Glasnik Matematicki, Vol. 48, No. 1 (2013), 185-210.
ASYMPTOTIC ANALYSIS AND EXPLICIT ESTIMATION OF A CLASS OF STOCHASTIC
VOLATILITY MODELS WITH JUMPS USING THE MARTINGALE ESTIMATING FUNCTION
APPROACH
Friedrich Hubalek and Petra Posedel
Vienna University of Technology, Financial and Actuarial Mathematics,
Wiedner Hauptstraße 8 / 105-1, A-1040 Vienna, Austria
e-mail: fhubalek@fam.tuwien.ac.at
Zagreb School of Economics and Management, Jordanovac 100, 10000 Zagreb, Croatia
e-mail: pposedel@zsem.hr
Abstract. We provide and analyze explicit estimators for a class of
discretely observed continuous-time stochastic volatility models
with jumps. In particular we consider the class of non-Gaussian
Ornstein-Uhlenbeck based models, as introduced by
Barndorff-Nielsen and Shephard.
We develop in detail the martingale estimating function approach
for this kind of processes, which are bivariate Markov processes,
that are not diffusions, but admit jumps. We assume that the
bivariate process is observed on a discrete grid of fixed width,
and the observation horizon tends to infinity.
We prove rigorously consistency and asymptotic normality based on
the single assumption that all moments of the stationary
distribution of the variance process are finite, and give explicit
expressions for the asymptotic covariance matrix.
As an illustration we provide a simulation study for daily
increments, but the method applies unchanged for any time-scale,
including high-frequency observations, without introducing any
discretization error.
2010 Mathematics Subject Classification.
60G51, 62F12, 62M05.
Key words and phrases. Martingale estimating functions, stochastic
volatility models with jumps, consistency and
asymptotic normality.
Full text (PDF) (free access)
DOI: 10.3336/gm.48.1.15
References:
-
Y. Aït-Sahalia,
Maximum likelihood estimation of discretely sampled diffusions: a
closed-form approximation approach,
Econometrica 70 (2002), 223-262.
MathSciNet
CrossRef
-
T. G. Andersen and N. Shephard,
Stochastic volatility: origins and overview, in: Handbook of Financial Time Series, Springer-Verlag, 2009, 233-254.
CrossRef
-
Y. Aït-Sahalia and J. Jacob,
Volatility estimators for discretely sampled Lévy processes,
Ann. Statist. 35 (2007), 355-392.
MathSciNet
CrossRef
-
Y. Aït-Sahalia and J. Jacod,
Estimating the degree of activity of jumps in high frequency data,
Ann. Statist. 37 (2009), 2202-2244.
MathSciNet
CrossRef
-
D. Bates,
Jumps and stochastic volatility: exchange rate processes implicit in
Deutsche Mark options,
Rev. Financ. Stud. 9 (1996), 69-107.
CrossRef
-
D. S. Bates,
Post-'87 crash fears in the s&p 500 futures option market,
J. Econometrics 94 (2000), 181-238.
MathSciNet
CrossRef
-
F. E. Benth and M. Groth.
The minimal entropy martingale measure and numerical option pricing
for the Barndorff-Nielsen-Shephard stochastic volatility model,
Stoch. Anal. Appl. 27 (2009), 875-896.
MathSciNet
CrossRef
-
F. E. Benth and K. H. Karlsen,
A PDE representation of the density of the minimal entropy
martingale measure in stochastic volatility markets,
Stochastics 77 (2005), 109-137.
MathSciNet
CrossRef
-
F. E. Benth, K. H. Karlsen and K. Reikvam,
Merton's portfolio optimization problem in a Black and Scholes
market with non-Gaussian stochastic volatility of Ornstein-Uhlenbeck
type,
Math. Finance 13 (2003), 215-244.
MathSciNet
CrossRef
-
F. E. Benth and T. Meyer-Brandis,
The density process of the minimal entropy martingale measure in a
stochastic volatility model with jumps,
Finance Stoch. 9 (2005), 563-575.
MathSciNet
CrossRef
-
O. E. Barndorff-Nielsen, S. E. Graversen, J. Jacod, M. Podolskij and
N. Shephard,
A central limit theorem for realised power and bipower variations of
continuous semimartingales,
in: From stochastic calculus to mathematical finance, Springer, Berlin, 2006, 33-68.
MathSciNet
CrossRef
-
O. E. Barndorff-Nielsen, E. Nicolato and N. Shephard,
Some recent developments in stochastic volatility modelling,
Quant. Finance 2 (2002), 11-23.
MathSciNet
CrossRef
-
O. E. Barndorff-Nielsen and N. Shephard,
Non-Gaussian Ornstein-Uhlenbeck-based models and some of their
uses in financial economics,
J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001), 167-241.
MathSciNet
CrossRef
-
O. E. Barndorff-Nielsen, N. Shephard and M. Winkel,
Limit theorems for multipower variation in the presence of jumps,
Stochastic Process. Appl. 116 (2006), 796-806.
MathSciNet
CrossRef
-
B. M. Bibby and M. Sørensen,
Martingale estimation functions for discretely observed diffusion
processes, Bernoulli 1 (1995), 17-39.
MathSciNet
CrossRef
-
B. Jesper Christensen and P. Posedel,
The risk-return tradeoff and leverage effect in a stochastic
volatility-in-mean model,
CREATES research paper 2010-50, 2010.
-
Y. S. Chow and H. Teicher,
Probability theory,
Springer-Verlag, New York, 1997.
MathSciNet
CrossRef
-
R. Cont and P. Tankov,
Financial modelling with jump processes,
Chapman & Hall/CRC, Boca Raton, FL, 2004.
MathSciNet
-
D. Duffie, D. Filipović and W. Schachermayer,
Affine processes and applications in finance,
Ann. Appl. Probab. 13 (2003), 984-1053.
MathSciNet
CrossRef
-
D. Duffie, J. Pan and K. Singleton,
Transform analysis and asset pricing for affine jump-diffusions,
Econometrica 68 (2000), 1343-1376.
MathSciNet
CrossRef
-
S. Frühwirth-Schnatter and L. Sögner,
Bayesian estimation of stochastic volatility models based on OU
processes with marginal Gamma law,
Ann. Inst. Statist. Math. 61 (2009), 159-179.
MathSciNet
CrossRef
-
J. E. Griffin and M. F. J. Steel,
Inference with non-Gaussian Ornstein-Uhlenbeck processes for
stochastic volatility,
J. Econometrics 134 (2006), 605-644.
MathSciNet
CrossRef
-
S. L. Heston,
A closed-form solution for options with stochastic volatility with
applications to bond and currency options,
Rev. Fin. Studies 6 (1993), 327-343.
CrossRef
-
F. Hubalek and P. Posedel,
Asymptotic analysis for a simple explicit estimator in
Barndorff-Nielsen and Shephard stochastic volatility models,
Thiele Research Report No.5, 2007.
-
F. Hubalek and P. Posedel,
Asymptotic analysis for an optimal estimating function for
Barndorff-Nielsen-Shephard stochastic volatility models,
work in progress, 2009.
-
F. Hubalek and P. Posedel,
Joint analysis and estimation of stock prices and trading volume in
Barndorff-Nielsen and Shephard stochastic volatility models,
Quant. Finance 11 (2011), 917-932.
MathSciNet
CrossRef
-
J. Hull and A. White,
The pricing of options on assets with stochastic volatilities,
J. Finance 42 (1987), 281-300.
CrossRef
-
M. Jacobsen,
Optimality and small Δ-optimality of martingale estimating
functions,
Bernoulli 8 (2002), 643-668.
MathSciNet
-
J. Jacod,
Asymptotic properties of realized power variations and related
functionals of semimartingales,
Stochastic Process. Appl. 118 (2008), 517-559.
MathSciNet
CrossRef
-
J. Jacod, C. Klüppelberg and M. Gernot,
Functional relationships between price and volatility jumps and its
consequences for discretely observed data,
preprint, TU Münhen, 2012.
-
J. Jacod and A. N. Shiryaev,
Limit theorems for stochastic processes,
Springer-Verlag, Berlin, second edition, 2003.
MathSciNet
CrossRef
-
J. Jacod and V. Todorov,
Do price and volatility jump together?
Ann. Appl. Probab. 20 (2010), 1425-1469.
MathSciNet
CrossRef
-
S. Johansen,
The product limit estimator as maximum likelihood estimator,
Scand. J. Statist. 5 (1978), 195-199.
MathSciNet
-
M. Kessler,
Simple and explicit estimating functions for a discretely observed
diffusion process,
Scand. J. Statist. 27 (2000), 65-82.
MathSciNet
CrossRef
-
J. Kallsen, J. Muhle-Karbe and M. Voß,
Pricing options on variance in affine stochastic volatility models,
Math. Finance 21 (2011), 627-641.
MathSciNet
CrossRef
-
M. Kessler and M. Sørensen,
Estimating equations based on eigenfunctions for a discretely
observed diffusion process,
Bernoulli 5 (1999), 299-314.
MathSciNet
CrossRef
-
J. Kiefer and J. Wolfowitz,
Consistency of the maximum likelihood estimator in the presence of
infinitely many incidental parameters,
Ann. Math. Statist. 27 (1956), 887-906.
MathSciNet
CrossRef
-
Y. A. Kutoyants,
Statistical inference for ergodic diffusion processes,
Springer-Verlag, London, 2004.
MathSciNet
CrossRef
-
E. L. Lehmann,
Elements of large-sample theory,
Springer-Verlag, New York, 1999.
MathSciNet
CrossRef
-
A. L. Lewis,
Option valuation under stochastic volatility,
Finance Press, Newport Beach, 2000.
MathSciNet
-
C. Lindberg,
Portfolio optimization and statistics in stochastic volatility
markets,
PhD dissertation, Chalmers University of Technology, 2005.
MathSciNet
CrossRef
-
C. Lindberg,
News-generated dependence and optimal portfolios for n stocks in a
market of Barndorff-Nielsen and Shephard type,
Math. Finance 16 (2006), 549-568.
MathSciNet
CrossRef
-
P. McCullagh,
Tensor methods in statistics,
Chapman & Hall, London, 1987.
MathSciNet
-
J. Muhle-Karbe, O. Pfaffel and R. Stelzer,
Option pricing in multivariate stochastic volatility models of OU
type, to appear in SIAM J. Financial Math.,
arXiv:1001.3223v1, 2010.
-
R. M. Mininni and S. Romanelli,
Martingale estimating functions for Feller diffusion processes
generated by degenerate elliptic operators,
J. Concr. Appl. Math. 1 (2003), 191-216.
MathSciNet
-
B. Nielsen and N. Shephard,
Likelihood analysis of a first-order autoregressive model with
exponential innovations,
J. Time Ser. Anal. 24 (2003), 337-344.
MathSciNet
CrossRef
-
E. Nicolato and E. Venardos,
Option pricing in stochastic volatility models of the
Ornstein-Uhlenbeck type,
Math. Finance 13 (2003), 445-466.
MathSciNet
CrossRef
-
J. Pan,
The jump-risk premia implicit in options: evidence from an integrated
time-series study,
J. Financ. Econ. 63 (2002), 3-50.
CrossRef
-
B. L. S. Prakasa Rao,
Statistical inference for diffusion type processes,
Arnold, London, 1999.
MathSciNet
-
A. Rajchman,
Zaostrzone prawo wielkich liczb,
Mathesis Polska 6 (1932), 145-161.
-
G. O. Roberts, O. Papaspiliopoulos and P. Dellaportas,
Bayesian inference for non-Gaussian Ornstein-Uhlenbeck
stochastic volatility processes,
J. R. Stat. Soc. Ser. B Stat. Methodol. 66 (2004), 369-393.
MathSciNet
CrossRef
-
T. Rheinländer and G. Steiger,
The minimal entropy martingale measure for general
Barndorff-Nielsen/Shephard models,
Ann. Appl. Probab. 16, 2006, 1319-1351.
MathSciNet
CrossRef
-
W. Schoutens,
Lévy processes in finance,
Wiley, 2003.
CrossRef
-
E. Schaumburg,
Estimation of Markov processes with Lévy type generators,
working paper, 2005.
-
N. Shephard, editor,
Stochastic volatility: selected readings,
Oxford University Press, 2005.
-
K. J. Singleton,
Estimation of affine asset pricing models using the empirical
characteristic function,
J. Econometrics 102 (2001), 111-141.
MathSciNet
CrossRef
-
M. Sørensen,
Statistical inference for discretely observed diffusion,
Lectures at Berliner Graduiertenkolleg 'Stochastische Prozesse und
Probabilistische Analysis', 1997.
-
M. Sørensen,
On asymptotics of estimating functions,
Braz. J. Probab. Stat. 13 (1999), 111-136.
MathSciNet
-
H. Sørensen,
Inference for diffusion processes and stochastic volatility
models,
PhD thesis, University of Copenhagen, 2000.
-
M. Sørensen,
Estimating functions for discretely observed diffusions: a review,
in: Selected Proceedings of the Symposium on estimating functions
(Athens, GA, 1996), Inst. Math. Statist., Hayward, 1997, 305-325.
MathSciNet
CrossRef
-
E. M. Stein and J. C. Stein,
Stock price distributions with stochastic volatility: an analytic
approach,
Rev. Financ. Stud. 4 (1991), 727-752.
CrossRef
-
A. N. Shiryaev and V. G. Spokoiny,
Statistical experiments and decisions. Asymptotic theory,
World Scientific Publishing Co. Inc., River Edge, 2000.
MathSciNet
CrossRef
-
W. F. Stout,
Almost sure convergence,
Academic Press, New York-London, 1974.
MathSciNet
-
E. ter Horst,
A Lévy generalization of compound Poisson processes in
finance: theory and application (Chapter 3),
PhD thesis, Duke University, 2003.
MathSciNet
Thesis
-
V. Todorov,
Estimation of continuous-time stochastic volatility models with jumps
using high-frequency data,
J. Econometrics 148 (2009), 131-148.
MathSciNet
CrossRef
-
V. Todorov,
Econometric analysis of jump-driven stochastic volatility models,
J. Econometrics 160 (2011), 12-21.
MathSciNet
CrossRef
-
E. Venardos,
Derivatives pricing and Ornstein-Uhlenbeck type stochastic
volatility,
Dissertation, University of Oxford, 2001.
Glasnik Matematicki Home Page