Glasnik Matematicki, Vol. 48, No. 1 (2013), 185-210.

ASYMPTOTIC ANALYSIS AND EXPLICIT ESTIMATION OF A CLASS OF STOCHASTIC VOLATILITY MODELS WITH JUMPS USING THE MARTINGALE ESTIMATING FUNCTION APPROACH

Friedrich Hubalek and Petra Posedel

Vienna University of Technology, Financial and Actuarial Mathematics, Wiedner Hauptstraße 8 / 105-1, A-1040 Vienna, Austria
e-mail: fhubalek@fam.tuwien.ac.at

Zagreb School of Economics and Management, Jordanovac 100, 10000 Zagreb, Croatia
e-mail: pposedel@zsem.hr


Abstract.   We provide and analyze explicit estimators for a class of discretely observed continuous-time stochastic volatility models with jumps. In particular we consider the class of non-Gaussian Ornstein-Uhlenbeck based models, as introduced by Barndorff-Nielsen and Shephard. We develop in detail the martingale estimating function approach for this kind of processes, which are bivariate Markov processes, that are not diffusions, but admit jumps. We assume that the bivariate process is observed on a discrete grid of fixed width, and the observation horizon tends to infinity. We prove rigorously consistency and asymptotic normality based on the single assumption that all moments of the stationary distribution of the variance process are finite, and give explicit expressions for the asymptotic covariance matrix. As an illustration we provide a simulation study for daily increments, but the method applies unchanged for any time-scale, including high-frequency observations, without introducing any discretization error.

2010 Mathematics Subject Classification.   60G51, 62F12, 62M05.

Key words and phrases.   Martingale estimating functions, stochastic volatility models with jumps, consistency and asymptotic normality.


Full text (PDF) (free access)

DOI: 10.3336/gm.48.1.15


References:

  1. Y. Aït-Sahalia, Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach, Econometrica 70 (2002), 223-262.
    MathSciNet     CrossRef

  2. T. G. Andersen and N. Shephard, Stochastic volatility: origins and overview, in: Handbook of Financial Time Series, Springer-Verlag, 2009, 233-254.
    CrossRef

  3. Y. Aït-Sahalia and J. Jacob, Volatility estimators for discretely sampled Lévy processes, Ann. Statist. 35 (2007), 355-392.
    MathSciNet     CrossRef

  4. Y. Aït-Sahalia and J. Jacod, Estimating the degree of activity of jumps in high frequency data, Ann. Statist. 37 (2009), 2202-2244.
    MathSciNet     CrossRef

  5. D. Bates, Jumps and stochastic volatility: exchange rate processes implicit in Deutsche Mark options, Rev. Financ. Stud. 9 (1996), 69-107.
    CrossRef

  6. D. S. Bates, Post-'87 crash fears in the s&p 500 futures option market, J. Econometrics 94 (2000), 181-238.
    MathSciNet     CrossRef

  7. F. E. Benth and M. Groth. The minimal entropy martingale measure and numerical option pricing for the Barndorff-Nielsen-Shephard stochastic volatility model, Stoch. Anal. Appl. 27 (2009), 875-896.
    MathSciNet     CrossRef

  8. F. E. Benth and K. H. Karlsen, A PDE representation of the density of the minimal entropy martingale measure in stochastic volatility markets, Stochastics 77 (2005), 109-137.
    MathSciNet     CrossRef

  9. F. E. Benth, K. H. Karlsen and K. Reikvam, Merton's portfolio optimization problem in a Black and Scholes market with non-Gaussian stochastic volatility of Ornstein-Uhlenbeck type, Math. Finance 13 (2003), 215-244.
    MathSciNet     CrossRef

  10. F. E. Benth and T. Meyer-Brandis, The density process of the minimal entropy martingale measure in a stochastic volatility model with jumps, Finance Stoch. 9 (2005), 563-575.
    MathSciNet     CrossRef

  11. O. E. Barndorff-Nielsen, S. E. Graversen, J. Jacod, M. Podolskij and N. Shephard, A central limit theorem for realised power and bipower variations of continuous semimartingales, in: From stochastic calculus to mathematical finance, Springer, Berlin, 2006, 33-68.
    MathSciNet     CrossRef

  12. O. E. Barndorff-Nielsen, E. Nicolato and N. Shephard, Some recent developments in stochastic volatility modelling, Quant. Finance 2 (2002), 11-23.
    MathSciNet     CrossRef

  13. O. E. Barndorff-Nielsen and N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001), 167-241.
    MathSciNet     CrossRef

  14. O. E. Barndorff-Nielsen, N. Shephard and M. Winkel, Limit theorems for multipower variation in the presence of jumps, Stochastic Process. Appl. 116 (2006), 796-806.
    MathSciNet     CrossRef

  15. B. M. Bibby and M. Sørensen, Martingale estimation functions for discretely observed diffusion processes, Bernoulli 1 (1995), 17-39.
    MathSciNet     CrossRef

  16. B. Jesper Christensen and P. Posedel, The risk-return tradeoff and leverage effect in a stochastic volatility-in-mean model, CREATES research paper 2010-50, 2010.

  17. Y. S. Chow and H. Teicher, Probability theory, Springer-Verlag, New York, 1997.
    MathSciNet     CrossRef

  18. R. Cont and P. Tankov, Financial modelling with jump processes, Chapman & Hall/CRC, Boca Raton, FL, 2004.
    MathSciNet    

  19. D. Duffie, D. Filipović and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab. 13 (2003), 984-1053.
    MathSciNet     CrossRef

  20. D. Duffie, J. Pan and K. Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica 68 (2000), 1343-1376.
    MathSciNet     CrossRef

  21. S. Frühwirth-Schnatter and L. Sögner, Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law, Ann. Inst. Statist. Math. 61 (2009), 159-179.
    MathSciNet     CrossRef

  22. J. E. Griffin and M. F. J. Steel, Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility, J. Econometrics 134 (2006), 605-644.
    MathSciNet     CrossRef

  23. S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Fin. Studies 6 (1993), 327-343.
    CrossRef

  24. F. Hubalek and P. Posedel, Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models, Thiele Research Report No.5, 2007.

  25. F. Hubalek and P. Posedel, Asymptotic analysis for an optimal estimating function for Barndorff-Nielsen-Shephard stochastic volatility models, work in progress, 2009.

  26. F. Hubalek and P. Posedel, Joint analysis and estimation of stock prices and trading volume in Barndorff-Nielsen and Shephard stochastic volatility models, Quant. Finance 11 (2011), 917-932.
    MathSciNet     CrossRef

  27. J. Hull and A. White, The pricing of options on assets with stochastic volatilities, J. Finance 42 (1987), 281-300.
    CrossRef

  28. M. Jacobsen, Optimality and small Δ-optimality of martingale estimating functions, Bernoulli 8 (2002), 643-668.
    MathSciNet    

  29. J. Jacod, Asymptotic properties of realized power variations and related functionals of semimartingales, Stochastic Process. Appl. 118 (2008), 517-559.
    MathSciNet     CrossRef

  30. J. Jacod, C. Klüppelberg and M. Gernot, Functional relationships between price and volatility jumps and its consequences for discretely observed data, preprint, TU Münhen, 2012.

  31. J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, Springer-Verlag, Berlin, second edition, 2003.
    MathSciNet     CrossRef

  32. J. Jacod and V. Todorov, Do price and volatility jump together? Ann. Appl. Probab. 20 (2010), 1425-1469.
    MathSciNet     CrossRef

  33. S. Johansen, The product limit estimator as maximum likelihood estimator, Scand. J. Statist. 5 (1978), 195-199.
    MathSciNet    

  34. M. Kessler, Simple and explicit estimating functions for a discretely observed diffusion process, Scand. J. Statist. 27 (2000), 65-82.
    MathSciNet     CrossRef

  35. J. Kallsen, J. Muhle-Karbe and M. Voß, Pricing options on variance in affine stochastic volatility models, Math. Finance 21 (2011), 627-641.
    MathSciNet     CrossRef

  36. M. Kessler and M. Sørensen, Estimating equations based on eigenfunctions for a discretely observed diffusion process, Bernoulli 5 (1999), 299-314.
    MathSciNet     CrossRef

  37. J. Kiefer and J. Wolfowitz, Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters, Ann. Math. Statist. 27 (1956), 887-906.
    MathSciNet     CrossRef

  38. Y. A. Kutoyants, Statistical inference for ergodic diffusion processes, Springer-Verlag, London, 2004.
    MathSciNet     CrossRef

  39. E. L. Lehmann, Elements of large-sample theory, Springer-Verlag, New York, 1999.
    MathSciNet     CrossRef

  40. A. L. Lewis, Option valuation under stochastic volatility, Finance Press, Newport Beach, 2000.
    MathSciNet    

  41. C. Lindberg, Portfolio optimization and statistics in stochastic volatility markets, PhD dissertation, Chalmers University of Technology, 2005.
    MathSciNet     CrossRef

  42. C. Lindberg, News-generated dependence and optimal portfolios for n stocks in a market of Barndorff-Nielsen and Shephard type, Math. Finance 16 (2006), 549-568.
    MathSciNet     CrossRef

  43. P. McCullagh, Tensor methods in statistics, Chapman & Hall, London, 1987.
    MathSciNet    

  44. J. Muhle-Karbe, O. Pfaffel and R. Stelzer, Option pricing in multivariate stochastic volatility models of OU type, to appear in SIAM J. Financial Math., arXiv:1001.3223v1, 2010.

  45. R. M. Mininni and S. Romanelli, Martingale estimating functions for Feller diffusion processes generated by degenerate elliptic operators, J. Concr. Appl. Math. 1 (2003), 191-216.
    MathSciNet    

  46. B. Nielsen and N. Shephard, Likelihood analysis of a first-order autoregressive model with exponential innovations, J. Time Ser. Anal. 24 (2003), 337-344.
    MathSciNet     CrossRef

  47. E. Nicolato and E. Venardos, Option pricing in stochastic volatility models of the Ornstein-Uhlenbeck type, Math. Finance 13 (2003), 445-466.
    MathSciNet     CrossRef

  48. J. Pan, The jump-risk premia implicit in options: evidence from an integrated time-series study, J. Financ. Econ. 63 (2002), 3-50.
    CrossRef

  49. B. L. S. Prakasa Rao, Statistical inference for diffusion type processes, Arnold, London, 1999.
    MathSciNet    

  50. A. Rajchman, Zaostrzone prawo wielkich liczb, Mathesis Polska 6 (1932), 145-161.

  51. G. O. Roberts, O. Papaspiliopoulos and P. Dellaportas, Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes, J. R. Stat. Soc. Ser. B Stat. Methodol. 66 (2004), 369-393.
    MathSciNet     CrossRef

  52. T. Rheinländer and G. Steiger, The minimal entropy martingale measure for general Barndorff-Nielsen/Shephard models, Ann. Appl. Probab. 16, 2006, 1319-1351.
    MathSciNet     CrossRef

  53. W. Schoutens, Lévy processes in finance, Wiley, 2003. CrossRef

  54. E. Schaumburg, Estimation of Markov processes with Lévy type generators, working paper, 2005.

  55. N. Shephard, editor, Stochastic volatility: selected readings, Oxford University Press, 2005.

  56. K. J. Singleton, Estimation of affine asset pricing models using the empirical characteristic function, J. Econometrics 102 (2001), 111-141.
    MathSciNet     CrossRef

  57. M. Sørensen, Statistical inference for discretely observed diffusion, Lectures at Berliner Graduiertenkolleg 'Stochastische Prozesse und Probabilistische Analysis', 1997.

  58. M. Sørensen, On asymptotics of estimating functions, Braz. J. Probab. Stat. 13 (1999), 111-136.
    MathSciNet    

  59. H. Sørensen, Inference for diffusion processes and stochastic volatility models, PhD thesis, University of Copenhagen, 2000.

  60. M. Sørensen, Estimating functions for discretely observed diffusions: a review, in: Selected Proceedings of the Symposium on estimating functions (Athens, GA, 1996), Inst. Math. Statist., Hayward, 1997, 305-325.
    MathSciNet     CrossRef

  61. E. M. Stein and J. C. Stein, Stock price distributions with stochastic volatility: an analytic approach, Rev. Financ. Stud. 4 (1991), 727-752.
    CrossRef

  62. A. N. Shiryaev and V. G. Spokoiny, Statistical experiments and decisions. Asymptotic theory, World Scientific Publishing Co. Inc., River Edge, 2000.
    MathSciNet     CrossRef

  63. W. F. Stout, Almost sure convergence, Academic Press, New York-London, 1974.
    MathSciNet    

  64. E. ter Horst, A Lévy generalization of compound Poisson processes in finance: theory and application (Chapter 3), PhD thesis, Duke University, 2003.
    MathSciNet     Thesis

  65. V. Todorov, Estimation of continuous-time stochastic volatility models with jumps using high-frequency data, J. Econometrics 148 (2009), 131-148.
    MathSciNet     CrossRef

  66. V. Todorov, Econometric analysis of jump-driven stochastic volatility models, J. Econometrics 160 (2011), 12-21.
    MathSciNet     CrossRef

  67. E. Venardos, Derivatives pricing and Ornstein-Uhlenbeck type stochastic volatility, Dissertation, University of Oxford, 2001.

Glasnik Matematicki Home Page