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ONE-DIMENSIONAL FLOW OF A COMPRESSIBLE VISCOUS
MICROPOLAR FLUID: A LOCAL EXISTENCE THEOREM

Nermina Mujakovié, Rijeka, Croatia

Abstract. An initial-boundary value problem for one-dimensional flow of a compressible viscous
heat-conducting micropolar fluid is considered. It is assumed that the fluid is thermodinamicaly perfect
and politropic. A local-in-time existence and uniquenes theorem is proved.

1. Introduction

Theory of a polar or Cosserat continuum ([4], [1], [5], [6]) is based on the as-
sumption that an appropriate dynamical field in a medium is a torzor (e.g. [7]), the
reduction elements of which are momentum and intrinsic spin. As a consequence,
instead of the symmetry of the stress tenzor, a new conservation law (for the mo-
mentum moment) appears. Kinematical and contact fields corresponding to the spin
are, respectively, microrotation velocity and couple stress tenzor. We consider here
an isotropic, viscous and compressible fluid, that is (in a thermodinamical sense)
perfect and politropic. In the setting of the field equations we use the Eulerian
description.

Notation:

p — mass density
v - velocity
D(v) - stretching, D(v) = symVyv
p —pressure
T - stress tenzor
T — an axial vector with the Cartesian components (T, ); = e Tij/2, where
ej is the alternating tenzor
@ — microrotation velocity
Wgny —a skew tenzor with the Cartesian components (@Wskw)ij = €k Wk
J — microinertia density (a positive scalar field)
M - couple stress tenzor
6 - absolute temperature
e —internal energy density
g - heat flux density vector
f —body force density
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m - body couple density
r —body heat density
Local forms of the conservation laws for the mass, momentum, momentum
moment and energy are, respectively, as follows:
p+pdivy =20,
pv=divT + pf,
pjw = divM + T, + pm,
pé=T-Vv+M- -V — 2T, - @ + divg + pr,

AN~
A e

b—t b b

where a denotes material derivative of a field a:
Oa
Ot

The linear constitutive equations for stress tenzor, couple stress tenzor and heat
flux density vector are, respectively, of the forms:

a=

+ (Va)v.

T = —pl + A(div v)I + 2uD(v) + x(VV + Ogtw), (1.5)
M = a(divw)l + (Vo) +yV(w), (1.6)
q=kVo, ‘ (1.7)

where A, U, x, @, B, ¥ and k are scalar material coefficients, depending generaly on
mass density and temperature and satisfying the conditions ([S], [6]):
3A+2u+x=0, 2u+x =0, x =0, (1.8)
3a+B+y20, 1Bl <0, k> 0. (1.9
Assuming that the fluid is perfect and politropic, for pressure and internal energy
we have the equations:
p = Rpo, (1.10)
e=ch, (1.11)
where R and ¢ are positive constants.

Initial-boundary value problems for the system (1.1)—(1.7), (1.10}—(1.11) so
far were not considered (for incompressible flow see [10], [17], [18], [19], [21], [22],
[23)).

It is well known that even for a classical fluid (when the coefficients j, ¥, ,
B and y are equal zero) a few results are obtained for three-and-two-dimensional
problems (see [2], [14] and [8] and references therein); a global existence theorems
are proved for isentropic case ([15], [16]) and for one-dimensional flow ({11], [12],
[2]; see also [9]).

2. Statement of the problem and the main results

In this paper we consider the system (1.1)-(1.7), (1.10)—(1.11) for one-
dimensional flow, assuming that all material coeficients (including j) are constants.
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Let (in a Cartesian coordinate frame) v» = v3 = @, = @3 = 0 and let the functions
p,v = Vv, ® = @ and 6 depend on x = x; and f only. Inserting (1.5)—(1.7),
(1.10)—(1.11) into (1.2)—(1.4) and taking f = m = r = 0, we obtain the system:

p+ p% =0, (2.1)
oV = —ag(RpG) + o 22;’, (2.2)
Jjpo = 62%27? -2, (2.3)
cpf = —Rpeg + o (g—:)z + 02(?9—6;))2 +2xw* + k%zx%)—, (2.4)

where
or=A4+2uty, or=a+f+y.
Because of (1.8) and (1.9) it holds o1 2 0, 02 > 0; we assume
01,02, X,k € Ry =]0, 00| (2.5)

We shall consider the system (2.1)—(2.4) in the domain ]0,L{xR;, L € R,
under the homogeneous boundary conditions:

v(0,1) = v(L,1) =0, (2.6)

0{0,1) = w(L,1) =0, 2.7

%(0, 1) = ge (L,))=0 (2.8)

for > 0 and non-homogeneous initial conditions:

p{x,0) = po(x), (2.9)

v(x,0) = vo(x), (2.10)

w(x,0) = ax(x), (2.11)

6(x,0) = 6o(x) (2.12)

for x €]0,L[. Here po, Vo, wy and 6 are given functions. We assume that the
functions py and 6 are strictly positive and bounded:

m< po <M m<6(x) <M forx€l0,L], (2.13)

where m,M € R,.
Itis convenient to transform our problem to the Lagrangian form. For € €]0, L]
let t — ¢,(£) be a solution of the Cauchy problem
do
d_tt = V((pht)a %(é) = 5
Because of {2.6) the mapping & - x = @(&) is a diffeomorphism ]0, L[—
]0,L[. To an Eulerian field f (x, ) on ]0, L[xR, it corresponds a Lagrangian field
(€,8) =f(@:(E),t) on the same domain. Taking into account the equality
_of
f = E ° @, la
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one can easily obtain the system of equations for the functions p, V, @

—1
CZ - 770'1 3
_3
&= no, *
2 -2
G =cn‘o;”.
It is useful to introduce the new coordinates
-1
X=n"y(), 1=
and the new functions
o', 7

Let

w(E) = / po(E)dE, n=w(L), § =no*2x) "t o},
0

G =174,

V(,r)=
w'(xX,t
0'(x,¢

K=Rc', A=j"'o7'0s, D=ke

o) =
W) =

wp(x') =

Cxp(uf ‘(nx) ar'),

Loy (), 5t)

Gvo(y ™ (nx')),
Gan(y~'(nx')),
65(x') = &by

and 0. Let

Then the functions o/, V', @' and 0’ satisfy the system that we write omiting
for simplicity the primes:

o0t =0

3= w05 K

P =A[p—(
in]0, 1[xR*,

i’) fo +Dpaax( 36)

v(0,1) = v(1,1) =0,
w(O 1) =w(l,t) =0,

(2.14)
(2.15)

(2.16)

(2.17)

(2.18)
(2.19)

(2.20)
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fort € Ry,
p(x,0) = po(x), (2.21)
v(x,0).= vo(x), (2.22,)
w(x,0) = ap(x), (2.23))
0(x,0) = 6o(x), - (2.24)
for x €]0, 1[. The functions py and 8y satisfy the conditions
m<po <M, m<6(x)<M for x €]0,1], (2.25)

where m, M € R;. The problem (2.14)—(2.24) is equivalent to the problem (2.1)—
(2.4), (2.6)~(2.12).

Definition2.1. LetT € Ry; ageneralised solution of the problem (2.14)—(2.24)
in the domain Qr =|0, 1[x]0, T is a function
(x,8) = (p,v,0,0)(x,1), (x,1) € Qr, (2.26)
where
p € L>(0,T;H'(]0,1))) NH'(Qr), (2.27)

v, 0,0 € L=(0,T; H' (10, 1)) N H'(Qr) N L*(0, T; H(]0, 1[)),
(2.28)

that satisfies the equations (2.14)—(2.17) a.e. in Qr, the conditions (2.18)—(2.24) in
the sense of traces and the condition

infp > 0. (2.29)
or

Remark 2.1. From embedding and interpolation theorems ([13]) one can con-
clude that from (2.27) and (2.28) it follows:

p € C([0,T], L*(]0, 1)) N L=(0, T; C([0, 1])), (2.30)
v, 0,0 € L2(0,T; cV([o, 1)) n ¢ ([0, T}, H' (]0, 1])), (2.31)
v,0,0 € C(Or). (2.32)

Specially, the condition (2.29) has a sense.
The purpose of this paper is to prove the following results.

THEOREM 2.1. For each T € R, the problem (2.14)-(2.24) has at most one
generalised solution in Qr.

THEOREM 2.2. Let the functions po, 6 € H'(]0, 1[) satisfy the conditions
(2.25) and let vo, wo € H}(]0, 1]). Then there exists Ty € R, such that the problem
(2.14)2.24) has a generalised solution in Qo = Qr,, having the property

6>0 in Q. (2.33)

The analogous theorems for the classical fluid were proved in [24], [25] and [2].
In our proof we use the Faedo—Galerkin method and follow ideas of the book [2].
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3. The proof of Theorem 2.1.

Let (p;, Vi, 0;,6;), i = 1,2 be generalised solutions of the problem (2.14)-
(2.24). Then the function (p, v, ®, 6) = (p1, v1, @1, 61) — (02, V2, @, B) satisfies
the system'

v
+pf +pp1+pz)8—2—0, (3.1)
Bv _ 8 av v, 0
7= 5Pt PG ) ~ Ky P10+ 00), 62)
dw 8 dw Ay A} P
e A[Bx(p 8x+p8x)_a+w2plpz]’ (3.3)
a6 %) 06, ov,
B Dax(p 2 tPae) ~K(mog; +92pa + P15 5)
ov 6V1 6V2 sz _C?_ . 2__p_
+p16x(8x+g) (—67) +p1((1)1+(02) wzppz
0w, Bwy dwn
+p18 (8x+ 8x)+p(8x)’ (3:4)
v(0,7) = v(1,1) =0, (3.5)
0(0,1) = w(1,1) =0, (3.6)
%(0,1‘) ‘29(1 §) =0, (3.7)
p(x,0) = v(x,0) = w(x,0) = 6(x,0) = 0, (3.8)

In that what follows we denote by C > 0 a generic constant, not depending on
(p, v, @, 6) and having possibly different values at different places. We also use the

notation
I Il = If lezqo.tp-
Taking into account properties (2.30)—(2.32), from (3.1) and (3.8) we obtain

eI < ¢ [[(1+ max| 52 ) ) leae + | Sore) e
0

or, because of the Gronwall’s inequality,

()P < / 1% ax (39)

From (3.2), (3.5) and (3.8) we get

||v<t>t|2+/||%<r>llzdr<C/'[(H;glgx,]i— @) e |32
0 0

+ ol | 32|



ONE-DIMENSIONAL FLOW OF A COMPRESSIBLE . . . 77

or applaying the Young’s inequality and (3.9),

t

0
+ / “%(““2‘“) + Ile(r)llz] dt
0

Using now the Gronwall’s inequality, we obtain

o+ [ 52| e < c [lo@ipar (3.10)
0
Analogously, from (3.3)(,) (3.4), (3.6)—(3.10) there follow the inequalities
o) + /“%—i’(r)“zd‘r < C/“Z—;(r)”zdr, (3.11)
0 0
lowie+ [|5o@| dar<c [owPan (3.12)
0 0

From (3.9)—(3.12) we conclude thatp=v=w0 =6 =0.

4. Approximate solutions

A local generalised solution to the preoblem (2.14)-(2.24) we shall find as a
limit of approximate solutions

(0", V', 0", 0", neN, (4.1)
where
Vi(x,1) = Z V2 (2) sin(7ix), (4.2)
)= Z @ (?) sin(mjx), (4.3)
Z 67 () cos(mkx); (4.4)

here v}, @}, ¢ are unknown functions, defined and smooth on an interval [0, 7],
T, € R,. Evidently, the boundary conditions

V(0,0) = Vi(L1) = 0"(0,0) = 0"(1,1) = %0») = %6

(1,)=0 (45)
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are satisfied. According to Feado—Galerkin method, we take the following approxi-
mation conditions:

apn 7 28Vn _ 7 _
(=0, p(x,0) = pol), (46)
1
r v
/ o _ —8—(9"8 ) +K—(p"6”) sin{zix)dx =0, i=1,2,...,n,
| 0t Ox Ox (4.7)
0 .
1
[ O™ 9 00" "
— —A—|pP" A—| sin(myj. =0, j=12,...
/_& Bx( 8x)+ p,,]sm(ﬂfx)dx » J=1,2,...,n, “s)
0 -
1
90" v av" dw\2  (0m)?
/_"aTJ’K”OE " (50) -7 ()
0
o/ 00" B _
—Da(p ad )] cos(mkx)dx =0, k=0,1,2,...,n. (4.9)
From (4.6) and (4.2) it follows
F oV I
p'(x, 1) = po(x)(l + po(x) / E—(x, T) d’L’)
0
= po() (1 + po(x) 3 (i) cos(mix / . (4.10)
i=1 0
and because of (2.25), for sufficiently small 7, we have
pP'(x,8) >0, (x,1) €[0,1] x [0, T,). (4.11)

Therefore the conditions (4.8) and (4.9) have a sense. Let vy, wy (i,j =
1,2,...Yand 8y (k= 0,1,2,...) be the Fourier coefficients of the functions vy,
and 6y, respectively:

1
v0i=2/v0(x) sm(mx) dx, i= 1a2)"'

0
1

a)oj=2/a)o(x)sin(7rjx)dx, i=12,...,

0
1 1

O = /Go(x) dx, O =2/60(x) cos(mkx)dx, k=1,2,...;
0

)

o
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let
(%) = Z vor sin(7ix), (4.12)
o(x) = i%j sin(rmi), (4.13)
1(x) = zn: Ok cos (k). (4.14)
k:g

The initial conditions for v, @" and 6" we take in the form:

Vi(x,0) = Vi(x), (4.15)
@"(x, 0) = g (x), (4.16)
0"(x,0) = 62 (x). (4.17)
Let
2= | vi(t)dt, r=1,2,...,n (4.18)
/

Taking into account (4.2)—(4.4), (4.10) and (4.18), from (4.7)—(4.9) we obtain
for { (v, @}, 68,2%) i,j,r=1,2,...,n, k=0,1,2,...,n} a Cauchy problem:

'L n n n ' 4 13 I n
V; =¢t( f,...,V,',',wl,...,a)",Bo, 13- 9 15- ..’Zn),

(4.19)
of =y (V],..., vy, 0f,...,0,,60,6,...,0,21,...,%),
(4.20)
6 = MG (V.. VL @f, . 08 68,00, 60,22,
(4.21)
Z=v, (4.22)
vi (0) = voi, (4.23)
@ (0) = wy, (4.24)
6 (0) = Bok, (4.25)
z(0) =0, (4.26)

where Ag = 1, A, =2fork=1,2,...,n,and
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1
8/ v 8 L
(b," :2/‘[7 (Dn-a:;) —Ka([)ngn)] sm(mx) dr (427)
[1}
r T80
. B[ 00 @]
v _2/A[ax(p Bx) pn]sm(ﬂjx)dx, (4.28)

0

1
w o__ .-’)v A% 0 Cram)?
Mk—of[lipv 0 (G ) g ) O

1

+ p"(a;c )2] cos(mkx) dx. (4.29)

With the help of the Cauchy—Dicard theorem {c.2. [20]) anc can caaily canclude
that the following statements are valid.

Levivia 4.1, Tur cucdin < Nilere eaisrs Ty < Ry suchi chwai elhe CuucChy probiem

(4.19) (4.26) has a uniauc solution. dcfinod on [0, Tal: the functions Vi, wh and 01,
dofinod by tho formulac (4.2) (4.4), holong to tho classe L W(Q,‘) ), —jn,1 [vj“ 1,

and sarisry the conainions (4. 153 )H4.17).

Loryaa A2, Thoro oxists T,, C R, cuoh that funoctiorn P, dofirnod by V~.10)
satisfies the condition

5 < pMx, 1) KO in Q. (1.20)
5. A priori estimates

Our purpose 1S 1o na our 7o « K, SHCh ThAr Tor £3Cch n N there exiere
a ecolution of tho problem (1.10) (1.26), dofined on [0, 7T,,]. It will bo oufficiont

to nind out unirorm (in 72 C [N Q Priort cotimateo tor a funoct-~= (e, s, cn, ey,
dofinod throuch Lemmas 1.1. and 4.2. In that what follows. C + 0 denotes a o~ -~
conoatant, not depending on e € N.

LEMMA 5.1. Fort € |0, '1',,] it holds the inequality
neA2 350 2
lo" (] + (|| @ + @) ar< ¢ (5.1)
0

Proof. Multiplying (4.8) by w/" and summing over j = 1,2,...,n, after inte-
gration by parts we obtain

1

N EI[w"(r)H2 + / [p"(x, t)(aa—a:(x, t))2 + pn—(i—j)(w"(x, t))zJ dx = 0.
0
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Integrating over [0,7], 0 < ¢ < T,,, and taking into account (4.16), we have

o @R + / / [ (2 % ) —ﬁ(w"(x,t))z]dxdt

1 ny2 1 2
= — < —
and using (4.30) we get (5.1).
LEMMA 5.2. Fort € [0,T,] it holds the inequality

[erna (15 al )

81

(5.2)

Proof. Multxplymg (4.7) by v and summing over { = 1,2,...,n, after inte-

gration by parts and using (4.9) for k 0, we have

1

1
%(%”\/‘(t)ﬂz-i-/e"(x £) d =/
0

0

(x,1))" dx

1
+/p"(x,t)(%(x,t))2dx
0

Taking into account (4.15), (4.17), (4.30), (5.1) and the inequality

v
Ox “’

v < 27¢

we obtain (5.2).

LEMMA 5.3. For (x,t) € Q, it holds the inequality
ol ov" 2
et < {1+ [ G o] + | 5.
Proof. Lett € [0, T,] and x;(¢), x2(¢) € [0, 1], such that
mn(t) = xg%(l)fll] 6 (x’ t) =0 (xl (t)’t)’
M,(1) = 6" (x,1) = 6" 0.
(1) max, (x,1) (x2(1),7)
For x € [0, 1] it holds

6"(x,1) — ma(f) = / %?(x,r)dx < \l%ﬂf(t>||,

x(r)
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and hence
1
0°(x) < e )] +mat0) < | 0] +] [ 0" e
Analogously we have ’

9"(x,t)—Mn(t):/X%i—n(x,t)dxz-—“%(t)“,
x2(f)

and
euz>n—4W+mm>w%?w—Vm@ﬂw
So, it holds
|67(x,1)| ” | / 0" (x, ) dx
using (5.2) we get (5.3). a
LEMMA 5.4. Fort € [0, T,] it holds the inequality
% o) < c(1+ |25 <) 50
Proof. The conclusion follows immejiiately from (4.10). 0
LEMMA 5.5. Fort € [0 T,] it holds
allmol 5ol 1% <'>ll)
oG ol + |5 <>ll % =L
<ol G o+ Fel+ / (fIFwel«)) o

Proof. Multiplying (4.7), (4.8) and (4.9) respectively by (7i)?V!, ()’
and (k)26 and taking into account (4.2)-(4.4), after summation over i,j,k =
L2,..., n and addition of the obtained equalities, we get

4 (5ol ol gor)+ [ruo (G wo)

+A(a; ~ (x, t)) (8692 xt)) de ZI (5.6)
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where
1 1
_ [bp" ov A . [opr,, PV
L0 = / bx Ox 0Ox? dx, D(f) = K/ Ee ox2 dx
0 0
1 a0" 52yt 1 1 {w
I3(t) = K/p % B2 dx I4(I) = A/ E(D G
0 0
1 1
ap" du" Fw nan OV" 070
(1) = -4 / Ox Ox Ox? () = K / P 0x ox?
0 0
1 1
L (OV" 25%0 fp" 66" 90"
ho = [o(G) Gade Bo=-D [
0 0
1 1

Taking into account (5.1)—(5.4) and the inequalities

2
e <25l 5 <25 Izl )
2
Rl 58

(for a function f vanishing at x = 0 and x = 1 or with the first derivative vanishing
at the same points), one can estimate the functions I, (f) — Iio(t). For instance,

h0 < man | 50| | 2 0 | G

<50l |5l 5ol

<c|Z0) 550l (1+( /llaxz @'#)’)

applaying the Young inequality, we get

ol veli+ el / ([I el «)],

L) < e“
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where £ > O is arbitrary. In an analogous way one obtains the inequalities:

wo <e| Gl +C{1+“ o + |50l
([l «)]

b0 < | Gl + | Frolf,

o <e| 220 +c

w0 <o G + <1+ |Gl / (150 )]

w0 <20 0] s (1 [ wf + | Xaf),

b0 << G + | Gl +c(1+| 5 Hs)

wo <o G+ e[+ | T +( /Hagxf x)’]

b <e G;fz"(’) (1+|| o)

not) < e g 0 + e G of + o1+ | Frel)
Inequality (5.5) follows from (5.6) and (4.30). a

LEMMA 5.6. There exists To € R, such that for each n € N the Cauchy
problem (4.19)—(4.26) has a unique solution, defined on [0,Ty]. Moreover, the
Junctions V', 0", 8" and p" satisfy the inequalities

,E[m(ii sl + ] % H+Hf’—6—"<f>}l2)
2 2
+ / (ll%x”z"< o + |50l + | Sxol ) a<c 59)
g“’;‘] ||<c (5.10)
gsp(xan (x,)) € 0o, Qo= On,. (5.11)
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Proof. Let
o =[Frol + |G ol + | Fof + / [l e e
According to (5.5) it holds
In < C(1+y7)- (5.13)
Because of (4.15)—(4.17) we have
=N IR T <D+ 1E T+ 120
ie.
w(0) < C. (5.14)
Let [0, T'[, T' € R4, be an existence interval of the Cauchy problem
y=C(1+y* .
¥(0)=C. (5.16)
From (5.13)—(5.16) it follows
a(2) < y(r), te[0,T[ (5.17)
Let 0 < Ty < T'. From (5.12) and (5.17) we obtain
2
e (|5 o + |5 ol |5 ol) + /H%fz" (519

and, using (5.5),

(5ol 1500l +150l)
2 2
e[ G ol |Ge el | Fol«<c
taking into account (4.15)—(4.17) we obtain (5.9). From (5.9) and (5.4) it follows
(5.10). According to (4.10) we have
M

p'(x, 1) < aw

'r)ld'r‘

With the help of (5.7), (5.8) and (5.9) we find that

! i
!Eg@ﬁﬁ<¢%&%]wﬂw>(/hw Wﬁyﬁscﬁ.

Let Ty < min{T", (2M)~3C~3}; then for (x,1) € 0, we have
P (x,1) < 2M.
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For such Tp and (x, t) € Qy, from (4.10) we obtain analogously
m
n
> —.
p (x7 t) = 2
From (4.2)-(4.4) and (5.9) one can easy conclude that for € [0, Ty] it holds

SVl + o+ lero]] < c. (5.19)

i=1
From (4.21) and (4.29) we have

(1) = //[ Kp'0" —+p" 2+(a;)2+p"(%";—")2] dxdt + 6co.

With the help of (5.3), (5.9), (5.11) and (5.7), (5.8), for ¢ € [0, Tp] we obtain
65 ()] < C. (5.20)

From (5.19) and (5.20) we conclude that the solution of the problem (4.19)—(4.26)
is defined on [0, Tp]. 0O

LEMMA 5.7. Let Ty be defined by Lemma 5.6. Then for each n € N it holds

T

[l 1ol + 15l « [l «<c s
0

avy .
Proof. Multiplying (4.7) by Tt'(t) and summing over i = 1,2,...,n, we

obtain

ol - (B 02 5t )
2

<l am| 5 wol [T ol 5 0]+ ”%x_v; 5o

+ sl ol [ 0] |5 0] + |50l |5 o)
Applying (5.7), (5.8), (5.3) and (5.4) we find that

2 2

|50l <<l 5ol 5ol (1+ / ([I5 el «)’)

“[Foll5ol+ % ll(+ll =l

+[5eel) (1+( / G «)) |5 oll5ol]
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With the help of Young inequality and (5.9) one can easily conclude that

/ ll OV ¢ <C

. . ow" oo"
In the same way from (4.8) and (4.9) we obtain the estimates for ” 5| 20 nd ”
respectively. The estimate for ” 5 H follows from (4.6) and (5.9). O

From Lemmas 5.6. and 5.7. we obtain immediately the next result.

PROPOSITION 5.1. Let Ty € R, be defined by Lemma 5.6. Then for the sequence
{(o*,v",0",6") :n € N} the following statements hold true:

(i) {p"} is bounded in L*(Qy), L (0, To; H' (10, 1[)) and H' (Qy);

(iiy {v'}, {@"}, {0"} are bounded in L (0, To; H' (10, 1[)), H'(Qo),
and I*(0, To; H*(]0, 1])).

6. The proof of Theorem 2.2,

In proofs that follow we use some well-known facts of Functions Analysis (e.g.

3))-
Let Ty € R, be defined by Lemma 5.6. Theorem 2.2. is a consequence of the
following lemmas.

LEMMA 6.1. There exists a function
pe L= (O, TO; Hl (]01 1[)) n Hl (QO) n C(—QO)

and a subsequence of {"} (for simplicity denoted again as {p"}), such that

p" — p weakly-* in L (0, To; H'(]0, 1[)), (6.1)
weakly in H'(Qp), (6.2)
strongly in C(Qp). (6.3)

The function p satisfies the conditions

m

7 < <£p< in @0, (6~4)
p(x,0) = po(x), x€[0,1]. (6.5)

Proof. The conclusions (6.1) and (6.2) follow immediately from Proposition
5.1. Let (x,1), (X', ') € Qy. Then

10" (x,1) = p"(, )] < |0"(x,1) — p" (X, )] + [p"(¥, 1) — (¥, 7).
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Using (4.6) and Proposition 5.1. we obtain

16" 1) ~ (42| <]]%—€cn—(é,t)]d§ < Cx-2H,
P -l < [ ar<c [|5ow,0)as

1
< [ 1V lhegoryde < cle -7,
’I
The statement (6.3) follows now from the Arzela’—Ascoli theorem. The conditions
(6.4) and (6.5) follow from (5.11) and (4.6), respectively. O
LEMMA 6.2. There exist functions
v, 0,0 € L™ (0, To; H' (]0, 1[)) N H'(Qo) N L2(0, To; H*(]0, 1]))

and a subsequence of {V", 0", 8"} (denoted again as {V*, @", 6"}), such that

3
(V', 0", 8") = (v,0,0) weakly-*in (L°°(0,TO;H‘(]0,1[))),

(6.6)
(V' @",0") = (v,0,0) weaklyin (H'(Qo))’, (6.7)
(V',0",0") = (v,,0) strongly in (LZ(QO)))3, (6.8)
(v, ",0") = (v,0,0) weaklyin (L*(0,To; H*)0, 1 [)))3, (6.9)
The functions v, W and 0 satisfy the conditions
v(0,2) = v(1,1) = w(0,1) = o(1,1) =0, t € [0, Ty), (6.10)
a

8—2(0,0 = %(1,1) =0 aein |0,Ty, (6.11)

v(x,0) = wo(x), ©(x,0) = wg(x), 8(x,0) = 6(x), x € [0, 1].
(6.12)

Proof. The conclusions follow from Proposition 5.1. and embedding properties
(see Remark 2.1.).

LEMMA 6.3. The functions p, v, ® and 0, defined by Lemmas 6.1. and 6.2.,
satisfy the equations (2.14)2.17) a.e. in Qp.

Proof. Let {(p", v",w", ") : n € N} be subsequence defined by Lemmas 6.1.
and 6.2. The equation (2.14) follows then immediately from (4.6). Let us transform



ONE-DIMENSIONAL FLOW OF A COMPRESSIBLE . . . 89

the equations (4.7)—(4.9) (integrating by parts) to slightly different forms:

[B_V" sin(7ix) + mip” (%—Vﬂ

o vl KB") cos(m'x)] dx =0,

n

aa; cos(njx)] dx =0,

ow" "y . . . n
[( 5 F) sin(mjx) + Amjp

o\_ o\_ o\_‘

[(6;" +Kp"6"%¥; — (w—n)Z _ (pn_p)(_(%\;_")Z_ (p" _p)(a(l)")Z

o Ox
0%0"  8p 00" ov" v
+ pw p +a o 8vn8 pv"az)cos(n:kx)
ow" ,00" vy . _
- nk(pa) o + Dp r +pV'i— P ) sm(ﬂ:kx)] dx=0.

Taking limits (when n — oo), we obtain

[%; sin(7ix) + nip(% - KB) COS(ﬂix)} dx =0,

[(8—“’ +42 ) sin(7jx) + Anjpg—(;) cos(njx)} dx =0,

O O O _

ot
a6 ov  w? *w Bp 8w Bp v v
[( ER era— - ? + pwa? + a + ‘6— £™ + pVﬁ) cos(mkx)

av ow a6y .
- nk(pva +pw + Dpa) sm(n:kx)] dx = 0.

Now, integrating by parts and taking into account (6.10) and (6.11), we get the
equations (2.15)—(2.17). O

LEMMA 6.4. There exists Ty € Ry such that the function 0, defined by Lemma
6.2., satisfies the condition

0>0 in Qo (6.13)

Proof. Because of the inclusion 6 € C(Q,) (see Remark 2.1.), for each & > 0
there exists Tp € Ry, such that for (x, ) € Qy it holds

6(x,7) — 6(x,0)| = [6(x, 1) — 6o(x)| <&,

or
O(x, 1) > Bp(x) —ez2m—¢.
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Remark 6.1. In the second part of this work we intend to prove (with use of
Theorem 2.2.) that a generalised solution of the problem (2.14)—(2.24) exists in Qr
foreach T € R,.

Acknowledgement 1 wish to thank Professor I. Aganovié for encouraging me to
write this paper and for his valuable remarks.
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