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CONVEXITY AND THE RIEMANN C;-FUNCTION

George Csordas, Honolulu, Hawaii

Abstract. The convexity properties of the kernel <ll(t) whose Fourier transform is the Riemann

';-function are investigated. In particular, it is shown that <ll(0) is convex for t > O. Also, lower
bounds for the Tunin differences involving the moments of <ll(t) are established. The paper concludes
with several questions and open problems.

1. Introduction

Let

where
H(x) := ~C; (~).:=1= <1>(t) cos(xt)dt,

=

<1>(t) := L7rn2(27rn2e4t - 3) exp (5t - 7rn2e41) •
n=l

(1.1)

( 1.2)

The Riemann Hypothesis is equivalent to the statement that all the zeros of H(x) are
real (cf. [T, p. 255]). Today, there are no known explicit necessary and sufficient
conditions which a function must satisfy in order that its Fourier transform have
only real zeros (see, however, [PI, p. 17]). Nevertheless, the raison d'erre for
investigating the kernel <1>(t) is that there is an intimate connection (the precise
meaning of which is unknown) between the properties of <1>(t) and the distribution
of the zeros of its Fourier transform.

In Section 2 we begin with a brief summary of results pertaining to <1>(Theorem
2.1) and we highlight some of the lesser known, recently established convexity
properties of <1>(Theorem 2.2 and Theorem 2.3). In particular, we make use of the
fact that log <1>(Vi) is concave for t > 0 and show that this implies that the moments of
<1>(t) satisfy the Turan inequalities (2.7). These inequalities are some of the simplest
necessary conditions which H(x) (see (1.1) above) must satisfy in order that it
possess only real zeros. With the aid of Matiyasevich's triple integral representation
we establish a new lower bound (Theorem 2.8) for the Turan differences of the
moments associated with certain admissible kernels (see Definition 2.7). As a
consequence ofthe foregoing results, we prove (Corollary 2.11) that <1>(t) is a P6lya
frequency function of order 2. (This concept is defined in Section 2.) The main
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result of this paper is that e1>(..jt) is convex for t > 0 (Theorem 2.12). Therefore,

it follows that the Fourier cosine transform of e1>( 0) is positive for all x E IR.

(Corollary 2.13). For the sake of clarity of exposition, the proof of Theorem 2.12 is
deferred to Section 3. This proof requires not only a detailed analysis of the behavior
of e1>(t)but also some numerical work as well as some fairly complicated (albeit
elementary) estimates. In Section 4 we cite some unanswered questions and open
problems. In several instances these problems are supplemented by partial results
and additional references.

2. Convexity properties of e1>(t)

For the reader's convenience we begin with a brief review of the basic properties
of e1>(t)defined by (1.2).

THEOREM2.1. ([CNVI, Theorem AD Consider the function e1>(t)of (1.2) and
set

00

where

e1>(t)= Lan(t) ,
n=1

(2.1)

(n= 1,2, ... ). (2.2)

Then, the following are valid:

(i) foreachn~ I,an(t) >Oforallt~O,sothate1>(t) >Oforallt~O;

(ii) e1>(z)is analytic in the strip -n/8 < Imz < n/8;

(iii) e1>(t)is an even function, so that e1>(2m+1}(0) = 0 (m = 0, 1, ... );
(iv) foranye > 0,

lim e1>(II)(t)exp[(n-e)e4/] =01-+00

for each n = 0, 1, ... ;

(v) e1>'(t) < Of or all t > O.

The proofs of statements (i) - (iv) can be found in P6lya [PI], whereas the
proof of (v) is in Wintner [W] (see also Spira [SD. 0

In order to indicate the significance of the next theorem, we first recall that

1100 100H(x) := 2 e1>(t)eix1dt = e1>(t)cos(xt)dt-00 0
(2.3)

is an entire function of order one ([T, p. 16]) of maximaltype (cf. [CNV2, Appendix
AD whose Taylor series about the origin can be written in the form

H( ) = ~ (-I)mbm 2m
Z ~ (2m)! z ,

(2.4)
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bm := 100rmq>(t)dt (m = 0, 1,2, ... ) . (2.5)

The change of variable, Z2 = -x in (2.4), yields the entire function
00 A

F( ) '- ""' bm .fl' ( )
X .- ~ (2m)!A . 2.6

Then it is easy to see that F(x) is an entire function of order! and that the Riemann
Hypothesis (see the Introduction) is equivalent to the statement that all the zeros of
F(x) are real and negative. Now it is known (cf. Boas [B, p. 24] or P6lya and Schur
[PS)) that a necessary condition for F(x) to have only real zeros is that the moments
bm (in (2.5)) satisfy the Turan inequalities, that is,

A2 2m - 1A A

bm-2m+Ibm-lbm+l~0 (m=I,2,3, ... ). (2.7)

These inequalities (at least for m ~ 2) have been established (cf. [CNVI] and [CVI];
see also [M)) as a consequence of either one of the two properties ((a) or (b)) of
q>(t) stated in the following theorem.

THEOREM 2.2. Let q>(t) be defined by (2.1). Then q>(t) satisfies the following

concavity properties.

(a) ([CNVI, Proposition 2.1], if

K<t>(t):= foo q>(vIU)du (t ~ 0) ,

then log K<t>(t) is strictly concave for t > 0, that is,

d2

dt2 log K<t>(t)< 0 for t > O.

(b) ([CVI, Theorem 2.1)) Thefunction logq>( Vi) is strictly concave for t > O.
o

Now a calculation shows that logq>( Vi) is strictly concave for t > 0 if and
only if

g(t) := t [ (q>'(t)) 2 - q>(t)q>" (t)] + q>(t)q>' (t) > 0 for t > O. (2.8)

To express (2.8) in another way, we use the fact that q>(t) > 0 (Theorem 2.1) and
so we can write

q>(t) = e-v(t) (t E JR) . (2.9)

Since q>'(t) < 0 for t > 0, we see that

g(t) = (q>'(t))2 :t (=~:D (2.10)

and hence, by (2.8) and (2.9), g(t) > 0 if and only if v' (t) is strictly increasingt
for t > O. Using some of the analysis in [CVI], Newman [N] proved the following
stronger result.
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THEOREM2.3. ([N, Theorem 1]) Let v(t) defined by (2.9). Then v"'(t) > afar
t> a.

In terms of <I>(t),Theorem 2.3 says that the function :g} is strictly concave

for t > a. In order to see that v"'(t) > a for t > a implies that v'(t) is strictlyt
increasing for t > a, we first note that for t > a,

!!:- (r!!:- (v'(t))) = !!:-(tv"(t) -v'(t)) = tv"'(t). (2.11)dt dt t dt

Now setf(t) := tv"(t) - v'(t). Thenf(a) = a, since v'(t) is an odd function (<I>(t)
is even by Theorem 2.1). Since v"'(t) > a for t > a, it follows from (2.11) that

tv"(t) - v'(t) > a for t > a and hence v'?) is strictly increasing for t > a.

Remark 2.4. In [CVl] and [CVV] it was shown that the moments of various
kernels, K(t), for which log K( 0) is concave for t > a, satisfy, in addition to the
Tunin inequalities, some more general moment inequalities. Unaware of the results
in [CVl], [CVV] and [N], in an interesting paper Conrey and Gosh [CG, Theorem

1] used the concavity of ~(~tlfor t > a, to deduce the Tunin inequalities for certain
classes of entire functions. 0

We next demonstrate by means of a concrete example that if we only assume
that log K(t) is concave for t > a, then the moments of K(t) need not satisfy the
Tunin inequalities.

Example 2.5. If we set K(t) := e-r/2(t4 + 36), then it is not difficult to show
that

d2 -1296 + 432t2 - 72t4 - 4t6 - t8

d210gK(t)= ·2 <a
t (36 + r4)

for t > a. Next, let

{3m:= 100rm K(t)dt
(m = a, 1,2, ... ) . (2.12)

These moments can be explicitly calculated with the aid of the gamma function:

(3m=23/22m[9r(~+m)+r(~+m)] ,

where r(x):= 100e-tf-1dt, Rex> a. Let dm denote the Turan differences

._ 2 2m - 1
dm .- 13m- 2m + 1{3m-l {3m+l (m = 1,2,3, ... ) .

Then d1 = -84n, so that the Tunin inequalities fail to hold for m = 1. Consequently,
the entire function

(2.13)
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cannot have only real zeros. By evaluating the integral in (2.13), we find that

G(x) = ~(39 - 6:x:+x4)e-r/2

and hence we infer the stronger conclusion, namely, that G(x) has no real zeros.
o

Remark 2.6. We call attention to the fact that it is possible to establish fairly
general moment inequalities under the weaker assumption that 10gK(t) is concave
for t > O. Indeed, let K(t) > 0 for t > 0 and suppose that K(t) is C2 on [0,00). For
R> 0, set

J.lm(R) := lRtIllK(t)dt (m = 0, 1,2, ... ).

IflogK(t) is concave for t > 0, then

2 m
J.lm(R) ?; m + 1J.lm-1 (R)J.lm+1(R) (m = 1,2,3, ... ). (2.14)

Recently, Mitrinovie and Peearie [MP] gave an elegant proof of (2.14) using the
Chebyshev integral inequality. 0

In order to expedite our presentation, it will be convenient to introduce the
following definition.

Definition 2.7. A function K : lR ----t lR is called an admissible kernel, if it
satisfies the following properties:

(i) K(t) is analytic in the strip I 1mzl < "l' for some "l' > 0,
(ii) K(t) > 0 for t E lR,

(iii) K(t) = K( -t) for t E lR,
(iv) K'(t) < 0 for t > 0, and
(v) for some e > 0 and n = 0, 1, 2, ... ,

K(n)(t) = 0 (exp (- WH)) ast ----+ 00. (2.15)

(2.18)

(2.17)

(2.16)

o(m = 1,2,3, ... ).

We next proceed to establish a lower bound for the Turan differences of the
moments of those admissible kernels K(t) for which log K( Vi) is concave on (0,00).

THEOREM 2.8. Let K(t) be an admissible kernel. For each R > 0, let

13m(R) := 13m(R, K) := lRrmK(t)dt (m = 0, 1,2, ... ).

1/logK( Vi) is concave/or t > 0, then/or m = 1,2,3, ... we have

2 2m-l
dm(R) : = 13m(R) - 2m + 1 13m-1(R)13m+1(R)

K(R) 2m-1 [ 213 () 13 ()]?; 2m + 1 R R m R - m+1 R .

Moreover, R213m(R) - 13m+1(R) > 0 (jor R > 0, m = 1,2,3, ... ) and

2 2m-l
13m(00) ?; 2m + 1 13m-1 (00 )13m+1(00),
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(2.23)

(2.22)

(2.21)

(2.20)

(2.19)

(R> 0)

Proof. Our proof will be based on a modification of Matiyasevich's triple
integral representation of the Tunin differences [M]. First, an integration by parts
applied to the integral in (2.16) yields

R2m+1 1 lRf3m(R) = --K(R) - -- f2m+1K' (t)dt.
2m+1 2m+10

Thus, using (2.19) we obtain

r r u2mv2mK(u)K(v)(v2 _ u2) (lV_~ (K'(t)) dt) dudvJo Jo II dt tK(t)

= lRlRu2m-Iv2m-1 (v2 - u2) (vK(v)K'(u) - uK(u)K'(v))dudv

= 2f3m+I(R)[R2m-IK(R) - (2m - l)f3m-I(R))

- 2f3m(R)[R2m+IK(R) - (2m + l)f3m(R))

=2(2m+ 1) [dm(R) - 2K(R) R2m-I(R2f3m(R) -f3m+I(R)))m+ 1

=: Im(R).

Since log K (Vi) is concave for t > 0, it follows that fr ( ~:;X)) > 0 for t > 0 (cf.
(2.8) and (2.10)) and hence we see thatIm(R) > 0 and thus (2.17) holds.

Next, it is easy to see that

f3m+I(R) = lRf2m+2K(t)dt < Rif3m(R),

so that the lower bound for the Turan difference in (2.17) is positive. Since

lRf2mK(t)dt ::::;R2'"1°O K(t)dt and since K(t) is an admissible kernel, it follows
that for each fixed m (m = 1,2,3, ... ),

. K(R) 2m-I [ 2f3 () f3 ())hm -2--R R m R - m+1 R = O.R~oo m + 1

Therefore, (2.17) and (2.21) yield the required Turan inequalities (2.18). 0
A glance at the above proof shows that Theorem 2.8 remains valid for kernels

which meet less stringent assumptions than those stipulated for admissible kernels.

Since <1>(t)(cf. (2.2)) is an admissible kernel (cf. Theorem 2.1) and (log <1>( Vi))" <
o (t > 0), therefore, as an immediate consequence of Theorem 2.9 we have

COROLLARY 2.9. With <1>(t)defined by (2.2), set

hm(R) := lRf2'"<1>(t)dt (R> 0, m = 0, 1,2, ... ).

Then the moments hm(R) satisfy (2.17) and (2.18).

The interest in Corollary 2.9 stems, in part, from the fact that a necessary
condition for the entire function

HR (x) := lR<1>(t)cos(xt)dt
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to have only real zeros is that the associated moments (2.22) satisfy the Turan
inequalities. (See also Problem I in Section 4.)

By way of application of the foregoing results we next show that <ll(t) is a P6lya
frequency function of order 2 (PF2). We recall that a function K : JR - JR is a P6lya

frequency function of order 2, if K(t) ? 0 for all t E JR and

K(XI - YI)K(X2 - Y2) ? K(XI - Y2)K(X2 - YI), (2.24)

whenever -00 < Xl ~ X2 < 00and -00 < YI ~ Y2 < 00 (see, for example, Barlow
and Proschan [BP, p. 24]).

Remark 2.10. For an exhaustive treatment of P6lya frequency functions of any
order we refer to Karlin [KJ.P61ya frequency functions of order 2 are particularly im­
portant and have applications to statistical theory (see [K, p. 32J for many references)
and reliability theory [BPJ.

COROLLARY2.11. The kemel <ll(t) (see (2.1)) is a P6lyafrequency function of
order 2.

Proof Fort E R set <ll(t) = e-v(t) (cf. (2.9)). By Theorem 2.2 (Iog<ll( 0))" <
o for t > 0 and so it follows that (log <ll(t))" < 0 for t > 0 (cf. (2.8)). Therefore,
v(t) is convex (v" (t) > 0) for t > O. ~ut v( t) is an even (COO) function and thus we
see that v(t) is convex on JR. Since <ll(t) ? 0 it suffices to show that

<ll(XI - Yl )<ll(X2 - Y2) ? <ll(XI - Y2)<ll(X2 - Yl) , (2.25)

whenever Xl ~ X2 and YI ~ Y2. Next, we set a := XI - Y2, b := X2 - YI, c := Xl - YI

and d:= X2 - Y2. Then a ~ c ~ b, a ~ d ~ b and a + b = c + d. (Note that these
relations determine XI, X2, Yl and Y2 with XI ~ X2 and Yl ~ Y2, up to a translation.)
Thus, (2.25) is equivalent to the inequality <ll(a)<ll(b) ~ <ll(c)<ll(d), so that in terms
of the function v it suffices to show that

v(a) + v(b) ? v(c) + v(d). (2.26)

If a = b, then a = c = b = d and inequality (2.26) is obvious. Thus, we may
assume that a < b. Since v(t) is convex on R we have

and

b-c c-a
v(c) ~ b _ a v(a) + b _ a v(b)

(2.27)

b-d d-a

v(d) ~ b _ a v(a) + b _ a v(b). (2.28)

Finally, we add inequalities (2.27) and (2.28) and then use the relation a + b = c + d
to obtain the desired inequality (2.26). D

We now turn to the main result of this paper.

THEOREM2.12. With <ll(t) defined by (2.1), the function <ll(0) is strictly
convex for t > 0, that is,

for t> O.
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In light of the foregoing analysis of the nature of the kernel ep(t), the assertion
of Theorem 2.12 seems plausible at least for sufficiently large values of t. In contrast,

the behaviorofep( 0), t > 0, near the origin is considerably more subtle. On account
of the detailed calculations required, the proof of Theorem 2.12 is deferred to Section
3. By way of clarification, we also note that if K(t) is a logarithmically concave
admissible kernel, then, in general K( 0) need not be convex for t > O. Indeed, let

K(t) := e-I'. Then log K( 0) = -P is concave for t > 0, but K( 0) = e-r is not

convex for t > O. The kernels K(t; II,a) := e-ar211, (a > 0, n > 1) may be thought of
as paradigms of admissible kernels. Having said this, we hasten to add that they do
not epitomize the class of admissible kernels since they are entire functions. Finally,
it is not difficult to demonstrate that for any a > 0 and II > 1, the kernel K( 0;n, a)
is not convex for t > O. Therefore, it would be of interest to see some explicit
examples of admissible kernels, K(t), such that K(t) is not an entire function but that
K( 0) is convex for t > O.

We conclude this section by noting that one consequence of Theorem 2.12 is

that the entire function represented by the Fourier cosine transform of ep(0) cannot
have any real zeros. More precisely, we have

COROLLARY 2.13. For any x E lR,

LX) ep(0) cos(xt)dt > 0, (2.29)

where ep(t) is defined by (2.1).

Proof. Let K(t) := ep(0), t ~ O. By virtue of the properties of ep(t) (see
Theorem 2.1) it is not difficult to show that K(t), K'(t) and K"(t) are all integrable
on [0,00). The endpoint t = 0 is a removable singularity of K'(t) and K"(t). In

particular, by L'Hospital's rule we have lim K'(t) = i lim ep" (0) = iep"(O). If1-+0+ 1-+0+

X = 0, inequality (2.29) is clear. If x -I- 0, two integration by parts yield

r ('XO K(t) cos(xt)dt =r lim 1=K(t) cos(xt)dtio £-+0+ £

1 1== - -2ep"(0) - lim K" (t) cos(xt)dt£-+0+ £

> - ~ep" (0) - lim 1=K" (t)dt = - ~ep" (0) + ~ep" (0) = 0,2 £-+0+ £ 2 2

where we have used the fact that K"(t) > 0 for t > 0 (cf. Theorem 2.12). 0

3. Proof of Theorem 2.12

We begin with the observation that for t > 0

d2

4t3/2 dt2 ep(0) = 0 ep"(0) - ep'(0) > 0 (3.1 )
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g(t) := t2 :t (<I>'?)) = t<l>"(t) - <1>'(t) > 0, (3.2)

where <I>(t) is defined by (2.1). In order to establish (3.2), we consider the following
three intervals

{ h := (0,0.096] ,

lz := [0.09,0.12] ,

h := [0.12, (0)

and show that g(t) > 0 for t E Ij,j = 1,2,3.

LEMMA 3.1. With g(t) defined by (3.2). we have

g(t) > 0 for tEll = (0,0.096] .

(3.3)

Proof. Since g(O) = 0 and g' (t) = t<l>/II(t), it suffices to show that g' (t) > 0
for tEll. To this end, we proceed to show that <1>(4)(t) > 0 for tEl,. First, it is
known (see [CNVl, p. 534, inequality (3.36)]) that

<1>(4)(t) > a)4) (t) for all t ~ 0, (3.4)

where aI (t) is defined by (2.2) with n = 1. Now an explicit calculation shows that

a)4) (t) = rcps'(rce41) exp (5t - rce41) ,

where Ps(y) := 512y5 - 8,448y4 + 41,408y3 - 68, 096yl + 30, 930y - 1,875. In
addition, in [CVl, p. 185] it was proved that Ps(y) has 5 distinct positive zeros.
These zeros are x, := 0.071 ... ,X2 := 0.604 ... , X3 := 1.996 ... , X4 := 4.617 ...

and Xs := 9.209 .. , . Consequently, Ps(y) > 0 on (X3,X4)' But rce41 falls in this

interval provided 0 :::;t < !log ( =i-) = 0.096 .... Hence, it follows that

a)4) (t) > 0 for tEl, . (3.5)

By (3.4) and (3.5), <1>(4)(t) > 0 for tEl,. Since g' (t) = t<l>'"(t) and <1>/11(0) = 0,
we conclude that <1>/11(t) > 0 and g' (t) > 0 for tEll. This shows that g(t) > 0 for
tEll and the proof of the lemma is complete. 0

LEMMA 3.2. With g(t) defined by (3.2), we have

g(t) > 0 for t E lz = [0.09,0.12].

Proof. As in the proof of Lemma 3.1, we consider g'(t) = t<l>/II(t) and show
that <1>/11(t) > 0 on h To this end, we use (2.1) and (2.2) and write

where

00

<1>'"(t) = L a~' (t) = a;" (t) + <1>;" (t) ,
n=I

00

<I>~'(t) = L rcn2p4(rcn2e41) exp (5t - rcn2e41)
11=2

(3.6)

(3.7)

(3.8)
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P4(Y) := -128l + 1,440l- 4, 232l + 3, 270y - 375. (3.9)

Then the idea of the proof is to show that (cf. (3.6))

l1>"/(t) ~ a~/(t) - %~;Il1>t(t)I > 0 (t E h). (3.10)

We first obtain an upper bound for Il1>;"(t)I (t E h). To begin with, for y ~ 3 we
have the elementary estimate

4( 1,440 4,232 3,270 375)!P4(y)I ::; y 1 + 128y + 128y2 + 128y3 + 7 (3.11)

::; lOl (y ~ 3).

Let y := ne4/, so that y ~ 3 for all t ~ O. Then
00

Il1>;"(t) I ::; 2: nn2Ip4(n2y) I exp (5t - n2y)
n=2

00

::; 10e5' 2: nn2(n2y)4e-n2y
n=2

00

= 10nSe21/2:nlOe-n2y.
n=2

Since xlOe-trX! is strictly decreasing for x ~ 2, by the integral test

(3.12)

(3.13)

00 00

2:nIOe-n21t = 210e-41t + 2:nlOe-n21t
n=2 11=3

::; 21Oe-41t + 100xlOe-lt~ dx

::; 0.00357 ... + 0.00042 ...

< 0.0041.

Thus, for 0.09::; t ::; 0.12, inequalities (3.12) and (3.13) yield the following upper
bound

1l1>~/(t) I ::; lOnSe21(O.12)(0.0041) < 156. (3.14)

Next, we find a lower bound for ant) (see (3.7)) on the interval h The
zeros of the polynomial P4(Y) (cf. (3.9)) are [eVl, p. 187]): Yl := 0.138 ... ,
Y2 := 0.981 ... , Y3 := 3.046 and Y4 := 7.083 ... , while the zeros of the
derivative p~(y) are Xl := 0.512 , X2 := 2.165 ... and X3 := 5.759 .... Hence,
with the aid of the calculus we deduce that P4 (y) > 0 on the interval (Y3, Y4) and
thatp4(y) is strictly increasing on (X2,X3). NQWfor t E h ne4/ lies in the interval

(4.5,5.1). Also, exp (5t - ne4/) is strictly decreasing on h and so we obtain the
following lower bound for a;" (t) on h:

a;"(t) = np4(ne4/) exp (5t - ne4/)

> np4(4.5) exp (5(0.12) - ne4(O.12)) > 263. (3.15)
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Combining the inequalities (3.14) and (3.15) we have

<I>'" (t) > a~' (t) - max I<I>;" (t) I (t E lz)h
> 263 - 156 > 0 .

Since g'(t) = t<I>'''(t) > 0 for t E lz and since g(0.09) > 0 (cf. Lemma 3.1),
we conclude that g(t) > 0 on h 0

Finally, to complete the proof of Theorem 2.12, it remains to show thatg(t) > 0
on the unbounded interval h (cf. (3.3)).

LEMMA 3.3. With g(t) defined by (3.2), we have

g(t) > 0 for t E 13 = [0.12,00).

Proof. By the properties of <I>(t)(cf. Theorem 2.1) we can readily justify the
term-by-term differentiation of the series (2.1) and thus we have for t E JR

g(t) = t<I>"(t) - <I>' (t)
00

= L t a;: (t) - a~(t),
n=I

(3.16)

where an(t) is defined by (2.2). Next, a calculation shows that, with Y := nn2e4t,.
ta;; (t) - a;, (t) = nn2 exp(5t - y)R(y) , (3.17)

where

and

R(y) = tP3(Y) + (-P2(Y)),

P3(Y) = 32l- 224l + 330y- 75

(3.18)

(3.19)

-P2(Y) = 8l- 30y+ 15. (3.20)

Now the zeros of P3(Y) are Xl := 0.277 , X2 := 1.67 and X3 := 5.049 ...
while the zeros of P2(Y) are tl := 0.594 and t2 := 3.15 Hence, P3(Y) > 0
and -P2(Y) > 0 for Y ~ X3 = 5.045 ... and so we see that (cf. (3.18)) R(y) > 0 for

all y ~ X3. Since y = lrn2e4t ~ X3 = 5.049 ... for all n ~ 1 and for t ~ !log (~) =
0.118 ... , it follows that (cf. (3.17)) ta;: (t) - a;,(t) ~ 0 for n ~ 1 and t ~ 0.118 ...
. This together with (3.16) shows that g(t) > 0 for t E 13, and so the proof of the
lemma is complete. 0

In conclusion, by Lemmas 3.1-3.3, g(t) > 0 (cf. (3.2)) for t > 0 and hence
<I>( Vi) is convex for t > O. This completes the proof of Theorem 2.12.

4. Questions and open problems

Throughout this section, <I>(t)will denote the kernel defined by (2.1). The anal­
ysis of the properties of <I>(t)and its Fourier transform has led to many unanswered
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(4.1 )

questions and open problems. Here we will confine our attention to only a few of
those problems which seem interesting or significant (in the sense that the solution
of the problem may shed some light on the distribution of zeros of certain entire
functions related to the Riemann £-function) or may even be tractable.

Problem 1. Let

HR (x) : = lR<1>(t)cos(xt)dt (R > 0)
00 k~

=L(-I)"bk(R)~k 0
k=O (2k)! . .

Is there a positive number R for which the entire function HR (x) has some nonreal
zeros?

Remark. For any R, 0 < R < 00, the entire function HR(x) has at most afinite

number of nonreal zeros (cf. [CSV, proof of Corollary 2.7]). Since <1>"(t) < 0 on the
interval [0,0.11], it follows that for 0 < R :s; 0.11, HR (x) has only real zeros [CV2,
Theorem 3.6].

Problem 2. We have seen in Section 2 (cf. Theorem 2.8 and Corollary 2.9) that

the Tunin inequalities associated with HR(x) (cf. (4.11)), that is,

~2 2m - 1 ~ ~
bm(R) ~ 2m + 1 bm-1 (R)blll+1 (R) (m = 1,2,3, ... ; R > 0) (4.2)

are satisfied. In order that HR (x) possess only real zeros, it must satisfy the stronger
set of necessary conditions known as the Laguerre inequalities [CVV, p. 122]:

Lp[HR](x):= (H;rl(x)r -H;r-l)(x)H~+l)(x) ~ 0 (4.3)

for all x E IRand p = 1,2,3, .... Does HR (x) satisfy the Laguerre inequalities? For
R = 00, set H(x) := Hoo(x). Then is it true that

LdH](x) ~ 0 for all x E 1R? (4.4)

Remark. The verification of the special case (4.4) itself would be significant
(see [CSV, Theorems I and III]). Of course, should inequality (4.4) fail to hold
for some x, then the Riemann Hypothesis would be false. We remark that since
for Ixl < 1.09··· X 109 the zeros of H(x) are real, it follows that [CSV, p. 398]
with p = 1 the Laguerre inequalities (4.4) are satisfied for Ixl < 1.09··· X 109•

Nevertheless, it is curious that to date so little progress has been made in proving the
Laguerre inequalities (4.4) (cf. [CVV, p. 122]). Therefore, it would be desirable
to discover a property of the kernel <1>(t)(if there is one) which will imply the
inequalities (4.4), perchance in the spirit of the proof of Theorem 2.8. Let

K(t):= i:<1>(t+ s)<1>(t- s)s2 ds. (4.5)

Then by virtue of the properties of <1>(cf. Theorem 2.1) it is not difficult to see that
<1>(t)is an even integrable function. Since log K( Vi) is concave for t > 0, log <1>(t)is
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concave for t > 0 (cf. (2.8)) and so it follows that K'(t) < 0 for t > O. In addition,
using standard Fourier transform techniques, we can establish that

x 100L1 [H]( -) = 2 K(t) cos(xt)dt.
2 0

Problem 3. According to Corollary 2.13,

(4.6)

F(x) := 100et>( Jt) cos(xt)dt > 0 for all x E JR. (4.7)

What can be said about the location of the (necessarily nonreal) zeros of F(x)?

Problem 4. In Section 2 we noted that et>( t) = Co +CI r2 +C2t4+... (Itl < ~) is

an admissible kernel. Thus, et>( Jt) = Co +CI t +C2t2+ ... is analytic for It 1 < (~)2

and consequently the Mellin transform of <I>(Jt), that is,

(4.8)

represents (via the Prym decomposition) a meromorphit function whose only poles
are the simple poles z = -k (k = 0,1,2, ... ). Does M(z) have only real negative
zeros?

Renwrk. In a beautiful paper, P6lya [P2, Satz II] gave, using the theory of
multiplier sequences, an elegant proof of a general result from which we can deduce

that if M(z) has only real negative zeros, then 100et>(t) cos(xt)dt has only real zeros!

Problem 5. We know that et>(t) is a P6lya frequency function of order 2 (cf.
Corollary 2.11). Is et>(t) a P6lya frequency function of order k, for some k > 2?

Remark. For a comprehensive treatment of P6lya frequency functions (of any
order) we refer to Karlin [K].

Problem 6. Conrey and Gosh [CG] have shown that the Taylor coefficients
of certain generalized c;-functions (for example, with the notation in [T, p. 16],

c;(~ + it), where k is a positive parameter) satisfy the Tunin inequalities. These
functions can also be represented as the Fourier transform of certain kernels K(t)

(see [CG, p. 411]). Which of the convexity properties investigated in this paper
remain valid for the kernels K(t)? What are the de Bruijn-Newman constants (for
the definition see, for example, [CNV2]) associated with these c;-functions? Do
these entire functions satisfy the Laguerre inequalities (4.3)?
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