Glasnik Matematicki, Vol. 47, No. 1 (2012), 61-79.

SOME APPLICATIONS OF THE ABC-CONJECTURE TO THE DIOPHANTINE EQUATION QYM=F(X)

Ivica Gusić

Faculty of Chemical Engin. and Techn., University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
e-mail: igusic@fkit.hr


Abstract.   Assume that the abc-conjecture is true. Let f be a polynomial over Q of degree n≥ 2 and let m≥ 2 be an integer such that the curve ym=f(x) has genus ≥ 2. A. Granville in [3] proved that there is a set of exceptional pairs (m,n) such that if (m,n) is not exceptional, then the equation dym=f(x) has only trivial rational solutions, for almost all m-free integers d. We prove that the result can be partially extended on the set of exceptional pairs. For example, we prove that if f is completely reducible over Q and n ≠ 2, then the equation qym=f(x) has only trivial rational solutions, for all but finitely many prime numbers q.

2010 Mathematics Subject Classification.   11D45, 11D41.

Key words and phrases.   abc-conjecture, Diophantine equation.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.1.05


References:

  1. E. Bombieri, W. M. Schmidt, On Thue's equation, Invent. Math. 88 (1987), 69-81.
    MathSciNet     CrossRef

  2. S. R. Finch, Mathematical constants, Cambridge University Press, Cambridge, 2003.
    MathSciNet    

  3. A. Granville, Rational and integral points on quadratic twists of a given hyperelliptic curve, Int. Math. Res. Not. IMRN 2007 Art. ID 027, 24pp.
    MathSciNet    

  4. I. Gusić, A characterization of linear polynomials, J. Number Theory 115 (2005), 343-347.
    MathSciNet     CrossRef

  5. I. Gusić, A remark on Diophantine equation f(x)=g(y), Glas. Mat. Ser. III 46(66) (2011), 333-338.
    MathSciNet     CrossRef

  6. G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, sixth edition, Oxford University Press, Oxford, 2008.
    MathSciNet    

  7. M. Hindry, J. H. Silverman, Diophantine geometry, an introduction, GTM 201, Springer, 2000.
    MathSciNet    

  8. M. N. Huxley, Exponential sums and lattice points III., Proc. London Math. Soc. 87 (2003), 591-609.
    MathSciNet     CrossRef

  9. J. C. Koo, On holomorphic differentials of some algebraic function field of one variable over C, Bull. Austral. Math. Soc. 43 (1991), 399-405.
    MathSciNet     CrossRef

  10. B. Mazur, K. Rubin, Ranks of twists of elliptic curves and Hilberts tenth problem, Invent. Math. 181 (2010), 541-575.
    MathSciNet     CrossRef

  11. J. Nakagawa, K. Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1988), 20-24.
    MathSciNet     CrossRef

  12. K. Ono, C. Skinner, Non-vanishing of quadratic twists of modular L-functions, Invent. Math. 134 (1998), 651-660.
    MathSciNet     CrossRef

  13. A. Pethơ, V. Ziegler, Arithmetic progressions on Pell equations, J. Number Theory 128 (2008), 1389-1409.
    MathSciNet     CrossRef

  14. A. Schinzel, Polynomials with special regard to reducibility, Cambridge University Press, Cambridge, 2000.
    MathSciNet     CrossRef

  15. J. P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc. 40 (2003), 429-440.
    MathSciNet     CrossRef

  16. J. H. Silverman, The arithmetic of elliptic curves, GTM 106, Springer, Berlin, 1986.
    MathSciNet    

  17. H. M. Stark, On the asymptotic density of the k-free integers, Proc. Amer. Math. Soc. 17 (1966), 1211-1214.
    MathSciNet     CrossRef

  18. C. L. Stewart, On the number of solutions of polynomial congruences and Thue equation, J. Amer. Math. Soc. 4 (1991), 793-835.
    MathSciNet     CrossRef

  19. M. Stoll, On the arithmetic of the curves y2 = xl + A and their Jacobians, J. Reine Angew. Math. 501 (1998), 171-189.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page