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Vol. 37(57)(2002), 269 – 273

THE DIOPHANTINE EQUATION P (x) = n! AND A RESULT
OF M. OVERHOLT

Florian Luca

Mathematical Institute, UNAM, Mexico

Abstract. In this note, we show that the ABC-conjecture implies
that a diophantine equation of the form P (x) = n! with P a polynomial
with integer coefficients and degree d ≥ 2 has only finitely many integer
solutions (x, n) with n > 0.

Let P ∈ Z[X ] be any polynomial with integer coefficients of degree d ≥ 2.
In this note, we look at the diophantine equation

(1) P (x) = n!,

where x is an integer. Berend and Osgood (see [1]) showed that the density
of the set of positive integers n for which there exists an integer x such that
equation (1) is satisfied is zero. Of course, there are several polynomials for
which equation (1) is known to have either very few solutions or none. For
example, if P (X) := Xd, then equation (1) has no solutions with |x| > 1.
Erdős and Obláth (see [5]) showed that equation (1) has no solutions with
|x| > 1 if P (X) := Xd ± 1 and d ≥ 3 is prime, but finding all the solutions of
the equation

(2) x2 − 1 = n!

is a famously unsolved problem (see D25 in [6]) which was first posed by
Brocard in 1876 (see [3]) and also later by Ramanujan in 1913. Recent com-
putations by Berndt and Galway (see [2]) showed that the largest value of n
in the range n < 109 for which equation (2) has a positive integer solution
x is n = 7. Thus, while it is very likely that equation (2) has only finitely
many positive integer solutions (x, n) (and maybe none with n > 7), the fact
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that this is so has been proven only conditionally by Overholt (see [7]), who
showed that a weak form of the ABC-conjecture implies that equation (2) has
only finitely many solutions. The weak form of the ABC-conjecture employed
by Overholt is the statement that there exists a constant e > 0 so that for all
integers x, y with x3 6= y2 the inequality

(3) |x3 − y2| < N(x3 − y2)e

holds, where in the above inequality for a non-zero integer k we use N(k)
for the algebraic radical of k, namely N(k) :=

∏
p|k p. In a similar vein,

Dabrowski (see [4]) showed that if A is any fixed non-zero integer, then with
P (X) := X2 +A equation (1) has (unconditionally) only finitely many integer
solutions (x, n) when A is not a perfect square, and used Overholt’s method
to show that the weak ABC-conjecture implies that equation (1) has only
finitely many positive integer solutions (x, n) as well when A is a perfect
square.

In this note, we generalize Overholt’s result by pointing out that the
full ABC-conjecture implies that equation (1) has only finitely many integer
solutions (x, n) with n > 0, where P (X) is an arbitrary polynomial of degree
d ≥ 2.

Proposition 1. The ABC-conjecture implies that equation (1) has only
finitely many solutions (x, n).

We begin by recalling that the ABC-conjecture is the following statement.

The ABC-Conjecture. For any ε > 0 there exists a constant C(ε)
depending only on ε such that whenever A, B and C are three coprime and
non-zero integers with A+B = C, then

(4) max(|A|, |B|, |C|) < C(ε)N(ABC)1+ε.

Proof of the Proposition 1. Let

(5) P (X) := a0X
d + a1X

d−1 + · · ·+ ad.

We multiply both sides of equation (1) by ddad−1
0 and rewrite it as

(6) yd + b1y
d−1 + · · ·+ bd = cn!,

where c := ddad−1
0 , y := a0dx and bi := diai−1

0 for i = 1, 2, . . . , d. Notice that
b1 is a multiple of d. Thus, we can make the change of variable z := y + b1/d
and rewrite equation (6) as

(7) zd + c2z
d−2 + · · ·+ cd = cn!

where ci are some integer coefficients which can be easily computed in terms
of ai and d for i = 2, . . . , n. Let

(8) Q(X) := Xd + c2X
d−2 + · · ·+ cd.
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From here on, we denote by C1, C2, . . . computable positive constants de-
pending only on the coefficients ai of the polynomial P (X) for i = 0, 1, . . . , d
and, eventually, a small ε > 0 to be fixed later.

Notice that, when |z| is large, one has

(9)
|z|d
2

< |Q(z)| < 2|z|d.

Using equation (7) and inequalities (9), we get that there exist two constants
C1 and C2 such that

(10) |d log |z| − log(n!)| < C1, for |z| > C2,

whenever (z, n) is a solution of (7). From now on, we assume that |z| >
C2. For technical reasons which will become more transparent later, we also
assume that C2 is large enough with respect to C1 such that whenever z and
n are integers with |z| > C2 satisfying inequality (10), then n > c.

Let R(X) ∈ Z[X ] be such that

(11) Q(X) = Xd +R(X).

We may assume that R(X) is non-zero. Indeed, if R(X) is zero, then equation
(7) reduces to

(12) zd = cn!

It is easy to see that equation (12) has no integer solutions (z, n) with n > 2c.
Indeed, when n > 2c, the interval (n/2, n) contains a prime larger than c
which will appear at the exponent 1 in the product cn!, therefore cn! cannot
be a perfect power. Thus, by the above argument and inequality (10), we
conclude that equation (1) has only finitely many solutions when R(X) is
zero.

Assume now that R(X) is non-zero and let j ≤ d be the largest integer
with cj 6= 0. Rewrite equation (7) as

(13) zj + c2z
j−2 + · · ·+ cj =

cn!

zd−j
.

Let R1(X) ∈ Z[X ] be the polynomial

(14) R1(X) :=
R(X)

Xd−j
= c2X

j−2 + · · ·+ cj .

Let C3 and C4 ≥ C2 be constants such that

(15) 0 < |R1(z)| < C3|z|j−2, for |z| > C4.

Here, we can take C3 := |c2| + 1. From now on, we assume that |z| > C4.
Rewrite equation (13) as

(16) zj +R1(z) =
cn!

zd−j
.
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Finally, let D := gcd(zd, R1(z)). By formula (14), it is easy to see that all
the prime divisors of D divide cj . Simplifying by D in both sides of equation
(16), we get

(17)
zj

D
+
R1(z)

D
=

cn!

zd−jD
.

We are now all set to apply the ABC-conjecture in inequality (17) with the

obvious choices A :=
zj

D
, B :=

R1(z)

D
and C :=

cn!

(zd−jD)
. We get

(18)
|z|j
D

< C5N
(zjR1(z)cn!

D3

)1+ε

,

where C5 depends only on ε. Let N be the algebraic radical appearing in the
right hand side of inequality (18). In what follows, we bound N from above.

Notice that:

(19) N
(zj

D

)
≤ N(zj) ≤ |z|;

(20) N
(R1(z)

D

)
≤ |R1(z)|

D
<
C3|z|j−2

D
;

(21) N
( cn!

Dzd−j

)
≤ N(cn!) = N(n!) =

∏

p≤n

p < 4n.

In the above inequality (21) we used the fact that n > c as well as the
elementary estimate

∏
p≤n p < 4n. From (19)-(21), we get

(22) N ≤ N
(zj

D

)
N
(R1(z)

D

)
N
( cn!

Dzd−j

)
<
C3|z|j−14n

D
.

From inequalities (18) and (22), we get

|z|j
D

< C6

( |z|j−14n

D

)1+ε

,

where C6 := C5C
1+ε
3 , or

|z|j < C6
(|z|j−14n)1+ε

Dε
≤ C6|z|(j−1)(1+ε)4n(1+ε),

or

(23) |z|1+ε−εj < C64n(1+ε).

We now choose ε :=
1

2d
≤ 1

2j
, and notice that with this choice, inequality

(23) implies that

|z|1/2 < |z|1+ε−εj < C64n(1+ε),

or

(24) log |z| < C7n+ C8,
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where C7 := 2(1 + ε) log 4 and C8 := 2 logC6. Hence,

(25) d log |z| < C9n+ C10,

where C9 := dC7 and C10 := dC8. Combining inequalities (10) and (25), we
get

log(n!) < C1 + d log |z| < C9n+ C11,

where C11 := C1 + C10, which, together with Stirling’s formula for approxi-
mating n! implies that n < C12. Inequality (10) now tells us that |z| < C13,
therefore equation (1) has only finitely many integer solutions (x, n).
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