Hilbert spaces.

(5) For every $f \in \overset{\circ}{\mathcal{H}}_a^{-l}(\Omega)$ there exists a unique $v \in \mathcal{H}_a^{l}(\Omega)$ that solves the Dirichlet problem associated to the sesquilinear form a, in the sense that

$$a[u,v] = \langle u,f \rangle$$
 for all $u \in \mathcal{H}'_a(\Omega)$.

More precisely, $\mathbf{v} = \widetilde{H}^{-1}f$, where \widetilde{H} is the unitary operator acting between $\overset{\circ}{\mathcal{H}_{a}}^{l}(\Omega)$ and $\overset{\circ}{\mathcal{H}_{a}}^{-l}(\Omega)$ that uniquely extends the positive selfadjoint operator $\mathbf{H} = \mathbf{T}^{*}\mathbf{T}$ in $L_{2}(\Omega)$.

The Paper

P. COJUHARI, A. GHEONDEA: Triplets of Hilbert spaces, arXiv:1309.0176.

P. COJUHARI, A. GHEONDEA, Triplets of Dirichlet type spaces on the unit polydisc, *Complex Analysis and Operator Theory*, (to appear). DOI 10.1007/s11785-012-0269-z

- YU.M. BEREZANSKII, *Expansions in Eigenfunctions of Selfadjoint Operators*, Amer. Math. Soc., Providence RI 1968.
- YU.M. BEREZANSKY, Y.G. KONDRATIEV, *Spectral Methods in Infinite-Dimensional Analysis*, Mathematical Physics and Applied Mathematics, Kluwer Academic Publishers, Dordrecht, 1995
- P.A. COJUHARI, A. GHEONDEA: Closed embeddings of Hilbert spaces, *J. Math. Anal. Appl.* **369**(2010), 60–75.
- I.M. GELFAND, A.G. KOSTYCHENKO, On eigenfunction expansions of differenital an other operators [Russian], *Dokl. Akad. Nauk SSSR*, 103(1955), 349-352.
- I.M. GELFAND, N.Y. VILENKIN, *Generalized Functions*, Vol. IV, Academic Press, New York 1964.
- L. SCHWARTZ: Sous espace Hilbertiens d'espaces vectoriel topologiques et noyaux associés (noyaux reproduisants), *J. Analyse Math.*, **13**(1964), 115–256.

3

(日) (周) (三) (三)