
A block algorithm for computing

antitriangular factorizations of symmetric matrices

Zvonimir Bujanović∗ Daniel Kressner†

November 13, 2014

Abstract

Any symmetric matrix can be reduced to antitriangular form in finitely many steps by
orthogonal similarity transformations. This form reveals the inertia of the matrix and has
found applications in, e.g., model predictive control and constraint preconditioning. Originally
proposed by Mastronardi and Van Dooren, the existing algorithm for performing the reduction
to antitriangular form is primarily based on Householder reflectors and Givens rotations. The
poor memory access pattern of these operations implies that the performance of the algorithm is
bound by the memory bandwidth. In this work, we develop a block algorithm that performs all
operations almost entirely in terms of level 3 BLAS operations, which feature a more favorable
memory access pattern and lead to better performance. These performance gains are confirmed
by numerical experiments that cover a wide range of different inertia.

1 Introduction

Mastronardi and Van Dooren [10] recently proposed a novel antitriangular factorization for sym-
metric matrices. Given a symmetric matrix A ∈ Rn×n, there is an orthogonal matrix Q ∈ Rn×n

such that

QTAQ =

n0 n1 n2 n1

0 0 0 0
0 0 0 Y
0 0 X Z
0 Y T ZT W

n0

n1

n2

n1

, (1.1)

where the middle n2 × n2 matrix X is either positive or negative definite. The n1 × n1 matrix
Y is nonsingular and lower antitriangular, that is, it is zero above the antidiagonal: Y (i, j) = 0
whenever i + j ≤ n1. The block sizes in (1.1) are directly related to the inertia of A, that is, the
triplet of integers containing the number of its positive/negative/zero eigenvalues, respectively:

Inertia(A) = (n+, n−, n0), n1 = min{n+, n−}, n2 = max{n+, n−} − n1.

∗University of Zagreb, Dept. of Mathematics, Croatia, zbujanov@math.hr. Part of this work was done while the
author was a postdoctoral researcher at Max Planck Institute Magdeburg, Germany.
†ANCHP, MATHICSE, EPF Lausanne, Switzerland, daniel.kressner@epfl.ch

1

If A itself is definite then n0 = n1 = 0 and the factorization (1.1) becomes vacuous. The case pri-
marily of interest is therefore when A is indefinite. The antitriangular factorization (1.1) has found
applications in tracking dominant eigenspaces [9], indefinite constrained least-squares problems [12],
model predictive control [13], and constraint preconditioning [15].

It is more common to find orthogonal similarity factorizations that aim at reducing A to tridi-
agonal or diagonal form. However, these factorizations have a number of disadvantages compared
to (1.1).

It is well known that the data dependencies of the standard algorithm [6, §8.3.1] for tridiagonal
reduction make it difficult to parallelize. Specifically, when reducing one column of A to tridiagonal
form, the resulting orthogonal transformation needs to be applied from both sides to A before the
next column can be processed. This two-sided nature of tridiagonal reduction ultimately imposes a
limit on how much of the algorithm can be reformulated in terms of matrix-matrix multiplications
or, more generally, level 3 BLAS. Although progress has been made to circumvent this drawback,
see [1, 2, 7, 8] for recent work, the parallelization of two-sided reduction algorithms is still considered
a major challenge. In contrast to the two-sided nature of tridiagonal reduction, the algorithm
proposed in [10] for reducing A to antitriangular form has a strong one-sided flavor, similar to
standard algorithms for the Cholesky and QR factorizations [6, §4.2.6 and §5.2.2, resp.]. In this
paper, we will use this property to derive a novel block algorithm for computing antitriangular
factorizations, with asymptotically 100% of its operations performed in terms of level 3 BLAS.

Another disadvantage of tridiagonal and diagonal factorizations is that they usually do not
benefit from sparsity in A. Antitriangular factorizations can exploit certain types of sparsity [11].
Although this will not be discussed in detail, we expect that the ideas presented in this paper can
be utilized in such sparsity-exploiting algorithms, similar to sparse QR factorizations [4].

Throughout this paper we use Matlab notation for submatrices: A(i1:j1, i2:j2) denotes the
submatrix of A ∈ Rn×n consisting of all the entries of A in rows i1 through j1 and columns i2
through j2, with the conventions A(i:j, :) = A(i:j, 1:n), A(:, i:j) = A(1:n, i:j), and i:i = i.

2 Algorithms

Following [10], our proposed block algorithm proceeds by progressively computing the antitriangular
factorizations (1.1) for the leading principal submatrices of A.

Suppose that the antitriangular factorization of A(1:k, 1:k) has been computed for some k < n.
We will symbolize the antitriangular form with

k0 k1 k2 k1

k0
k1
k2
k1

. (2.1)

The symbol indicates that the middle (positive or negative) definite block is always stored in
terms of its Cholesky factorization εRTR with R upper triangular and ε ∈ {+1,−1}. The symbol

2

indicates a symmetric matrix. Note that only the upper triangular part of A needs to be stored
and processed.

The kth step of the scalar algorithm presented in [10] starts with bordering (2.1) with the
(k + 1)st column and row of A. It restores the antitriangular form by a sequence of Householder
reflectors and Givens rotations. Updating the orthogonal factor with the performed transformations
then yields the antitriangular factorization of A(1:k + 1, 1:k + 1). This procedure requires O(k2)
operations and access to O(k2) memory. For larger k, its performance will therefore be bound
by the memory bandwidth. To avoid this, the computational density of the kth step needs to be
increased. Our algorithm approaches this task by bordering (2.1) with nb > 1 columns and rows:

k0 k1 k2 k1 nb

k0
k1
k2
k1

nb

. (2.2)

The rest of this section is concerned with the development of efficient blocked algorithms that
restore the antitriangular form of this matrix, ultimately resulting in the antitriangular factorization
of A(1:k + nb, 1:k + nb). Depending on the architecture, in particular the cache size, the value of
nb will typically be chosen between 64 and 512. Our algorithms are designed to perform well for
all possible values of k0, k1, k2; no implicit assumption on their relation to nb is made.

2.1 Main algorithm

In each of the following figures describing the algorithm, we use the following convention: blocks
marked in red on the left-hand side of the picture are being modified and used to compute an
orthogonal transformation, which is then applied onto the rest of the matrix as well. The result is
shown on the right-hand side, and only the blocks marked in blue are affected by the transformation.
(Due to symmetry, only blocks on and above the main diagonal are stored and colored.)

Step 1. The first step of our algorithm consists of reducing the top-right block in (2.2) to anti-
staircase form by applying Algorithm 1 (see Section 2.2.1 below):

k0 k1 k2 k1 nb

k0
k1
k2
k1

nb

 −→

k0 k1 k2 k1 nb

k0
k1
k2
k1

nb

.

We say that a k0×nb matrix is in anti-staircase form if there is 0 ≤ ` ≤ min{k0, nb} such that only
the first k0 − ` rows are zero and the remaining rows satisfy jk0 < jk0−1 < · · · < jk0−`+1, where ji
is the index of the first nonzero entry in the ith row.

3

The ` ≤ min{k0, nb} Householder reflectors returned by Algorithm 1 are applied to the rest of A
and to Q by a blocked algorithm, using compact WY representations [6, §5.1.7]. For this purpose,
our implementation uses a minor modification of the LAPACK routine DORMQL (which applies the
reflectors computed by the QL factorization of a matrix).

Step 2. After Step 1, the first k0− ` rows of the matrix are zero. Letting the (`+ k1)× (k1 + nb)

matrix Ã1 =

()
contain the top-right nonzero blocks, we determine a factorization

Ã1 = A1Q1, (2.3)

such that A1 is lower antitriangular and Q1 is orthogonal. Note that Ã1 has full row rank and
hence all antidiagonal entries of A1 are nonzero. To compute (2.3), we have implemented a blocked
algorithm based on minor modifications of the LAPACK routine DGELQF (for computing the LQ
factorization of a matrix) as well as the auxiliary routines for creating and applying compact WY
representations. Similar to Step 1, the matrix Q1 is represented in terms of Householder reflectors
and applied to the rest of A and Q using a minor modification of the blocked LAPACK routine
DORMLQ. The updated matrix takes the shape

k0 k1 k2 k1 nb

k0
k1
k2
k1

nb

 −→

k̃0 k̃1 k2 ñb k̃1

k̃0
k̃1
k2
ñb

k̃1

,

where we have repartitioned the block sizes as k̃0 = k0 − `, k̃1 = k1 + `, ñb = nb − `. Also, note
that the bottom-right (k1 + nb)× (k1 + nb) block has to be updated by applying Q1 both from the
left and the right side.

Step 3. The antitriangular factorization of the symmetric (k2 + ñb) × (k2 + ñb) middle block is
computed:

k̃0 k̃1 k2 ñb k̃1

k̃0
k̃1

k2
ñb

k̃1

−→

k̃0 k̃1 k0+ k1+ k2+ k1+ k̃1

k̃0
k̃1

k0+
k1+
k2+
k1+

k̃1

.

4

When k2 ≤ ñb, the scalar algorithm from [10] is used to perform this factorization. The resulting
orthogonal transformation matrix Q2 is applied to the rest of A and Q by matrix-matrix multi-
plication. Otherwise, when k2 > ñb, the blocked algorithm described in Section 2.2.2 below is
used.

Step 4. By a slight modification of the LAPACK routine DGEQRF (for computing the QR factor-
ization), we reduce the blocks at positions (2,7) and (2,8) to lower antitriangular form:

k̃0 k̃1 k0+ k1+ k2+ k1+ k̃1

k̃0
k̃1

k0+
k1+
k2+
k1+

k̃1

−→

k̄0 k̃1 k1+ k2+ k1+ k̃1

k̄0
k̃1

k1+
k2+
k1+

k̃1

,

where we let k̄0 = k̃0 + k0+.
Setting k̄1 = k̃1 +k1+ and k̄2 = k2+, we finally obtain the antitriangular form of A(1 : k+nb, 1 :

k + nb):

k̄0 k̄1 k̄2 k̄1

k̄0
k̄1
k̄2
k̄1

.

2.2 Ingredients of the main algorithm

In the following, we provide details on some of the steps of the main algorithm.

2.2.1 Reduction to anti-staircase form

Step 1 of the main algorithm requires the reduction of a rectangular matrix to anti-staircase form.
Given an m×n matrix B, one step of the reduction proceeds as follows. Negligible leading columns
of B are set to zero and skipped in the process. Let j1 denote the index of the first column of B
with 2-norm larger than a user-specified tolerance tol. Then a Householder reflector H1 is computed
such that the first m− 1 elements of this column are annihilated. In effect, the matrix H1B takes
the form (j1 − 1 1 n− j1

m− 1 0 0 B̃
1 0 b̃m,j1 ?

)

5

with b̃m,j1 6= 0. The same procedure is applied again to B̃ and repeated until this block disappears,
see Algorithm 1 for more details. This algorithm requires O(`mn) operations, where ` ≤ min{m,n}.

Algorithm 1 Reduction to anti-staircase form

Input: Matrix B ∈ Rm×n, tolerance tol.
Output: Sequence of Householder reflectors H1, . . . ,H` and updated matrix B ← H`H`−1 · · ·H1B

in anti-staircase form.
`← 0
for j = 1, 2, . . . n do

if ‖B(1 : m− `, j)‖2 ≤ tol then
B(1 : m− `, j)← 0

else
`← ` + 1
Construct Householder reflector H` annihilating the first m− ` entries of B(:, j).
B ← H`B

end if
end for

2.2.2 Antitriangular factorization of symmetric matrix with factorized (1, 1) block

In the presence of a large middle block in Step 3 of the main algorithm, the use of a scalar algorithm
for reducing this block would deteriorate performance. In the following, we therefore develop a
blocked algorithm for computing the antitriangular factorization of a matrix having the form

M =

(k nb

k
nb

)
=

(
εRTR Z
ZT W

)
,

where W is symmetric. It is assumed that k > nb.

Step 3.1. Using Algorithm 2, orthogonal matrices Q̃ and Ũ are determined such that Q̃TZ is
lower triangular and ŨTRQ̃ is upper triangular.
Applied to M , this yields the shape

(k nb

k
nb

)
−→

(k nb

k
nb

)
.

In our implementation, the matrix Ũ is actually not formed, as it is not needed. Also, the matrix Q̃
is not formed; instead, the compact WY representation of each individual factor Qi is immediately
applied to the rest of A and Q during the execution of Algorithm 2. In effect, the total number of
operations needed for performing the updates of A and Q remains O(k · nb · n).

6

Algorithm 2 QL factorization with simultaneous preservation of Cholesky factorization

Input: Upper triangular matrix R ∈ Rk×k and matrix Z ∈ Rk×nb such that k < nb.
Output: Orthogonal matrices Q,U ∈ Rk×k, such that Z ← QTZ is lower triangular and R ←
UTRQ is upper triangular.
Q← Ik, U ← Ik, i← 1
while i ≤ k − nb do

j = min{k, i + 2 · nb− 1}
Compute orthogonal matrix Qi such that Z(i : j, :) ← QT

i Z(i : j, :) is lower triangular, using
the QL factorization (LAPACK routine DGEQLF).
Update R(1 : j, i : j) ← R(1 : j, i : j)Qi and Q(:, i : j) ← Q(:, i : j)Qi using the compact WY
representation of Qi (LAPACK routine DORMQL).
Compute orthogonal matrix Ui such that R(i : j, i : i + nb− 1) ← UT

i R(i : j, i : i + nb− 1) is
upper triangular, using the QR factorization (LAPACK routine DGEQRF).
Update R(i : j, i + nb : k) ← UT

i R(i : j, i + nb : k) and U(:, i : j) ← U(:, i : j)Ui using the
compact WY representation of Ui (LAPACK routine DORMQR).
i← i + nb

end while

Step 3.2. After Step 3.1 has been performed, we partition the updated Cholesky factor as

R =

(k̃ nb

k̃
nb

)
=

(
R11 R12

0 R22

)
with k̃ = k − nb. The relation

RTR =

(
RT

11

RT
12

)(
R11 R12

)
+

(
0 0
0 RT

22R22

)
then allows us to decompose M schematically as

M =

(k nb

k
nb

)
=

k̃

k̃

nb
nb

 · (k̃ nb nb

k̃
)

+

k̃ nb nb

k̃

nb
nb

. (2.4)

Step 3.3. Let the symmetric 2 · nb × 2 · nb matrix M22 =

(
εRT

22R22 Z2

ZT
2 W

)
denote the bottom

right block in the second term of (2.4). Since R22 is invertible, the number of eigenvalues of M22

with sign ε is not smaller than the total number of eigenvalues that are zero or have sign −ε; this
is a simple consequence of the Cauchy interlacing theorem, see, e.g., [14]. Consequently, if there
is a middle block X in the antitriangular factorization of M22 then it has sign ε. Computing this

7

factorization with the scalar algorithm and applying the resulting orthogonal transformation to
both terms of (2.4) (and to the rest of A and Q) yields the shape

k̃

k̃

k0∗
k1∗
k2∗
k1∗

 ·
(k̃ k0∗ k1∗ k2∗ k1∗

k̃
)

+

k̃ k0∗ k1∗ k2∗ k1∗

k̃

k0∗
k1∗
k2∗
k1∗

,

where k0∗ + k1∗ + k2∗ + k1∗ = 2 · nb.

Step 3.4. By computing an RQ factorization of its first k̃ + k0∗ columns, the factor of the first
term can be reduced without affecting the second term:

k̃

k0∗
k̃

k1∗
k2∗
k1∗

 ·
(k0∗ k̃ k1∗ k2∗ k1∗

k̃
)

+

k0∗ k̃ k1∗ k2∗ k1∗

k0∗
k̃

k1∗
k2∗
k1∗

. (2.5)

Remark 2.1 Especially when k̃ � k0∗, it is important that the RQ factorization in Step 3.4 exploits
the upper triangular structure of the leading k̃× k̃ block to reduce the computational complexity from
O((k̃ + k0∗)k̃

2) to O(k0∗k̃
2). For the closely related problem of computing the QR factorization of

a matrix of the form

(k̃

k0∗
k̃

)
,

the corresponding LAPACK routine DGEQRF exploits most of the triangular structure automati-
cally. This is achieved by exploiting trailing zero entries in the application of (blocked) Householder
reflectors with the auxiliary routine DLARFB. Unfortunately, we have observed that the currently
implemented mechanism does not function for the situation at hand; neither the vanilla Netlib
implementation nor the Intel MKL implementation of the LAPACK routine DGERQF for RQ fac-
torizations seem to make use of the structure arising in Step 3.4. To overcome this drawback and
obtain a complexity of O(k0∗k̃

2), we have applied a simple patch to DLARFB such that it also exploits
leading zero entries in the application of Householder reflectors. Note that this patch is needed to
accelerate DGEQLF in Step 3.1 as well.

8

Step 3.5. Step 3.4 is repeated for the first k̃+k1∗ nonzero columns of the factor in the first term,
leading to

k̃

k0∗
k1∗

k̃
k2∗
k1∗

 ·
(k0∗ k1∗ k̃ k2∗ k1∗

k̃
)

+

k0∗ k1∗ k̃ k2∗ k1∗

k0∗
k1∗

k̃
k2∗
k1∗

. (2.6)

Note that, in contrast to Step 3.4, the application of the corresponding transformation affects the
second term: the zero-pattern of the blocks (2, 5) and (3, 5) from (2.5) is now destroyed. To continue
the algorithm, we have to enforce the lower antitriangularity of the newly introduced (2, 5) block
in (2.6); this is achieved by using the same modification of DGEQRF as described in Step 4 above.

The following lemma implies that the newly introduced antitriangular block in the second term
of (2.6) is invertible.

Lemma 2.2 Consider partitioned matrices

(m n

m A1 A2

)
= A,

(m n

n 0 B2

)
= B,

with A1 and B2 nonsingular. Let A = RQ be an RQ factorization and partition

(n m

n B̃1 B̃2

)
= BQT .

Then B̃1 is invertible.

Proof. Partition (m n

n Q11 Q12

m Q21 Q22

)
= Q,

(n m

m 0 R2

)
= R.

Then R2 is invertible and A = RQ implies that Q21 = R−12 A1 is also invertible. By the CS
decomposition of Q [6, Thm. 2.6.3], Q12 is invertible as well, which in turn yields the invertibility
of B̃1 = B2Q

T
12. �

Step 3.6 After the completion of Steps 3.3–3.5 both terms are merged again, yielding

k0∗ k1∗ k̃ k2∗ k1∗

k0∗
k1∗

k̃ · · +
k2∗ · · + · +
k1∗ · + · + · +

;

9

the color-coding is inherited from (2.6). The Cholesky factor of the middle (k̃ + k2∗) × (k̃ + k2∗)

block is readily available by setting =

(k̃ k2∗

k̃
k2∗

)
. All other blocks are formed explicitly:

= · + and =

(k1∗

k̃ · +
k2∗ · +

)
. Setting k0+ = k0∗, k1+ = k1∗ and k2+ = k̃ + k2∗, we

finally arrive at the antitriangular form

k0+ k1+ k2+ k1+

k0+
k1+
k2+
k1+

.

By construction, the middle block is definite with sign ε. Also, Lemma 2.2 implies that the lower
antitriangular blocks are invertible.

2.3 Computational complexity

The precise overall complexity of the described algorithm for computing the antitriangular factor-
ization of the bordered matrix in (2.2) and updating the rest of A and Q depends in a nontrivial
way on the inertia of the involved matrices. However, the asymptotic complexity can be easily seen
to be O(nb · n2), leading to a total asymptotic complexity of O(n3). All reductions that involve
matrices with a size potentially proportional to n are based on blocked algorithms which have
asymptotically 100% of their operations performed by level 3 BLAS. The overhead involved in the
blocking becomes negligible as n increases.

3 Numerical experiments

We implemented the algorithm from [10] as well as the blocked algorithm described in this paper
in Fortran 90.1 The following computational environment was used:

• 2x Intel(R) Xeon(R) CPU E5620 @ 2.40GHz (8 cores in total);

• 24 GB RAM, each processor is equipped with 12 MB of cache memory;

• Intel Composer XE 2013 + MKL 11.1.1.

Unless specified otherwise, we used a tolerance of ‖A‖F · u, where u ≈ 10−16 denotes the unit
roundoff, in order to detect negligible columns in the reduction to anti-staircase form, and in order
to declare an approximate eigenvalue as zero in the scalar algorithm from [10].

1The software is available from http://anchp.epfl.ch/antitriangular.

10

n
0
=0% n

+
=0% n

−
=100%

n
0
=0% n

+
=25% n

−
=75%

n
0
=0% n

+
=50% n

−
=50%

n
0
=25% n

+
=0% n

−
=75%

n
0
=25% n

+
=25% n

−
=50%

n
0
=50% n

+
=0% n

−
=50%

n
0
=50% n

+
=25% n

−
=25%

n
0
=75% n

+
=0% n

−
=25%

Figure 1: Percentages of zero (n0), positive (n+), and negative (n−) eigenvalues of test matrices
used in the numerical experiments.

To test for a wide variety of inertia, we generated a batch of test matrices A in the following
way: Given n0, n+, and n−, a diagonal matrix

Λ =

 Λ0

Λ+

Λ−

 ∈ Rn×n, n = n0 + n+ + n−, (3.1)

is created so that Λ0 ∈ Rn0×n0 is zero, while Λ+ ∈ Rn+×n+ ,Λ− ∈ Rn−×n− are diagonal matrices
with diagonal entries chosen uniformly at random in the intervals (0, 1) and (−1, 0), respectively.
Then a random orthogonal similarity transformation is applied to Λ in order to yield A. Figure 1
lists the different configurations of the inertia we used in the numerical experiments.

For each tested matrix A, the accuracy of the computed antitriangular factorization QTQT was
verified by computing the backward error ‖A−QTQT ‖F and the orthogonality test ‖I −QTQ‖F .
For all matrices we tested, these quantities have been observed to be of order O(‖A‖F · u) and
O(
√
n · u), respectively.

Serial performance. In our first set of experiments, we turned multithreading off and linked
with the sequential version of MKL BLAS, so that only one of the eight cores was utilized. The
obtained performance results are shown in Figure 2. Several observations can be made. Figure 2a
reveals that the blocked algorithm is – depending on the inertia – between 4.5 and 6 times faster
than the scalar algorithm for sufficiently large matrices. The blocked algorithm is also advantageous
for matrices of fairly modest size; some speedup is obtained already for n = 300.

As discussed in the introduction, the antitriangular factorization is expected to be cheaper
compared to the full spectral decomposition of a symmetric matrix. To verify whether this claim
is actually reflected in the execution times, we compared our implementation with the LAPACK

11

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

Dimension of A

tim
e(

sc
al

ar
 a

lg
.)

 /
tim

e(
bl

oc
ke

d
al

g.
)

(a) Ratios of execution times between scalar and blocked
antitriangular algorithm.

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

Dimension of A

tim
e(

D
S

Y
E

V
)

/ t
im

e(
bl

oc
ke

d
al

g.
)

(b) Ratios of execution times between the LAPACK rou-
tine DSYEV and the blocked antitriangular algorithm.

Figure 2: Performance of blocked antitriangular algorithm with sequential BLAS. The different
colors refer to different configuration of the inertia; see Figure 1.

routine DSYEV for computing the spectral decomposition. As shown by Figure 2b, the blocked
algorithm for the antitriangular factorization is faster, by a large margin, for sufficiently large
matrices. Interestingly, the differences between the inertia are quite pronounced. The better
speedups (relative to the DSYEV routine) are obtained for matrices with a small value of n2 =
max{n+, n−}−min{n+, n−}, that is, for matrices that have a small block X in their antitriangular
factorization (1.1). A comparison between Figures 2a and 2b reveals that the scalar algorithm for
the antitriangular factorization is actually often slower compared to DSYEV.

Performance on 8 cores. Multithreaded implementation of level 3 BLAS routines can exploit
current computer architectures with multicore processors, thus making the blocked algorithm even
more efficient. Figure 3a shows that linking with the multithreaded MKL BLAS library increases the
speedup of the blocked algorithm relative to the scalar algorithm up to a factor of 12 on our machine.
This effect is even more emphasized when comparing to the LAPACK implementation of DSYEV;
see Figure 3b. Note, however, that neither our current implementation of the block algorithm nor
LAPACK’s DSYEV are particularly tuned to perform well on several cores. This becomes visible in
Figure 3c, which shows a comparison with the MKL implementation of DSYEV. This implementation
appears to be tailored to several cores and, consequently, the speedups attained by our block
algorithm drop significantly.

Recovery of inertia. It is important to remark that neither the scalar algorithm from [10] nor
our block algorithm claim to be capable of reliably detecting the inertia in the presence of roundoff
error. To attain such a reliability, one would probably need to combine these algorithms with

12

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

Dimension of A

tim
e(

sc
al

ar
 a

lg
.)

 /
tim

e(
bl

oc
ke

d
al

g.
)

(a) Ratios of execution times between scalar and blocked
antitriangular algorithm.

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

Dimension of A

tim
e(

D
S

Y
E

V
)

/ t
im

e(
bl

oc
ke

d
al

g.
)

(b) Ratios of execution times between the LAPACK rou-
tine DSYEV and the blocked antitriangular algorithm.

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5

Dimension of A

tim
e(

M
K

L
D

S
Y

E
V

)
/ t

im
e(

bl
oc

ke
d

al
g.

)

(c) Ratios of execution times between the MKL routine
DSYEV and the blocked antitriangular algorithm.

Figure 3: Performance of blocked antitriangular algorithm with multithreaded BLAS. The different
colors refer to different configuration of the inertia; see Figure 1.

13

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Prescribed value of n
0

C
om

pu
te

d
n 0

scalar alg.
blocked alg.

(a) Tolerance ‖A‖F · u.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Prescribed value of n
0

C
om

pu
te

d
n 0

scalar alg.
blocked alg.

(b) Tolerance 100 · ‖A‖F · u.

Figure 4: Computed versus prescribed values of n0 for all test matrices, using two different tol-
erances. For each test matrix, n0 ∈ {0, 100, 200, . . . , 1000} is prescribed and the corresponding
computed value of n0 is displayed by a cross marks: a red mark for the scalar algorithm and a
black mark for the block algorithm. Note that, for readability, the black marks have been shifted
to the right.

pivoting techniques, similar to existing pivoting techniques for the QR factorization [3, 5]. Still, it
might be of interest to verify to which extent these algorithms can recover the inertia of our test
matrices. For this purpose, we compared the computed values of n0, n+, n− with the ones used
for generating the test matrices (3.1). The value of n0, the number of detected zero eigenvalues,
is of particular interest, as this is critically influenced by deciding on the negligibility of certain
entries during the algorithm. With the default tolerance, we observed that the computed n0 is
often (slightly) lower than the prescribed value. Some of the zero eigenvalues are falsely detected
as non-zero eigenvalues. As shown in Figure 4a, this effect is particularly notable for the blocked
algorithm. Setting a higher tolerance helps remedy this issue for the test matrices: Figure 4b shows
the result of multiplying the tolerance with 100. Clearly, the computed n0 now approximate the
prescribed value of n0 much better.

4 Conclusions

Our newly proposed block algorithm for reducing a symmetric matrix to antitriangular form has
been found to significantly outperform the scalar algorithm. One critical issue, which has been
revealed in our numerical experiments, is the safe detection of zero eigenvalues. To avoid this issue,
which affects both the scalar and the block algorithms, pivoting strategies similar to the ones used
in QR decompositions need to be employed.

14

References

[1] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang,
H. Lederer, and P.R. Willems. Parallel solution of partial symmetric eigenvalue problems from
electronic structure calculations. Parallel Computing, 37(12):783–794, 2011.

[2] P. Bientinesi, F. D. Igual, D. Kressner, M. Petschow, and E. S. Quintana-Ort́ı. Condensed
forms for the symmetric eigenvalue problem on multi-threaded architectures. Concurrency and
Computation: Practice and Experience, 23(7):694–707, 2011.

[3] C. H. Bischof and G. Quintana-Ort́ı. Computing rank-revealing QR factorizations of dense
matrices. ACM Trans. Math. Software, 24(2):226–253, 1998.

[4] T. A. Davis. Algorithm 915, SuiteSparseQR: multifrontal multithreaded rank-revealing sparse
QR factorization. ACM Trans. Math. Software, 38(1):Art. 8, 22, 2011.

[5] Z. Drmač and Z. Bujanović. On the failure of rank-revealing QR factorization software—a
case study. ACM Trans. Math. Software, 35(2):Art. 12, 28, 2009.

[6] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, third edition, 1996.

[7] A. Haidar, H. Ltaief, and J. Dongarra. Parallel reduction to condensed forms for symmetric
eigenvalue problems using aggregated fine-grained and memory-aware kernels. In Proceedings
of 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 8:1–8:11, New York, NY, USA, 2011. ACM.

[8] A. Haidar, R. Solcà, M. Gates, S. Tomov, T. Schulthess, and J. Dongarra. Leading edge hybrid
multi-GPU algorithms for generalized eigenproblems in electronic structure calculations. In
J. Kunkel, T. Ludwig, and H. Meuer, editors, Supercomputing, volume 7905 of Lecture Notes
in Computer Science, pages 67–80. Springer Berlin Heidelberg, 2013.

[9] N. Mastronardi and P. Van Dooren. Recursive approximation of the dominant eigenspace of
an indefinite matrix. J. Comput. Appl. Math., 236(16):4090–4104, 2012.

[10] N. Mastronardi and P. Van Dooren. The antitriangular factorization of symmetric matrices.
SIAM J. Matrix Anal. Appl., 34(1):173–196, 2013.

[11] N. Mastronardi and P. Van Dooren. On solving KKT linear systems with antitriangular
matrices, 2013. TUM-IAS Workshop on Novel Numerical Methods, Munich Germany. Pre-
sentation available from http://www.tum-ias.de/fileadmin/material_ias/pdf/NoNuMe/

Presentations/Paul_van_Dooren.pdf.

[12] N. Mastronardi and P. Van Dooren. An algorithm for solving the indefinite least squares
problem with equality constraints. BIT, 54(1):201–218, 2014.

15

[13] N. Mastronardi, P. Van Dooren, and R. Vandebril. On solving KKT linear systems arising
in model predictive control via recursive antitriangular factorization, 2014. Presentation at
Householder Symposium XIX, June 8-13, Spa, Belgium.

[14] B. N. Parlett. The Symmetric Eigenvalue Problem. Society for Industrial and Applied Math-
ematics, 1998.

[15] J. Pestana and A. J. Wathen. The antitriangular factorization of saddle point matrices. SIAM
J. Matrix Anal. Appl., 35(2):339–353, 2014.

16

