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A NEW PROOF OF A THEOREM

CONCERNING DECOMPOSABLE GROUPS

Wojciech Chojnacki, Warszawa, Poland and Adelaide, Australia

Abstract. We give an elementary proof of the following result: If G is a compact non-zero Abelian

group with dual isomorphic to a subgroup of Q, such that U u (- U) = G \ G(2) and U n (- U) = 0 for

some open subset U c G, where G(2) = {a E G: 2a = O}, then G is topologically isomorphic with T.

1. Introduction

Let G be a locally compact Abelian group with dual 6. Denote by G(2) and

G(2) the image and kernel of the homomorphism G =3 a H 2a E G, respectively.
Given a subset X C G, let

-X={aEG:-aEX}.

In agreement with the terminology introduced in [1], G will be said to be decom
posable if there exists an open subset U C G such that U U (- U) = G \ G(2) and
un (-U) = 0.

Let 1l' be the multiplicative group of complex numbers with unit modulus,
endowed with the usual topology. Let Q be the additive group of rational numbers,
equipped with the discrete topology. For each n E N, let Z(n) be the cyclic group
with n elements. Assume that the Z(n) are endowed with the discrete topology.
Given Abelian groups G; (i = 1, ... , n), denote by G1 x ... x Gn the direct product
of the G;. For a cardinal number m and a compact Abelian group H, designate by
Hm the direct product of m copies of H, enriched with the product topology (under
which Hm is compact).

In [1] the following characterisation of decomposable compact Abelian groups
is given:

THEOREM 1. Let G be a compact Abelian group. Then G is decomposable if
and only if either (6)(2) is a countable torsion group or G is topologically isomorphic
with 1l' x Z(2) m x F, where m is a cardinal number and F is a finite Abelian group.

The above theorem is a consequence of a number of results describing certain
subclasses of the class of all decomposable compact Abelian groups. One of these
results reads as follows:
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THEOREM 2. Any decomposable compact connected Abelian group different
from a singleton is topologically isomorphic with T.

The main part of the proof to Theorem 2 is embodied by the following result:

THEOREM 3. Suppose that G is a decomposable compact Abelian group
different from a singleton. Suppose. moreover, that 6 is isomorphic with a subgroup
ofQ. Then G is topologically isomorphic with T.

The proof of Theorem 3 given in [1] (as part of the proof to Proposition 4.1)
is short but quite involved. This note offers a longer but more elementary proof.
While the first of these proofs utilises a rather special result concerning compact
cancellative semi groups, the second uses only standard tools from general topology.
This notwithstanding, both proofs invoke freely a basic lore on locally compact
Abelian groups.

2. Proof of the main result

This section gives the proof of Theorem 3 alluded to above.

Proof of Theorem 3. We commence by showing that, for every a E G, G \ {a}
is connected. Since 6 is isomorphic with a subgroup of Q, it is torsion free. Hence,
being compact, G is connected (cf. [2, Thm. 24.25]). We see that G is a continuum
with more than one element. By a theorem of Moore-Wallace [4, 6] (see also [3, §47,
Sec. IV, Thm. 5]), any continuum different from a singleton contains at least two
elements, each of which has a connected complement. Therefore there exists bEG

for which G \ {b } is connected. Now, to conclude that G \ {a} is connected for each
a E G, it suffices to observe that G \ {a} is the image of G \ {b} via the translation
by a - b (defined as G 3 h H a - b + hE G), which is a homeomorphism.

Denote by 0 the neutral element of G. Let U be an open subset of G such that

U U (- U) = G \ G(2) and un (- U) = 0. It is clear that G \ G(2) is disconnected. In
view of the assertion established in the preceding paragraph, G \ {O} is connected.

Therefore G(2) \ {O} is non-empty.
Let p be a monomorphism mapping 6 into Q. For each n E N, let KII be the

cyclic subgroup of Q given by

KII = {kin! I k E Z}

and let rll be the subgroup of 6 given by
-I A

rn = p (KII np(G)).

It is clear that, for each n E N, C, is cyclic and rll C rll+l. Furthermore, 6 =
u:1rn•

We now prove that G(2) \ {O} has precisely one element. Select g E G(2) \ {O}
arbitrarily. Given n E N, let Xn be a generator of rn• Since 2g = 0, we have
(g, Xn) = ±1 for each n E N. Here (., .) represents the pairing between elements

of G and G. Now either there is a sequence {ndkEN in N diverging to infinity such
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that (g,Xnk) = I for each kEN, or (g,Xn) = -I for all but finitely many n E N.
Suppose that the first possibility holds. Since {lll}nENis an increasing sequence
of subgroups eventually exhausting all of G, any given Y E G can be written as
Y = [Xnk for some k, [ E N. It then follows that (g, y) = I, which, in view of the
arbitrariness of y, implies that g = 0, a contradiction. The first possibility being
excluded, let no E N be such that (g, Xn) = -I for each integer n greater than no.

Given y E G, choose [ E Nand n E N with n > no such that y = [X,. Then, clearly,
(g, y) = (-1)/, which shows that (g, y) does not depend on the particular choice of

g. Consequently, g is uniquely determined, and so G(2) \ {O} is a singleton.
Denote by g the unique element of G(2) \ {O}. We clearly have G(2) = {O,g}.

For each subset X C G, denote by ax the boundary of X relative to G. We now show
that

au = {O,g}. (I)

It is evident that au C {O,g}. Since the inversion G 3 a H -a EGis a
homeomorphism, we have a( -U) = -au. Taking into account that g = -g, we
see that a( -U) = au. Now au c a(u u (-U)), since U is open. Moreover,

a(Uu (-U)) C aUua(-U) = au.

It follows that au = a(U u (-U)). In particular, the set U U (-U) uau is closed.
Suppose that {O,g} \ au"# 0. Being a finite set, {O,g} \ au is closed. Since Gis
the union of {O,g} \ au and U U (-U) u au, we arrive at a contradiction with G
being connected. Thus {O,g} \ au = 0, establishing (I).

We contend that Uu {O} is connected. Suppose, on the contrary, that Uu {O} =
AU B, where A and B are non-empty disjoint closed subsets of U U {O}. In view of
(I), U U {O} is closed in G \ {g}. Correspondingly, A and B are closed in G \ {g}.

It is now clear that Au (-A) and B U (-B) are non-empty disjoint closed subsets of
G\ {g}, whose union is the whole of G\ {g}. But this contradicts the connectedness
of G\ {g} (which follows from the assertion from the first paragraph) and establishes
the contention.

Let

VI = (U + g) n (- U) and V2 = (U +g) n u.

We claim that VI is not empty. Since G is compact and connected, it is also divisible
(cf. [2, Thm. 24.25]). In particular, g = 2h for some h E G. Since g is non-zero, we

see that h is a member of G \ G(2), and so either h or -II falls into U. If hE U, then,
taking into account that 2g = 0, we have -h = h + g, whence h E VI. If -h E U,
then, in view of h = -h + g, we have -h E VI' In either case, VI is non-empty, as
claimed.

We shall now focus our attention on the set VI U {O,g}. We first show that it is
closed in G.

Given a subset X C G and a E G, let

X + a = {b E G: b - a E X}.
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Clearly, since G is connected, 8VI is non-void. We have

8VI C 8(U + g) U 8( -U) = {O, g}.

Since VI is invariant under the composition of the inversion and the translation by
g, so too is 8VI. It is easily seen that any non-empty subset of 8VI invariant under
the same composition coincides with 8VI. Therefore 8V, = {O,g}, implying that
VI U {O, g} is closed.

We now show that VI U {O, g} is connected. Suppose, on the contrary, that
VI U {O, g} = A U B, where A and B are non-empty disjoint closed subsets of
VI U {O, g}. Since VI U {O, g} is closed in G, it follows that A and B are closed in
G too. With no loss of generality, we may assume that 0 E A. Then, necessarily,
g E B. For otherwise B would be an open subset of VI and, since VI is open in G, B

would be open in G; as B is also closed in G, we would thus arrive at a contradiction
with G being connected. Now A \ {O} is non-empty for otherwise {O} would be an
open subset of VI U {O, g} contrary to the fact that 0 E 8VI \ VI. Since

A \ {O} c (U + g) U {g} C G \ {O}

and since A is closed in G, it follows that A \ {O} is a closed subset of (U +g) U {g}.

On the other hand, since 8V2 is contained in 8(U + g) U 8U = {O,g}, we find that
V2U{g} is a closed subset of (U +g)U{g}. AsB is closed in G, BUV2 = BUV2U{g}

is closed in (U +g) U {g}. We thus see that A \ {O} and B U V2 are closed non-empty
subsets of (U + g) U {g}. Clearly, A \ {O} and B U V2 are disjoint and their union
is all of (U + g) U {g}. This is, however, incompatible with the fact that, being
the translate by g of the connected set U U {O} (recall that the connectedness of
U U {O} was already shown earlier), (U + g) U {g} is connected. The connectedness
of V] U {O, g} is thus established.

In preparation for the next step, we show now that if V2 is non-void, then both
V2 U {O, g} and (- V2) U {O, g} are connected. Assume then that V2 -=I- 0. Since G
is connected, 8V2 is not empty. V2 is invariant under the translation by g, and so
too is 8V2. Since 8V2 C {O, g} and since any non-empty subset of {O, g} invariant
under the translation by g coincides with {O, g}, it follows that 8V2 is all of {O, g}.

Repeating the argument employed in the proof of the connectedness of VI U {O, g},

we conclude that V2 U {O, g} is connected. Now (- V2) U {O, g} is connected too for
it is the inverse of V2 U {O, g}.

At this stage, we are in position to show that VI U {O, g} is an arc with endpoints
o and g. Note first that, since G is compact and G is countable, Gis metrisable
(cf. [2, Thm. 24.15]). In particular, VI U {O,g} is a metrisable continuum. By
a theorem of Moore [4] (see also [3, §47, Sec. V, Thm. 1]), if every point in a
metrisable continuum with the exception of two points a and b has a disconnected
complement, then the continuum is an arc with endpoints a and b. Thus to prove
that VI U {O,g} is an arc with endpoints 0 and g, it suffices to show that, for each
a E V" (VI U {O,g}) \ {a} is disconnected. Suppose that (VI U {O,g}) \ {a}
is connected for some a E VI' Noting that (VI U {O, g}) \ {a} coincides with
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(VI \ {a}) U {O,g} and that the translate of(VI \ {a}) U {O,g} by g coincides with
((-VI) \ {a + g}) U {O,g}, we see that ((-VI) \ {a + g}) U {O,g} is connected.
Now both (VI \ {a}) U {O,g} and ((-VI) \ {a + g}) U {O,g} are connected and
contain 0 and g, so their union C is connected. If V2 is empty, then, as is easily
seen, C coincides with G \ {a, a + g}, and in particular G \ {a, a + g} is connected.
If V2 is not empty, then both V2 U {O,g} and (-V2) U {O,g} are connected and
contain 0 and g, and so (V2 U {O,g}) U (( - V2) U {O,g}) U C is connected. It is
straightforwardly verified that the latter set coincides with G \ {a, a + g}. Thus,
independently of whether or not V2 is empty, G \ {a, a + g} is connected. But
G \ {a, a + g} is disconnected, since it is the translate by a of the disconnected set

G \ {O,g} (= G \ G(2)). This contradiction proves that VI U {O,g} is an arc with
endpoints 0 and g.

Now that V2 is an open subset of G homeomorphic with the real line lR, G is
locally connected. According to a theorem ofPontryagin [5, Thm. 42], any compact,
metrisable, connected and locally connected group is the direct product of a finite or
countable number of subgroups, each isomorphic with T. Applying this theorem and
taking into account that G contains an open subset homeomorphic with 1R (namely
V2), we find that G is topologically isomorphic with T.

o
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