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THE INVERSE OF A QUANTUM BILINEAR FORM OF
THE ORIENTED BRAID ARRANGEMENT

MILENA SOSI¢
University of Rijeka, Croatia

ABSTRACT. We follow here the results of Varchenko, who assigned to
each weighted arrangement A of hyperplanes in n-dimensional real space
a bilinear form, which he called the quantum bilinear form of the arrange-
ment A. We briefly explain the quantum bilinear form of the oriented braid
arrangement in n-dimensional real space. The main concern of this paper
is to compute the inverse of the matrix of the quantum bilinear form of the
oriented braid arrangement in R™, n > 2. To solve this problem, in [5] the
authors used some special matrices and their factorizations in terms of sim-
pler matrices. So, to simplify some matrix calculations, we first introduce
a twisted group algebra A(Sy) of the symmetric group Sy, with coefficients
in the polynomial ring in n? commutative variables and then use a natural
representation of some elements of the algebra A(Sy) on the generic weight
subspaces of the multiparametric quon algebra B, which immediately gives
the corresponding matrices of the quantum bilinear form.

1. INTRODUCTION

We first briefly explain the basic concepts of an arrangement and of the
oriented braid arrangement in R™, n > 2. An arrangement is a finite set of
hyperplanes in R™, n > 1. Connected components of the complement of the
union of all hyperplanes of A are called regions (chambers or domains). An
edge of A is any nonempty intersection of a subset of A, including the empty
intersection, where the space R™ can be regarded as the intersection of the
empty set of hyperplanes. We denote by L4 the intersection poset consisting
of all edges of A, where L4 is partially ordered by reverse inclusion. We denote
by Ly = L4\R" the intersection poset except R™. Let Rq = Zlay | H € A
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be the commutative polynomial ring in variables ay, H € A. First we assign
a weight ag € R4 to each hyperplane H of A, and then we define the weight
of an edge L € Iy as the product of the weights of all hyperplanes containing
L. Note that in particular the weight of the space R" is equal to one, which
is not considered here. Then a quantum bilinear form B associated to A is
the bilinear form on the module M4 of all R 4-linear combinations of regions

of A defined by
(1.1) B(P,Q) =[] an

where the product runs over all hyperplanes H € A separating regions P and
Q. The matrix B with the entries (1.1) is a symmetric square matrix which
Varchenko called the quantum bilinear form of the arrangement A and proved
that the determinant of B is given by the formula

(1.2) det B= [J (1 —a3)'®

LeL,

where ay, is the weight of the edge L € I/; and I(L) is the multiplicity of the
edge L, see [15] for more details.

We now consider the braid arrangement in a real affine space R”, n > 2,
denoted by B,,, consisting of all diagonal hyperplanes

Hij ={(z1,22,...,2n) €ER" |z; =25}, 1<i<j<n
Moreover, if we introduce the orientation of the braid arrangement, we obtain

the oriented braid arrangement in a real affine space R"™, n > 2, denoted by
B, consisting of open half-spaces

H;; ={(z1,22,...,2n) €R" | & > x;},

H ={(z1,22,...,2,) € R" [ 7; <75}
for all 1 <i < j < n. Then to every open half-space H :]r we associate a weight
qij = a(H;;) and similarly to every open half-space H,; we associate a weight
qji = a(Hi;) in the polynomial ring in variables g;;, ¢;;. Therefore, q;; # g;; for
all 1 <i < j <n. In agreement with the fact that the braid arrangement B,
is the reflection arrangement of the symmetric group S, see [6, 2], the regions
of B,, and also of B} are directly connected to S, so that each region P, is
in one-to-one correspondence with the corresponding permutation o € S,,, as
follows

P, ={(z1,22,...,2,) ER" | 25, < Ty, <+ < Ty, }

Let us denote by B the quantum bilinear form associated to the oriented

braid arrangement B in a real affine space R™, n > 2. Then the entries of
B are the monomials of the form

(1.3) B (Py, Py) = || O
(a,b)el(r—1o)



THE INVERSE OF THE MATRIX B, 3

where Gy(1)0(a) 7# Go(a)o(s) and I(t7'0) = {(a,b) | a < b, 7 to(a) > 77 0(b)}
denotes the set of inversions of 771a, c.f. [12, Proposition 3.2 and Proposi-
tion 3.5]. Then the matrix B} with the entries (1.3) is non-symmetric. We call
the matrix B, the quantum bilinear form B} of the oriented braid arrange-
ment Bj,. In the following we will explain the determination of the inverse of
the matrix B,:. Before that we recall that the formula for the determinant of
the quantum bilinear form B] of the oriented braid arrangement B} is given
by

(1.4) det By = [ (1—op)tm2tmmst)

TE(Q;m)

2<m<n
(c.f. [12, Theorem 3.8]). Here (Q;m) = {T' C Q | Card T = m} denotes the
set of all subsets T of the set @ = {l1,ls,...,l,} of cardinality n such that
the cardinality of T' is equal to m, and

(1.5) or = H 0ij = H ij>
{i,3}CT iFjeT

where 045 := ¢;;q;; for i < j and o0 =1, which is consistent with ¢; = 1.
Compare (1.4) with [5, Theorem 1.9.2], where the matrix B} is denoted by
A™)and see also [11], where the author uses the notation A for this matrix.
The quantum bilinear form of the braid arrangement and the formula for its
determinant can be found in [1]. A decomposition of the matrix B}, by matrix-
level factorizations are given in [5]. Here we are motivated to simplify these
algebraic manipulations. By labeling the regions of the braid arrangements by
permutations from the symmetric group S, (i.e., the set of all permutations
of the first n natural numbers), we can simplify these algebraic manipula-
tions by replacing these matrix-level factorizations by more appropriate and
algebraically much simpler algebraic expressions in a twisted group algebra
A(Sy,) of the symmetric group S,, with coefficients in the commutative poly-
nomial ring R, = C[X,p | 1 < a,b < n] with 1 € R,, as unit element of R,,
where we studied the nontrivial factorization of certain canonically defined
elements [13]. Furthermore, by using a natural representation of some factor-
izations of these elements of A(S),) on the generic weight subspaces Bg of the
multiparametric quon algebra B, which is equipped with a multiparametric
g-differential structure, we then obtain the corresponding factorizations of the
matrix (B}) and hence of the matrix (B})~!, c.f. [10, 11].

n

2. A TWISTED GROUP ALGEBRA OF THE SYMMETRIC GROUP

In [13] we obtained a factorization of certain canonically defined elements
in the algebra A(S,,) first as a product of previously defined simpler elements
and then as a product of still simpler elements. Now we briefly recall the
algebra A(S,) and some of its canonically defined elements. We use the
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standard notation S,, for the symmetric group on n letters, i.e., the set of all
permutations of the first n natural numbers. Let R,, = C[X,p | 1 < a,b < n]
be the polynomial ring of all polynomials in n? variables X,; over the set of
complex numbers. Then we define a twisted group algebra of the symmetric
group S,, with coefficients in the commutative polynomial ring R,,, denoted by
A(Sy,) = Ry, x C[S,], where x denotes the semidirect product. The elements
of A(S,,) are the linear combinations Y gs:e5,, Pi 9i» with p; belonging to R,,.
Consider the action of S,, on R,, given by g.p(.., Xas,..) = p(--; Xg(a) g(v)» -+)
for each g € S,, and each p € R,,, the multiplication in A(S,,) is then given
by

(26) (pl("aXalh“)gl) : (p2(“aXCd7")92)
= pl(ﬂaXabv ) 'pQ("7Xg1(c) g1(d)» ")9192

where g192 is the product (i.e., the composition g; o g2) of g; and g5 in S,.
Note that (2.6) is the consequence of the following two kinds of basic relations

(2.7) Xab Xeca=Xca Xav,  9-Xab = Xg(a)gv) 9-

The algebra A(S,,) is associative but not commutative.
To each g € S,, we first assign a unique element ¢g* in the algebra A(S,,) by

(2.8) g = H Xav g
(a;b)el(g™h)

where I(g7!) ={(a,b) |1 <a<b<n, g '(a)>g '(b)} denotes the set of
inversions of the permutation g=! € S,, (i.e., the inverse of g € S,,), and we
then consider the following canonical element of the algebra A(S,,) as follows

(2.9) a=> g

gESn

c.f. [13]. Of particular interest is its factorization into the product of the
simpler elements of the algebra A(S,). So before we perform the decompo-
sition of o, € A(S,,) and also of g* € A(S,,) for all g € S,,, we first consider
the cyclic permutation ¢, € S, which maps btob—1tob—2 --- to a to
b, and then its inverse ¢ , € S,, which maps a toa+1toa+2--- to b to
a for all 1 < a < b <n, where in both cyclic permutations all 1 <k <a—1
and b+ 1 <k <n are fixed. Thus in the algebra A(S,) the corresponding
elements are given by

* *
ab — H Xib ta,ba tb,a = H Xaj 2Sb,a
a<i<b—1 a+1<5<b

1§a§b§n,Wheret,*cyk:idforeach1§k§n.

Then a permutation g € S,, can be decomposed into cycles from the left as
follows g = tr, .n - thy_1n—1-"th;j " thy2 - thy,1, Where kj > j (see [13, Sec-
tion 3] and compare with [5], where g € S,, is decomposed into cycles from
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the right), so that the corresponding element of the algebra A(S,) is given by
g* = tznan ’ tznflanfl T tZJv] T t2272 ’ t;::lvl.

Moreover, in the algebra A(S,,) we define the following element

(2.10) Br—ki1 =tnk ttn 1kt +thprr Ttk

for all 1 <k < n (cf. [13, Definition 3.2]), where t; , = id. Note that k =n
implies 37 = id, so for 1 <k <n — 1 we define the simpler elements v _,
and 6 _, ., as follows

(2.11) Vooppr = (id =t 1) - (id — 5y ) - (id =ty p,)
(2-12) Z—k+1 = (id - (tZ)Q tz,k+1) : (id - (t/t)2 t;—1,k+1)
e (id = (t5) thao ) - (id — (t5)%)

with (t7)% = X, k41 id, where ¢} :=t; , , and t; ., = id, see [13, Defi-
nition 3.5, Corollary 2.7, and Remark 2.6]). Here we have applied the notation

(2.13) X{a,b} = Xab . Xba

1 <a < b < n. In addition, we denote by

(2.14) Xp= ][] Xun
{a.b}CP

for each P C {1,2,...,n}. Considering Theorem 3.4 and Proposition 3.6 of
[13], we obtain that the canonical element (2.9) has the following nontrivial
factorization

(2.15) o =B Bi-- B
of simpler elements (2.10) over all 1 < k <n — 1, where each 3,2 <i<nis
given as a product

* * xy—1
(2.16) Bi =07 - (%)
in terms of even simpler elements ~; and J;, given by (2.11) and (2.12).

REMARK 2.1. We emphasize that the elements defined by (2.10), (2.11)

and (2.12) can be written as follows

Bi =thm—it1 Ttntn—ig1 Tt io it T it it

’Y;'k = (id - tZ,HH) : (id - t:zfl,nfiJrl) e (id - t:zfi+2,n7i+1)

87 = (id = (ty_i11)* trn—ir2) - (id = (b)) tr 1 isn)

e (id = (t_ip)” theit2n—i+s)  (id— (th_i+1)?)

for all 2 <4 < n. In particular, i = 1 implies 8] =t;, ,, = id. However, compa-
ring the corresponding right-hand sides of 3}, +{, 67, 2 < k <n with 3 _, .,
Yo _kt1r Om_pgp1> 1 <k <n—1 (each written in reverse order), we see that
(2.10), (2.11), (2.12) are better suited for further algebraic manipulations.
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Thus, from the application of (2.15) and (2.16) it follows directly that
ol € A(S,) has the following factorization

-
« -1
(2.17) ay, = H k1 (Tmors1)
1<k<n—1
so that its inverse is given by
w3\ —1 * * -1
(218) (an) = H 7n—k+1 : (57L—k’+1) .
1<k<n—1

Note that the product on the right-hand side of (2.17) is written from right to
left for all 1 < k < mn — 1. We reproduce here Proposition 3.10 of [13] because
it is so important for the further calculation of the inverse matrix of the
quantum bilinear form of the oriented braid arrangement. For simplicity,
we shall omit the second index n in Proposition 3.10 of [13] when written
as Proposition 2.2 bellow. Let Des(o) ={1<i<n—1]|0c(i)>0o(i+1)} be
the descent set of a permutation o € S,,.

PROPOSITION 2.2. For all 1 < k <n —1 the inverse of 5;_k+1 is given
by the following formula

(2.19) ( :—k+1)71 = (An—k+1)71 . Ez—k—kl

where

(2.20) Angin= [ (id= Xgerrr,my)
k+1<m<n

(2.21) €yl = Z H X1,y "9

gESk XS, ), i€Des(g™1)

We consider here that for each permutation g € S¥ x S,,_;, the corre-
sponding descent set of its inverse g=! € SF x S, is given by Des(g™!) =
{k+1<i<n—1|g7'(i) > g '(i+1)}. On the other hand, from the fact
that g* is given by (2.8), it follows that (2.21) can be written in the following
form

(2.22) = > II Xewen [T Xers

gESF XSy ), i€Des(g™1) (ab)el(g™1)

so it goes without saying that the corresponding set of inversions of g~! € S¥ x
Sn—i is given by I(¢g7") ={(a,b) |[k+1<a<b<n-—1,¢9 a)>g ()}
Note that for each 1 < k <n — 1, the factors X x11,...m} for k+1<m <n
on the right-hand side of (2.20) and also X x+1,..;} for i € Des(g~") on the
right-hand side of (2.21) are given by (2.14).
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3. A TWISTED REGULAR REPRESENTATION ON THE GENERIC WEIGHT
SUBSPACES Bg OF THE ALGEBRA B

In what follows we use a natural representation of the twisted group al-
gebra A(S,,) on the generic weight subspaces of the multiparametric quon
algebra B, so we first briefly recall the main notions of the algebra B. A
multiparametric quon algebra B is the free unital associative complex alge-
bra B = C (e, €iy,---,€iy) generated by N generators {e;}ien each of de-
gree one, equipped with a multiparametric g¢-differential structure given by
g-differential operators {0; };cn acting on B according to the twisted Leibniz
rule

(3.23) 8¢(6j$) = 51‘3'1‘ + qijejc‘?i(x)

where 0;(1) = 0 and 0;(e;) = d;;. The algebra B is graded by the total
degree, and more generally it is multigraded and has a finer decomposition
into multigraded weight subspaces

(3.24) B = spanc {ejl..‘jn =¢€j, €, | j1---Jn € @} ,

for each z € B, 4,j € N/, where each weight subspace By corresponds to a
multiset @ = {l; < --- <I,} of cardinality n. Here @ denotes the set of all
distinct permutations of () and hence dim Bg = Card Cj ‘We note that the al-
gebra B can be written as the following direct sum B = B2 @398, where 32»
denotes the (generic) subspace of B, spanned by all multilinear monomials,
and B9°¢ denotes the (degenerate) subspace of B spanned by all monomials
which are nonlinear in at least one variable. The weight subspace Bg corre-
sponding to the set Q = {l1,...,ln} (li #1;, 1 <i < j <n) is called generic,
otherwise it is called degenerate. In what follows we consider only the generic
weight subspaces B of the algebra B, so we give a special case of the action of
0; on a typical monomial ej, . ;. in the monomial basis of the generic weight
subspace Bg C B given by

(3.25) 95 (€j1.cjn) = Uiy g1y n.

1<k<n,j1...Jn € @, where _]/]\c denotes the omission of the corresponding
index jj (see Section 2 of [11] for more details). In this (generic) case, where
Card @ = n, it follows that dim By = Card @ =nl.

Before we define a representation o: A(S,) — End(Bg) (see (3.32)) of
the twisted group algebra A(S,) = R, x C[S,] on the generic weight sub-
space of the algebra B, we recall that R,, = C[X,4 | 1 < a,b < n] denotes the
polynomial ring with unit element 1 € Ry, and C[S,,] = {}_ g ¢o0 | ¢, € C}
denotes the usual group algebra in which multiplication is given by

(5 o) () 3 ot

oES, TES, o, TESy
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where o7 denotes the composition o o 7, i.e., the product of o and 7 in S,,. We
first consider a representation g; : R, — End(Bg) on the generators X, € Ry,
defined by

(326) Ql(Xab) = Qab
j1...jn € Q, where Q,, denotes a diagonal operator on Bg given by (c.f. [5],
p6)
(3.27) Qab €ji.ju = Bajs €ir.in-
With reference to the notation (2.13) and also (3.26), (3.27), we obtain that
01(X{apy) = Qapy, Where Qrap) = Qub - Qua, 1 <a <b<n is a diagonal
operator which can be written with the notation o}, ;, = 4;,;,4;,;., as follows
(328) Q{a7b} ejl-“jn = O—ja.jb ejl---jn'
Similarly, referring to the notation (2.14), for each subset P of the set of
cardinality n we obtain ¢1(Xp) = Qp, where Qp = H{a,b}gP Q{a,p} denotes
the corresponding diagonal operator given by
(3.29) Qreir =1 @i ir.ius

{a,b}CP

where we applied (3.28). We emphasize that Qp on the right-hand side of
(3.29) corresponds to 0, 5, if P={1,2,...,k} C{L,2,...,n}, which is also
consistent with (1.5). Therefore, we denote by

(3.30) Q1,20 8} €1 = Tjagaeein €t
where 0 5, 4 €51 = H Ojajy €jr..dn-
{a,b}C{1,2,....k}

If we define a linear operator gs: C[S,] — End(Bg) by
(331) QQ(g) ejlmjn = ejg,l(l),.,jg,l(n)

for each g € C[S,], then gy is a regular representation. Now if we define a
map ¢: A(S,) — End(Bg) on decomposable elements

(3.32) 0(pg) := 01(p) - 02(9)

for each p € R,, and g € C[S,,] and extended by additivity, then g is a repre-
sentation, see [10, Proposition 4.5], where it was shown that ¢ preserves the
basic relations (2.7) of multiplication in the algebra A(S,) given by (2.6). In
other words, from the application of (2.7), (3.26), (3.27) and (3.31) it follows
that
Q(Xab . Xcd) = Qab . ch = ch . Qab = Q(Xcd . Xab)
0(9-Xab) €515, = 0 (Xg(a) g(6) 9) €51 = Liadv €3,1 (1) y=1 ()

J1---Jn € @ In the generic case (i.e., when By is the generic weight subspace
of the algebra B) a representation g is called a twisted regular representation,



THE INVERSE OF THE MATRIX B, 9

so in what follows we consider only a twisted regular representation o. We
note that the trivial cases of a (twisted) representation ¢ are given by

o(l-g)ejjn = 1(1) - 02(9) €5 = 1€ 110y = Gyt y g1 (o

o(Xapid)ej, 5, = 01(Xap) - 02(id) €j,._j, = Qab €jy..jr = Ljujy €.~

PROPOSITION 3.1. Let p: A(S,) = End(Bg) be the twisted regular rep-
resentation on the generic weight subspace Bg of the algebra B. Then the
multiplication of the operators o (p1(.., Xap,--) g1) and o (p2(.., Xca,..) g2) of
End(Bg) is given by the following formula

(3.33)
0(p1(-s Xav, ) 1) - 0 (P2 (s Xed, ) G2) €4y j.,
= pl("’ Q7‘g271g171(a)jg271g;1(b)7 ) : p2("v nggl(c)jggl(d)’ ) ejgglgl—l(lyujgz—lgl—l(n)'

PROOF. Applying the formula (3.32) to the multiplication of any two
elements pi (.., Xap,..) g1 and pa(.., Xcq,-.) g2 of A(S,), given by (2.6), yields

o((P1(-s Xab, ) 91) - (P2 Xea, ) 92)) €514

=0 (P1(-s Xaps-) - P2(cs Xy, (¢) ga(d)s ) 9192) €jr.jm

=01 (P1(-s Xap, ) - P2(cs Xy (0) g () --)) - 02 (9192) €5y jin
=p1(-, Qab, ) - P2(-, Ry (¢) g1 (d)» ) €,

ot eyt eT )

:pl("7qj92—19 >7")'p2("7qj92—1(c)j92—1 )ej

Tr@layter o @ e tar iy e et )

On the other hand, it holds that

o((P1(-s Xav,-) g1) - (p2(--, Xed, ) 92)) €41
=0(Pi1(., Xap, ) g1) - 0 (p2(-r, Xcd, --) 92) 5y e

so the formula (3.33) follows directly. 0

LEMMA 3.2. The twisted regular representation o: A(S,) — End(Bg) ap-

plied to the element g* = H Xab g of the algebra A(S,,) is given by
(a,)€I(g™1)
(334) % (g*) ejlmjn = H quja ejg,l(l),,.jg,l(n)
(a,0)el(g)

where I(g) = {(a,b) | 1 <a<b<n,gla)> g}

PRrROOF. If we first rewrite the element g* € A(S,,) into the following form
9" = Il(ar p)er(g-1) Xarvr g, then by applying (3.32) with (3.26) and (3.31) we
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obtain

o@Veg= Il oEeva= T o(Xew)- 02(9)es.
(a',b')eI(g™1) (a’,b)€I(g™1)

- H Qarty €5,11y3, 1)

(a’,b")€l(g™h)

= H Dig—1(arydg=10y CIg=101)Tg=1(n)
(a’,b")€I(g—1)

- H Badv Cig=1(1)~Fg=1(m) = H Bjvda Cig=101)-dg=1(m)
(b,a)€I(g) (a;b)€I(g)

with a = g71(a’), b= g~ (). Note that (a’,b') € I(g~1) implies a’ < b’ and
g 1(a") > g (V). If we assume that a = g~'(a’), b= g~ *(¥'), then it fol-
lows directly a > b and g(a) < g(b), where g(a) = o', g(b) = V', which implies
(b,a) € I(g). O

REMARK 3.3. By considering Lemma 3.2 and its proof, we obtain that
the operator g (¢g*) € End(Bg) corresponding to the element g* € A(S,) of
the form ¢* = H(a’b)el(g,l) X.p g can be written in two ways: first, as given
in (3.34), and second, as follows

(3.35) 0(9) €jr..in = H Big=1(@dg=10) “o=101)Tg=1 ()
(a,)el(g™h)

which follows directly from the application of (3.32). We emphasize that the
notation (3.34) of o (g*) € End(Bg) is more appropriate here, but (3.35) is
also used in what follows because it fits better with the other notations, see
Proposition 3.5.

Moreover, by applying (3.34) we obtain
* —_— - .. . .
(3'36) Y (tb7a) €1 dafati-Joodin — H jvjs €jr.-dvja--Go—1.--dn
a<i<b—1
= DvjaDiviat1 " Dvjv—1 €j1--dvjadati---Jo—1---Jn

1 <a <b<n and in the special case
(3.37) 0((t2)*) €51 jn = Cuduin €.
1<a<n-—1.

REMARK 3.4. We now write the elements 37 ;1,75 411,05 i1 € A(Sn)
given by (2.10), (2.11) and (2.12) as follows:

+«—

-
Br—k1 = Z bk = Z b e + 1,

k<m<n k4+1<m<n
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“— —
. . 2
’Yr*sz+1 = H (ld* ::n,k) ) 5:171%1 = H (ld* (tk) :(n7k+1>
k+1<m<n k+1<m<n

for each 1 <k <n—1. We note that the sum and products are written
from right to left. Let us introduce the abbreviation j := ji...j, € @ Then
it is easy to verify that by applying (3.32) and (3.26), (3.31) as well as
(3.36), (3.37), the corresponding operators o (B ;. 1), 0 (Vh_p41), (05 _1i1)
of End(Bg), 1 < k <n —1 are given by

—

oBrorp)es= D olthi)e;

k<m<n

-
= E Qi je Limir+1 """ Limim—1 €1 Jmlirdrs1--Jm—1--dn
k<m<n

—

0 (Vn—k+1) € = H 0 (id - t:m) €5
k+1<m<n
“—

of k1) € = H 0 (id - (tZ)Q :n,k+1) €j
k+1<m<n

foreach 1<k<n-—-1,j=4j1...Jn € @ Recall that for m = k we obtain
that o(ty,)e; =o(1- id) e; = ej, which means that in this case the prod-
uct qj,.ix " Qjmjm i i equal to one. Similarly, for m =k +1 we obtain
that o (id — (t;)* ti 1 1) €5 = 0 (id — (t7)?) €j = 0j,j.,, €. We note that
the products in ¢ (v;_, ) and o (8%_,, ;) should be computed below using
the formula (3.33), which are not considered here because of the complexity
of their notations, see Proposition 3.1.

Considering first that o (¢*) € End(Bg) is given by (3.35), see Remark 3.3,
and then the canonical element o of the algebra A(S,), given by (2.9), it
follows that the operator o (aj,) € End(Bg) can be written as follows

(3.38) olan)e; = Z H Big=1(aydg=1) Cg=101)dg=1(m)"
g€Sn (ab)€l(g™")

From the factorization of o € A(S,) given by (2.15) with (2.16), we also
obtain directly that o (o) has the following factorization

—

(839) ola)es= JI e (<o) o) 08 e)

1<k<n—1
with

(3.40) 4 (ﬂ:—k-ﬁ-l) € =20 (5;—k+1) -0 ((’Y:L—k+1)71) €j
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1 <k <n—1. Thus, we obtain

(341)  o(@p) ey = T emorin) 0Bk e
1<k<n—1

see also (2.18). Thus, to determine the operator o ((a})~!), the operators
o (v _g H)’l) are not involved in it, so they are not computed here. We
recall that the operators o (7;;_;,1), 1 <k <n—1 are given in Remark 3.4.
On the other hand, the computation of the operators ¢ ((6;_;,)") for all
1<k<n-—11is of special interest, see (2.19). If we consider previously
the identity (2.20) and also (2.14), then for each 1 <k <n —1 the element
Ay _g+1 of the algebra A(S,) has the form of the product of the invertible
elements (id = Xk k41, m}) of the algebra A(S,,) for all k+1 <m <mn, so
that A, _gy1 is also invertible for all 1 <k <n —1, see also [13, Proposi-
tion 3.10]. In this way the identity (2.19) can be written in accordance with
(2.20) and (2.22) in the following form

(G ) = (A5 i) en i

Z H Xk kt1,i) H Xab g

geSk xS, i€Des(g™1) (a,b)eI(g™1)
H (id = X{kkt1,....m})
k+1<m<n

H Xk kt1,...,i1 9

i€Des(g~1)
-y g — I Xag
gESF XS H (1_X{k,k+1,m,m})2d (a,b)eI(g—1)
k+1<m<n

- ¥ i€Desly ) id- [ Xwg
gESF XSy i H (1 - X{k7k+1,~-7m}) (a,b)€I(g—1)
k+1<m<n
where by applying the formula (2.6) for multiplication in the algebra A(S,,)
we obtain
(3.42)

_ i€Des(g~1)
Grope) = Y L - JI Xa | s
gesirg | I (= Xpkrrem))  @ieio
k4+1<m<n

Then the formula for determining the operator ¢ ((6,—x+1)~") € End(Bg) for
each 1 <k <n —1 is given in the following proposition.

PROPOSITION 3.5. Let o: A(S,) = End(Bg) be the twisted regular repre-
sentation on the generic weight subspace Bg of the algebra B. Suppose that
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for every g € Sf X Sn_k the conditions 1 — T =1y F g1 (et 1y~ Ty =1 () %0 hold
true for all k+1<m <n. Then the operator ¢ ((6;_,,1)"") € End(Bg),
1<k <n-—1is given as follows

X (G i E

11 Tig=1(kydg=1(s) " I1 Dig=1(a)g=1(»)

Z i€Des(g~1) (a,b)el(g™1)
= €l 1 qyTg—1(my "
g . . g— (1) g T H(n)
9€SE XSy I1 (1 019*1<k>19*1<k+1>'“]r1<m>)
k+1<m<n

Proor. Considering that (67, )~ € A(S,) is given by (3.42) for each
1 <k <n—1, we obtain by applying (3.32) and also (3.26), (3.31) that

H Xk k+1,...,1} H Xab

-1 i€Des(g~1) (a,b)el(g—1)
0 (65 _k41) )61: Z e ¥ glej
gESK XSk H ( - {k’k+1,-~,m})
k+1<m<n
H Xk kb1, i} H Xab
i€Des(g—1) (a,b)€I(g—1)
= > @ 02(9) ej
9eSE xS,y I[I (= Xpksrmy)
kE+1<m<n
H Qk,kt1,...3} H Qab
| e (ab)ei(s—D)
= €j.—101ydy—1
g— (1) g TH(n)
9€SE XS0 H (1= Qgrk+1,...m})
k4+1<m<n
I1 Tig=1 ey Tg=10i) 11 Dg=1(ayIg—1 ()
> i€Des(g~1) (ab)el(g—1)
€j 1T, —1
. . . gt (1) YgmH(n)
9EST X Sn_ I1 (17Gfgfl(k)%*l<k+1)'“]g*1<m>)
k+1<m<n

J=Ji1--.Jn € Q, where the operator 0((0 1)1, 1 <k <n-—1is invert-
ible if for every g € S¥ x S,,_}, it holds that

L =05 1 dat sty Fg=1(m) #0

forall k+1<m<n. 0

We recall that Des(g™1) = {k+1<i<n—1|g (i) > g '(i+1)} denotes a
descent set of g~ € S¥ xS,y and I(g7 %) = {(a,b) | a < b, g~ (a) > g~ *(b)}
denotes a set of inversions of the permutation g~ € S¥ x S,,_;. Note that
g€ S{“ X Sp_p, implies g~ ! € Sf X S,_k. We also note that in the special case
Des(g™t) = 0 if and only if I(g~!) = (), which implies that in this case the
product over Des(g~!) and likewise the product over I(g~!) is equal to one.
Moreover, the following theorem follows from the above.

THEOREM 3.6. Let 0: A(Sp) — End(Bg) be the twisted regular represen-
tation on the generic weight subspace Bg of the algebra B. Then the inverse
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of the operator ¢ (o) € End(Bg), n > 2 given by
olan)e; = 11 Big=1(aydg=1) Cg=10)+Tg=1(n)
9€Sn (a,b)el(g—1)
has the following factorization
o(@p)™Mei= JI eBrrs) e
1<k<n—1
with Q((ﬁz—kﬂ)_l) €; = Q(%*L—kﬂ) : Q(((;:L—k-i-l)_l) €j-

We recall that the operators o (v, _;,,) € End(Bg), 1<k <n—1 are
given in Remark 3.4 and ¢ ((6%_,,,)™") € End(Bg), 1 <k < n—1 are given
in Proposition 3.5.

ExampLE 3.7. Let us take n =3. Then, considering Remark 3.4 for
k = 1,2, we obtain the following operators o (v3), 0 (7v3) € End(Bg) given by

0(73) €jujujs = 0 (id =15 1) - 0 (id — t5 1) €, jajs

= Cjijogs — Qajs Cajrgs — Lsji Disge Cisgrge T Disjaisji Lzjr Cisjain
where we used the formula (3.33) for multiplying the operators of End(Bg).
If we apply the Johnson-Trotter order of permutations in Ss3 given in the
monomial basis of BQ with €j1j243s €i1dsjes Cisjiges €isjedis €i2gsiis €iajidso then
we obtain
4 (7;) €j1j2js = €j1j2ds — jsjiDisje €jsjriz + Qjsj2 9535195251 €jsgzgr — Qjaj1 €jajigs-
Similarly, we get

0(73) €jrjags = 0 (id = 152) €41 jajs = €jrjajs — Tjsja Cirjaja-

On the other hand, considering Proposition 3.5, we obtain that the operators
0((65)71),0((65)7") € End(Bg) are given as follows.

We note that for k = 1 there are two permutations g; = 123 = id and g = 132
in S7 x S5, therefore we obtain

Y ((5{1‘)71) €j1j273
1

l—o; . ) (1 o L
( Jortayart@ PP COE PPN e L PPN )
4q;

. ) )
) Jor gt @ dar Y

. , .
Tt wlag @ Yast@?er e

+

1—-o0; i ) (1 —0j , i

( T et @ Tor oz @95 )

_ 1 o 04153 9jaj2

T 0= 500 (U= ) 97 0= 03050) (U= )
Oj1ja 315243 Oj1j3 Oj1j2j3

_ 1 1 e+ jsj20 4143 P
- 1—0i s 1—0. . J1J2]3 1— 0. J133J2
J19233 JiJz2 J1J3

s . ,
) Tos e @795 1 3)

€j1j3j2
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where we used that Des(g; ') = I(g; ") = 0 and Des(g; ') = {2}, I(g5") =
{(2,3)}. Note that g, ' = go = 132 and also that o}, j,j» = T}y jujs-

On the other hand, considering that only the permutation g = 123 = id €
52 x S fixes the first two indices and that Des(g~!) = I(g~!) = (), we obtain

o — 1 1
0((05)7") €jyjags = =

1—0, . Clotmig-1@dgta T ] _ o, . Chdedst
Jg=1(2)7g-1(3) J2Js
From the application of Theorem 3.6 we then first obtain
*y—1 _ * *y—1 L
0((B3)77) €jrjajs = 0(73) - 0((03)™ ") €5y asa
= (€j1jajs — Uiz Disjz Cisiiia t LisiaTisir Lizir Cisjads — Qizd1 €iziris)
1 1 N 9j3j20514s
P 1— 0. €j15273 1 —og. . €j1j352
314243 Oj1j2 Oj1j3
_ 1 1 R 935295143 . Dziihsiz .
I 1_o5.. €j1j233 1— g, €j173542 11—, €jzj152
Oj1j243 Tj1j2 Tj1i3 Tj1j2
9251925395352 %5145 . + 9j3j29i351 95251 . . .
1 . €j241343 1 . J39271
— Oj1j3 — Oj1j2
+%2]‘3(1]'2]'1qj3j1Qj3j20']'173 o oy . 93519352%5143
1 . €j2j351 1 — €j2j143 1 — €j3j12
— Oj1j3 — Oj1j2 — Oj1j3

where we used the formula (3.33) for multiplying the operators of End(Bg).
After sorting the expression (by summing the same elements of the monomial
basis of Bg) and applying the Johnson-Trotter order of permutations in S,
we obtain:

(3.43)

#y—1 _ 1 1 935294143
0((B3)7 ) €jrjoss = 1 —0s . (1 —— €jijajs T 1— o €j173d2
0314233 Tj1j2 Oj1j3

_ Dizg1 Gizgz (1 — 05152 05145)
(1 =0515) (1 = 05155)
+QJ'2J'1 9535195153 935243
1 =055

35295351 9j251
1 =054
9j2j1 (1 — Oj1js T 041305255 — Uj1j2j3) e )
(1= 051j5)(1 = 0j45) eI

€jsj1je T €j3j241

€jajzi1 —

Simﬂaﬂ}iv from Q((/Bg)il) Ci1jajs = 0(73) - 9((?;)71) €jrjzjas 1€
0((B2)77) €juads = (Cjujags = Qjsja Cirisiz) * T, Cirsads it follows

1

1- Ojajs

(3'44) 1% ((ﬁ;)_l) €j1j2js =

Cjrjags —
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Finally, by applying Theorem 3.6, we obtain that the inverse of the operator
0 (o) € End(Bg), n > 2 is given by
o ((ag)_l) €j1j2j3 = @ ((Bg)_l) Y ((B;)_l) €j1j243
1 1 9j3j293153
1

€j1j243 T 1 — o0 €j17352
03143

1- Oj15233 — Oj1j2
9534y Tisgz (1 = 051350514s)
(1 =0515) (1 = 05155)
+QJ'2J'1QJ’3J‘1UJ'1J30—J'2]'3 L qujl(l — Oj1j3 T 04130423 _Ujljzjs) o
1 — o €j2j351 1—05,7.)1 —0j170) €j25143
03143 Oj1j2 03143

1 CREND) )
: e i i e i
(1 g, MI2is T Ciada
where from the application of the formula (3.33) and the addition of the same
elements of the monomial basis of Bg) it follows that

wy—1 1
(3:45) e ((05) ) €sngass = (1= 05155) (1 = 0515) (1 = 055 ) (1 = 01 ns5)
(1 = 05135)(1 = 0412 0jsis) €jrgajs — Dizga (L — 01z ) (1 — 051 33) €51 jaio
= Q331 Qg2 Oriz (1 — 05155 ) (1 = Ojajs) €53 ja
+ Q352 Q3351 Gizin (1 — 03153 ) (1 — 04152 053) €izin
= Qinj1 Bisir Odags (L — 0514n ) (L = 01 js ) €jainin

~Qjags (1 = 05145 ) (1 = Gajs) €4 js) -

53529351 9j251
1 =014,

€jsj1je T €j3j271

4. A DECOMPOSITION OF THE MATRIX (B;) ™'

We first introduce the appropriate matrix notations for the operators dis-
cussed above. Then, with respect to the monomial basis of a generic weight
subspace B of the algebra B (considered with Johnson-Trotter order of per-
mutations, see [14]), we denote the matrix of the operator p (o) with 4,, and
with By—k+1, Cn—k+1, Dn—k+1, 1 <k <n —1 respectively the matrix of the
operator o (35 ;. 1)s 0(Vi_gy1)s 0(65_pp ). Similarly, we denote by Tp, x,
Ti Trkt1s 1 <k <n-—1, k+1<m <n respectively the matrix of the op-
erators ¢ (tmx), 0((t;)*th, sy1)- In particular, we denote the unit matrix
corresponding to the operator ¢ (id) by I. Then the rows and columns of all
introduced matrices are indexed by the elements e; of the monomial basis of

Bg C B for each j € @ So these matrices are square matrices whose order is

equal to dim By = Card @ = n!, where we assume that Card Q = n.

REMARK 4.1. Let @ be a set of cardinality n and let j =j1...j, € @

andk=Fk ...k, € @ be arbitrary permutations in the set @ of all (distinct)
permutations of the set (). Then it is easy to verify that there exists a per-
mutation g € S, such that g satisfies the condition k = g.j, that is,

(4.46) Koo kn = Jg-1(1) -+ Gg-i(m)
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or in the shorter form k;, = jj-1¢,) for all 1 < p < n.

PROPOSITION 4.2. The (k, j)-entry of the matriz A, is a monomial given
by

(4.47) (An)g,l = H Tig=1(a)dg=100)
(a,b)€I(g™1)

where k = g.j (geSn,izjl...jnE@,Ezkl...kneé).

PROOF. By considering that 4,, denotes the matrix of the operator o (o)
given by (3.38) and applying (4.46), we obtain

* _ . . .
Q(Qn) el - § : H q]g—l(a).?gfl(b) 694

9gE€Sn (a,b)el(g—1)

from which it follows directly that the (k, j)-entry of the matrix A, is given
by (4.47). O

We note that the operators o (a) € End(Bg) and ¢ ((a})™1) € End(Bg)
play an important role in determining the inverse of a matrix of the quantum
bilinear form of the oriented braid arrangement in R™. Furthermore, if we
assume that A, denotes the matrix of the operator ¢ (o), then by comparing
(4.47) with (1.3), we find that the matrices A,, and B} are equal, i.e., have the
same inverse matrix. In other words, computing the inverse of the matrix B}
leads to computing the inverse of the matrix A,,. In this way we can write the
matrix B} instead of the matrix A,,. Thus, from Proposition 4.2 it follows that
the (k, j)-entry of the matrix B is a monomial given by (4.47). Moreover, by
applying Theorem 3.6 in a matrix notation, we obtain that the inverse (B)~!
of B} can be factorized in the following form

(4.48) (B t=t BByt (= [T Bl

1<k<n—1
with B ' =¢;-D;' forall2<i<n.
Before we determine the matrix B;l, 2 <i < n, we should note that the (k, j)-
entry of the matrix T,, ; and Ti Tmkt+1, L<E<n—1,k+1<m<nisre-
spectively given by

k,j otherwise

(4.49) (T’In,k)k = { q]wz,]kq]m]k+6 q]m]m—l 1 E tmak l

9 _ Ot dm Qmir+1 " Lmim-1 it k= tm7k+1~i
(4.50) (T;C Tm,k+1)k’l { 0 otherwise

where tm,k-i = jtk,m(l) .. -jtk,,,,,(n) =J1-- -jmjkjk+1 e Jm=1-+-Jn

tm,k+1~i = jtk+1)m(1) .. ~jtk+1)m(n) = jl .. ~jkjmjk+1 .. ~jm71 .. ]n
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We recall that tgm =t,", thy1m = t;:kﬂ and that T2 Tpiq 41 = T2 is the
diagonal matrix with o, ., as its Jj-th diagonal entry, see (3.36), (3.37) and
also Remark 3.4. Then each matrix B,,_;+1, 1 < k <n —1 can be written as
the following sum of matrices

Bn—k+1 - Z T’m,k
k<m<n
where Ty, = I is the unit matrix. Thus, by applying (4.49), we obtain that
the (k, j)-entry of the matrix B, 11 is given by

(B ) L= Djrmgx Dimir1 " Qimim—1 it k= tm»k'l for all k <m <n
n—k+1)k,j 0 otherwise.

In accordance with the above, the following theorem follows.

THEOREM 4.3. The (k,j)-entry of the quantum bilinear form B;; of the
oriented braid arrangement is given by
(451) (B”)E»l = H qjg—l(a)jg—l(b)

(a,b)€I(g™1)
where j = j1...Jn € @, k=Fk ...k,€ @ and g € S, satisfies the condition
that ky = jg-1(p) for all 1 <p <n. Then the inverse (BX)~Y of B is given
as follows
(B;) ™' =B, B,y By
with By =¢C;-D; ', 2<i<n and
Cn—k+1 - (I - Tn,k:) . (I - Tn—l,k) e (I - Tk+1,k)

D,y = (T- T Thrnr1) (I— T2 Thgzkn) oo (T= T2 Tos)

1 <k <n-—1, where the (r,s)-entry of the matrix Dflik_H, 1<k<n-11s

-1

given by
H Thg=1ky-dg=10) ~ H Tig—1(aydg—10)
Dfl . i€Des(g—1) (a,b)el(g—1)
( ”_k+1)17§ - Z 1
9ESTX Sk H T Tyt dg=1 ey T 1 m)
k+1<m<n

Herer=mr1...1, € @, 8$=81...58, € @ and g € S{“ X Sn_k satisfies the con-
dition that v, = Sg-1(p) foralll<p<nandl-— T 01y d =1 (s1y g1 () #0
forallk+1<m<n.

REMARK 4.4. Taking into account [10, Lemma 4.11], where the author
found the formulas for determining det(I —Tp,), 1 < a < b <n and det(I —
(Ta=1)?Tha), 1 <a <b<n, we get that

det(I—Tmp)= [ (11— op)m-Rtmomtk-)
Te(Qym—k+1)
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det(1 — T2 T kt1) = H (1- UT)(m_k)!'(m_k'ﬂ)'(n_m+k_2)!
Te(Q;m—k+2)
1<k<n-1,k+1<m<n, where we denote by
(@m)={TCQ|Card T =m} with or= ][] g
i#jET
Then we get the following formulas

det Cn—k+1 = H H (1 _ O.T)(m—l)l‘(n—m)!

2<m<n—k+1 T€(Q;m)

det Dn—kt1 = H H (]_ _ O-T)(”TL—Q)I~'!n~(’rL—m)I

2<m<n—k+1 T€(Q;m)

detB,_pi1 = H H (1 — gp)(m=2)k(n=m)!
2<m<n—k+1 Te(Q;m)

1 <k <n—1, where we used that det(B,,_x+1) = %, c.f. (3.40). Then

considering (3.39), we obtain that the determinant of the quantum bilinear
form B; of the oriented braid arrangement is given by

(4.52) det B} = H H (1 = ) =2 (=41t
2<m<n Te(Q;m)

c.f. [10, Theorem 4.12]. We recall that B} and A,, are the same matrices, from
which it follows that their determinants are the same.

ExaMPLE 4.5. For n = 2 the quantum bilinear form and its determinant
of the braid arrangement By are given by

* €12 1 q12 *
B; = , det By =1—0
2 €91 < g1 1 > 2 12

with 012 = g12¢21. If we assume that 1 — o019 # 0, then Bj is an invertible
matrix. In this trivial case it is easy to verify that

- 1 I —qo
B 1 _
(B2) 1—o012 ( g1 1

EXAMPLE 4.6. For n = 3 the matrix Bj (i.e., the quantum bilinear form
of the oriented braid arrangement) has the following form

€123 1 q23 q13923 q12913923 q12q13 q12
€132 q32 1 q13 q13q12 413912932 q12932
Br — ©312 431932 q31 1 q12 q32q12 431932912
3 €321 g32931921 G31G21 q21 1 q32 q32G31
€231 421931 423921931 q23921 q23 1 q31
€213 q21 q21G23 q21923913 423913 q13 1

where det Bék = (1 — 0'12)2 . (1 — 0'13)2 . (1 — 023)2 . (1 — 0'123)
with 0ij = 4545 and 0123 — 012013023, See (452) We have used here the
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Johnson-Trotter order of permutations in S3 given by 123, 132, 312, 321, 231,
213. Let det B #0,1ie.,1—019 #0and 1 —o13 # 0 and 1 — 093 # 0 and
1 — o123 # 0. Then By is an invertible matrix, so from Theorem 4.3 we get
the following:

(B3)~'=B3'-By' =(C3-D5') - (Co-D3").
with Cp=T—Tsy, Dy = (I-T3) ", Cs3=(I—Ts1) (I—Ts1),
D3 = (I-T2Tss) - (1-T2)) = (1—T2) ' (1-T2Ts0) ',

where T3 = T3 T3 3 and T7 = T7 Ty 5. We first calculate B;* and then By !, see
also Example 3.7. Thus we obtain:

€123 1 0 0 0 —q12q13 0
€132 0 1 0 —q13q12 0 0
I Ta, — 6312 —q31932 0 1 0 0 0
317 e 0 0 0 1 0 —g32q31
€231 0 0 —@23Q21 0 1 0
€213 0 —q21G23 0 0 0 1
€123 1 0 0 0 0 —q12
€132 0 1 —q13 0 0 0
I_T €312 0 —q31 1 0 0 0
217 eao) 0 0 0 1 —(q32 0
€231 0 0 0 —q23 1 0
€213 —{21 0 0 0 0 1
€123 1 0 0 12913923  —q12913 —q12 ]
€132 0 1 —q13 —q13912  ¢13912932 0
Co — €312 —q31932 —q31 1 0 0 431932912
3 €321 932931921 0 0 1 —q32 —q32931
€231 0 q23921931  —Qq23921 —q23 1 0
€213 —q21 —q21G23 421923913 0 0 1 ]
€123 1 —012q23 0 0 0 0 T
€132 —013¢32 1 0 0 0 0
2 __ e312 0 0 1 —013q12 0 0
I-T4 T372 T es2 0 0 —023¢921 1 0 0
€231 0 0 0 0 1 —023q31
€213 0 0 0 0 —012¢13 1 J
€123 1—o012 0 0 0 0 0
€132 0 1—-o013 0 0 0 0
I_T2— ©312 0 0 1—o013 0 0 0
€321 0 0 0 1— o093 0 0
€231 0 0 0 0 1— 093 0
€213 0 0 0 0 0 1-— 012



_931932(1—012013)
(1-012)(1—013)
4932931921
1—012
921931013023
1—013
_ gq21(1—013+013023—0123)

@31 (1-0124+012023—0123)

(1-013)(1—012)
931921012023
1—012
923921931
1—o13
_ q21qz3(1—012013)

(170‘12)(170'13)

912913923
1—o023
_ @13q12(1—013023)
(1—013)(1—023)
412013
1—o013

1—02
_ q23(l—013+013012—0123)
(170‘23)(170’13)
923913013012
1—013

(170‘12)(170‘13)

_ q12q13(1—012023)
(1—-012)(1—023)
913912932

1—o023
932912012013

1-012

_ g32(1—0c12+012013—0123)
(1—023)(1—012)
1

170'23
413012
1—012

(c.f. (3.43)), where we assume that the
the order 123, 132, 312, 321, 231, 213. We now calculate B2_17 taking into
account that By = Cy - Dy with C, = I — Ty and Dy ' = (I —T2) . Thus,

rows and
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1 012923 0 0 0 0
1 013432 1 0 0 0 0
_m2y -1 0 0 1 013412 0 0
(I T7 T3,2) 1— 0193 0 0 023921 1 0 0
0 0 0 0 1 023431
0 0 0 0 012413 1
L 0 0 0 0 0
—0o12 1
0 - 0 0 0 0
—0o13 1
G| O 0 o O 0 0
0 0 0 0 0
—023 1
0 0 0 0 - 0
—023 1
0 0 0 0 =L
L —012
M 1 012423 1
€123 é*f(flm 1*1012 0 0 0 0
13932
€132 1—013 l—013 (1) 0 0 0
013912
D;! = €312 0 0 Ton 1o 0 0 1
- 023421
€321 0 0 T—0as 1—093 0 0 1-— 0123
1 023431
e [
231 0 0 0 0 o 1w
€213 0 0 0 0 1121113
L —012 1—012 |
The multiplication of the obtained matrices C3 and Dg ! results in
1 _aoon-l_ 1
B3 =Cs D3 T l-0123
r 1 423012 913923023012
170'12 170‘12 170‘23
432013 _ @13(1—023+023012—0123)
l1—013 1—o013

(1—013)(1—023)
1

1—o013
921023
1-023
_ q23921(1—013023)
(1—013)(1—023)
921923913
170‘13

_ qu2(1—023+023013—0123)
(1—012)(1—023)
912932023013

1—o023
931932912

1—012
_ 932931(1—012023)
(1-012)(1—023)
431023
170‘23
1

1—012 .

columns are indexed in
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we obtain:
€123 1 —(q23 0 0 0 0
€132 —q32 1 0 0 0 0
1 _e312 0 0 1 —q2 0 0
C2=1-Ts2= €321 0 0  —qa 1 0 0
€231 0 0 0 0 1 —qs31
€213 0 0 0 0  —qs 1

We note that Dy = I — T3 is a diagonal matrix, therefore its inverse D, =

(I — T§)71 is also a diagonal matrix, so that:

ro_1
€123 1—0o23 (1) 0 0 0 0
€132 0 1—023 (1) 0 0 0
-1 _ om2 71_ €312 0 0 T—01s 0 0 0
R Gl A S S S
€231 0 0 0 0 1% O
€213 0 0 0 0 1_1013

B 1 q23
Tom T om 0 0 0 0
q32
1—023 1—023 ? 0 0 0
. 0 ; o 0
B = —01 T‘TIZ
2 0 0 _ Q21 0 0
1-012 1-012 1
_ 931
0 0 0 0 Tors o
__qs3
L 0 0 0 0 1—013 l1—0o13 |

c.f. (3.44). Tn agreement with the obtained matrices B;* and By ', it follows
that the inverse (B3)~' = B3'-By' of the quantum bilinear form of the
oriented braid arrangement in R? is given in the following form

(B3)~

_ 1
T (—o12)(I-013)(1—023)(1—0123)

(1 —013)(1 — 012023) —q23(1 — 012)(1 — 013) —q13923012(1 — 013)(1 — 023)
—q32(1 — o12)(1 — 013) (I —012)(1 — o13023) —q13(1 — 012)(1 — 023)
—q31932012(1 — 013)(1 — 023) —q31(1 — 012)(1 — 023) (1 —023)(1 — o12013)
432931921 (1 — 013)(1 — 012023) —q31q21023(1 — 012)(1 — 013) —q21(1 — 013)(1 — 023)
—q21931023(1 — 012)(1 —o013)  ¢23921931(1 — 012)(1 — o13023) —q23q21013(1 — 012)(1 — 023)
—q21(1 — 013)(1 — 023) —q21923013(1 — 012)(1 —023)  ¢21923q13(1 — 023)(1 — 012013)
q12913923(1 — 013)(1 — 012023)  —q12q13023(1 — 012)(1 — 013) —q12(1 — o13)(1 — 023)
—q13q12023(1 —012)(1 —013)  q13912932(1 — 012)(1 — 013023) —q12932013(1 — 012)(1 — 023)
—q12(1 — 013)(1 — 023) —q32q12013(1 — 012)(1 —023)  g¢31932q12(1 — 023)(1 — 012013)
(1 —013)(1 — 012023) —q32(1 — 012)(1 — 013) —q32q31012(1 — 013)(1 — 023)
—q23(1 — o12)(1 — 013) (1 —012)(1 — 013023) —q31(1 — 012)(1 — 023)
—q23q13012(1 — 013)(1 — 023) —q13(1 — 012)(1 — 023) (1 —023)(1 — 012013)

where the rows and columns are indexed in the order 123, 132, 312, 321, 231,
213; compare with (3.45).
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REMARK 4.7. We note that the matrices Bs and By are given by

€123 1 0 0 0 q12q13  q12
€132 0 1 @13 1312 0 0
B, — €312 | 431932 g3 1 0 0 0
7 esn 0 0 0 1 432 432931
€231 0 0 (23921 923 1 0
€213 21 G21923 0 0 0 1
€123 1 qs O 0 0 0
€132 qz2 1 0 0 0 0
B, — 6312 60 0 1 @¢q2 0 O
7 em 0 0 ¢ 1 0 O
€231 0 0 0 0 1 qs31
€213 0 0 0 0 ¢z 1

where detB3 = (1 — 0'12) . (1 — 0'13) . (1 — 0'23) . (1 — 0'123),

deth = (1 — 0'12) . (1 — 0'13) . (1 — 0'23).
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