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PERIODIC SOLUTION OF A FIRST ORDER NONCONVEX

HAMILTONIAN SYSTEM

Lavoslav Čaklović

University of Zagreb, Croatia

Abstract. The first order Hamiltonian system is considered with
T–periodic Hamiltonian that is sub-quadratic at infinity. Two kinds of
sub-quadraticity are considered. The existence of T–periodic solution is
proved using variational methods.

1. Introduction and main result

In this paper we shall consider a Hamiltonian system

(H) ż = JH ′
z(t, z)

where J(x, y) = (−y, x), for all z = (x, y) ∈ R
N × R

N , and H ∈ C1(R ×
R

2N ;R). The prime denotes the derivative with respect to the variable z.
We suppose that the Hamiltonian H(t, z) is T -periodic in time, i.e. H(t+

T, z) = H(t, z), t ∈ R, z ∈ R
2N and sub-quadratic at infinity in the following

sense:
There exist r, θ1, θ2, p positive real numbers, 0 < Θ1 ≤ Θ2, 1 < p < 2,

and Θ1

p > Θ2

2 , such that for all |z| ≥ r > 0 we have (uniformly in t):

(H1) |H ′(t, z)| ≤ Θ2|z|p−1,

and

(H2) Θ1|z|p ≤ H ′(t, z) · z.
Here we prove the following theorem:

Theorem 1. Assume (H1) and (H2). Then (H) has a T-periodic solution
obtained as a critical point of the functional Ψ(z) defined by formula (2.1).
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The resonant case, when the Hamiltonian H is of the form

H(t, z) = Ĥ(t, z)− k

2
|z|2, k > 0,

where Ĥ satisfies conditions (H1) and (H2), is considered as well. Then:

Theorem 2. Assume that k < 1 and let there exist a natural number
l ∈ N such that l kT2π ∈ N. Then, equation (H) has an lT-periodic solution.

Theorems 1 and 2 are also proved under the weaker conditions (H1’),
(H2’) and (H3) introduced on page 112. For the convenience we rewrite them
here:

(H1’) lim sup
|z|→∞

|H ′(t, z)|
|z| = 0 uniformly on t ∈ R;

(H2’)
H ′(t, z)z

|H ′(t, z)| |z| ≥ α > 0,

outside a ball of radius r > 0 uniformly in t, and

(H3) |H ′(t, z)||z| ≥ β > 0,

for |z| ≥ r > 0 uniformly in time.
Let us point out here that in [8] we proved the existence of T -periodic

without the hypothesis (H3), using the topological degree.

2. Some basic Preliminaries

A natural, and widely used approach to solvability of the problem (H) is
to consider the functional

(2.1) Ψ(z) =
1

2

∫ T

0

−Jż · zdt−
∫ T

0

H(t, z) dt

defined on the Hilbert space E := H1/2
per (O, T ;R2N ) of T -periodic functions

from R to R
2N of class C1, with the norm

‖z‖E =

(

2π
∑

n∈Z

|zn|2
√

1 + |n|2
)1/2

induced by the scalar product

〈z, v〉E = 2π
∑

n∈Z

zn · vn
√

1 + |n|2.

Here vn, zn ∈ R
2N are the Fourier coefficients of the expansion

(2.2) z =
∑

n∈Z

zne
i n 2π

T t.

and zn · vn denotes the scalar product in R
2N . The norm on R

2N is denoted
by | · |. The space E is continuously embedded in Lp for all p ≥ 1.
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Let us introduce the following notation:

En = span{ei n 2π
T t},

E− = span{ei n 2π
T t | n < 0},

E0 = R
2N ,

E+ = span{ei n 2π
T t | n > 0}.

where n ∈ Z. Then

E = E− ⊕ E0 ⊕ E+

is an orthogonal decomposition of E.
The elements from (E0)⊥ will be denoted by u and these functions

coincide with elements of E having zero mean. Each function z ∈ E can
be written in the unique way as

z = u+m

= u− +m+ u+

where u± ∈ E±, u = u+ + u−, and m ∈ E0.
On the space E− ⊕ E+ we shall introduce the equivalent norm

‖u‖H1/2 =

(

2π
∑

n∈Z

n6=0

|n| |un|2
)1/2

and the equivalent scalar product

〈u, v〉H1/2 = 2π
∑

n∈Z

n6=0

|n|un · vn.

Functional Ψ is Fréchet differentiable on E and Ψ′(z) has the form

Ψ′(z) = Lz −K(z)

where

〈Lz, v〉E =

∫ T

0

−Jż · v dt

= 2π
∑

n∈Z

n6=0

nzn · vn

and

〈K(z), v〉E =

∫ T

0

H ′(t, z)v dt, for all v ∈ E.

Moreover, L : E → E is self adjoint, kerL = E0 = R
2N , and the restriction

L/E−⊕E+ : E− ⊕ E+ → E− ⊕ E+ is invertible with continuous inverse. The
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spectrum of L is

σ(L) =

{

n

(1 + n2)1/2
| n ∈ Z

}

∪ {−1, 1}.

The numbers λn = n
(1+n2)1/2

, n ∈ Z, n 6= ±1 are eigenvalues of L and the

corresponding subspaces En have dimension 2N .
Because of (H1) the operator K : E → E is uniformly continuous on

bounded sets in E in the sense of Krasnosel’ski. Moreover, being derivative
of a weakly continuous function it is compact.

3. Palais–Smale–Cerami condition

Let us derive some elementary but important facts about L and the
behaviour of H(t, z) at infinity.

Lemma 1. For all z ∈ E we have
∫ T

0

−Jż · z dt = ‖u+‖2H1/2 − ‖u−‖2H1/2 .(3.3)

∫ T

0

−Jż · u+ dt = ‖u+‖2H1/2(3a)

∫ T

0

−Jż · u− dt = −‖u−‖2H1/2(3b)

Proof. The derivative of function z has expansion

ż =
2π

T

∑

n∈Z

i nzne
i n 2π

T t,

obtained from (2.2). Then,

−Jż =
2π

T

∑

n∈Z

nzne
i n 2π

T t,

∫ T

0

−Jż · z dt =
2π

T

∑

n∈Z

Tn|zn|2.

and because of z = u− + u+, we have
∫ T

0

−Jż · z dt =
∫ T

0

−Ju̇− · u− dt+

∫ T

0

−Ju̇+ · u+ dt

= 2π
∑

n∈Z

n>0

|n| |zn|2 − 2π
∑

n∈Z

n>0

|n| |zn|2

= ‖u+‖2H1/2 − ‖u−‖2H1/2 ,

which proves formula (3.3). Formulas (3a) and (3b) follows immediately using
the same technique.
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Lemma 2. Let us assume (H1) and (H2). Then, there exist real numbers
C1, C2 such that for all t ∈ R and z ∈ R

n

(3.4) C1 +
Θ1

p
|z|p ≤ H(t, z) ≤ C2 +

Θ2

p
|z|p, C1, C2 ∈ R

Proof. To prove this, put s = |z|, z0 = z/s. Then

H(t, sz0) = H(t, rz0) +

∫ s

r

H ′(t, τz0) · z0d τ

≥ H(t, rz0) +

∫ s

r

1

τ
Θ1|τz0|pdτ

≥ inf
|z|≤r
t∈R

{H(t, z)} − Θ1r
p

p
+

Θ1s
p

p
,

which proves the left-hand inequality. In the same way one can prove the
remaining part.

Lemma 3. Assume that H(t, z) satisfies (H1) and (H2). Then Ψ satisfies
the Palais-Smale-Cerami condition in the following sense: If (zn) ⊆ E, n ∈ N,
is such that

(3.5)

{

Ψ(zn) is bounded and

‖Ψ′(zn)‖E′‖zn‖E → 0

then (zn) has a convergent subsequence.

The sequence which satisfies (3.5) is called the PSC-sequence.

Proof. 1st step: (zn) is bounded in Lp-norm.

By the assumption Ψ′(zn)zn =: εn → 0, which can be written in the form

(3.6)

∫ T

0

−Jżn · zn dt−
∫ T

0

H ′(t, zn) · zn dt = εn → 0.

On the other side, boundedness of Ψ(zn) can be written in the form

(3.7) −C ≤ 1

2

∫ T

0

−Jżn · zn dt−
∫ T

0

H(t, zn) dt ≤ C, C ∈ R

and consequently:

−C ≤ εn +
1

2

∫ T

0

H ′(t, zn) · zn dt−
∫ T

0

H(t, zn) dt ≤ C
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where εn → 0 and it can be omitted in the above formula by the appropriate
choice of C. Using the left-hand inequality and (3.4) we have

−C +
Θ1

p
‖zn‖pLp ≤ 1

2

∫ T

0

H ′(t, zn) · zn dt

≤ 1

2

∫ T

0

(Θ2|zn|p +Θ2r
p−1|zn| ) dt

≤ Θ2

2
‖zn‖pLp + C‖zn‖Lp

where C is a generic constant. Finally,

(
Θ1

p
− Θ2

2
)‖zn‖pLp ≤ C + C‖zn‖Lp .

Hence, we have proved the first step since Θ1

p − Θ2

2 > 0.

2nd step: ‖u+
n ‖H1/2 is bounded.

Using the assumption that zn is PSC-sequence, it is easy to prove that
Ψ′(zn)u+

n converges to zero too, which can be written in the form
∫ T

0

−Jżn · u+
n dt−

∫ T

0

H ′(t, zn) · u+
n dt =: εn → 0.

But, using the definition of H1/2-scalar product we have
∫ T

0

−Jżn · u+
n dt = ‖u+

n ‖2H1/2 ,

which implies that

‖u+
n ‖2H1/2 ≤ εn +

∫ T

0

(Θ2|zn|p−1 + C)|u+
n | dt

≤ εn +

∫ T

0

Θ2|zn|p−1|u+
n | dt+

∫ T

0

C|u+
n | dt

≤ εn +Θ2

(

∫ T

0

(|zn|p−1)
p

p−1 dt

)

p−1

p
(

∫ T

0

|u+
n |p dt

)
1
p

+

+

∫ T

0

C|u+
n | dt

≤ C +Θ2 ‖zn‖p−1
Lp ‖u+

n ‖Lp + C ‖u+
n ‖Lp

where C is a generic constant. The previous inequality and the embedding
H1/2 →֒ Lp imply that there exists a constant K > 0 such that ‖u+

n ‖Lp ≤
‖u+

n ‖H1/2 and

‖u+
n ‖2H1/2 ≤ C +Θ2K ‖zn‖p−1

Lp ‖u+
n ‖H1/2 +KC ‖u+

n ‖H1/2 ,
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The boundedness of ‖u+
n ‖H1/2 now follows from the boundedness of ||zn||Lp

proved in the first step.

3rd step: ‖u−
n ‖H1/2 is bounded.

Because of lemmas 1 and 2, inequality (3.7) implies that

−C ≤ 1

2
‖u+

n ‖2H1/2 −
1

2
‖u−

n ‖2H1/2 −
∫ T

0

(C +
Θ1

p
|zn|p) dt

and
1

2
‖u−

n ‖2H1/2 ≤ C(1 + T ) +
1

2
‖u+

n ‖2H1/2 −
Θ1

p
‖zn‖pLp .

The right-hand side of this inequality is bounded by steps one and two.

4th step: Conclusion

From orthogonal decomposition zn = u−
n +mn + u+

n we have

‖zn‖2E = ‖u−
n ‖2E + T |mn|2 + ‖u+

n ‖2E .

The norms ‖·‖E and ‖·‖H1/2 are equivalent on E−⊕E+ and |mn| is bounded
because ‖zn‖Lp is bounded and (mn) is contained in a finite-dimensional
space. This implies that ‖zn‖E is bounded. If zn → 0 we have nothing
to prove. Otherwise, Ψ′(zn) → 0. Then using the fact that Lzn = Lun and
since the restriction L0 = L/E−⊕E+ is invertible we obtain

L0un −K(zn) = Ψ′(zn) → 0,

un = L−1
0 Ψ′(zn) + L−1

0 K(zn).

The right-hand side has a convergent subsequence because K is compact and
(zn) is bounded in E. Hence (un) has a convergent subsequence. The sequence
(mn) is also bounded and, passing eventualy to a subsequence, we have the
conclusion because zn = un +mn.

4. Proof of theorem 1

The decomposition of the space E below allows us to use the theorem of
Benci–Rabinowitz in the Appendix. The functional Ψ is of the form Ψ(z) =
1
2 〈Lz, z〉 − K(z) where L : E → E is a self adjoint linear operator and K(z)
has compact derivative. Let us consider the orthogonal decomposition

E = E1 ⊕ E2

where E1 = R
2N ⊕ E− and E2 = E+.

On E1 we have Ψ(z) → −∞ when ‖z‖E → +∞.
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To see this take z ∈ E1. Then,

Ψ(z) = −1

2
‖u−‖2H1/2 −

∫ T

0

H(t, z) dt

≤ −1

2
‖u−‖2H1/2 −

Θ1

p
‖z‖pLp − C1T.

If z ∈ E− this conclusion is immediate, while if u ∈ R
N this follows from the

fact that all norms on a finite dimensional space are equivalent.

Ψ is coercive on E2, i.e. Ψ(u+) → +∞ when ‖u+‖H1/2 → +∞.

To prove that we use lemmas 1 and 2 to conclude that

Ψ(u+) =
1

2

∫ T

0

−Ju+ · u+ dt−
∫ T

0

H(t, u+) dt

=
1

2
‖u+‖2H1/2 −

∫ T

0

H(t, u+) dt

≥ 1

2
‖u+‖2H1/2 − C2T − Θ2

p
‖u+‖pLp

Now let us recall the fact that the space H1/2 is embedded into Lp, p > 1,
and that ‖u+‖Lp ≤ K‖u+‖H1/2 for some K > 0. The consequence of this is

1

2
‖u+‖2H1/2 −

Θ1K

p
‖u+‖p

H1/2 − C1T ≤ Ψ(u+)

which proves the coercivity of Ψ/E+ because 1 < p < 2. Now the conclusion
follows from the theorem of Benci–Rabinowitz.

5. The resonant case

In this part we shall consider the Hamiltonian of the form

(5.8) H(t, z) = Ĥ(t, z)− k

2
|z|2, k > 0

where Ĥ(t, z) satisfies conditions (H1) and (H2). Equation (H) can be written
in the form

−Jż + kz = Ĥ ′(t, z),

and the associated functional Ψk : E → R is

(5.9) Ψk(z) =
1

2

∫ T

0

−Jż · z dt+ 1

2

∫ T

0

k|z|2 dt−
∫ T

0

Ĥ(t, z) dt.

Evidently,

(5.10) Ψk(z) =
1

2
‖u+‖H1/2 − 1

2
‖u−‖H1/2 +

k

2
‖z‖2L2 −

∫ T

0

Ĥ(t, z) dt.

which follows from lemma 1.
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Let us investigate some basic properties of the linear operator Lk : E → E
defined by

(5.11) 〈Lkz, v〉E =

∫ T

0

(−Jż + kz)v, z, v ∈ E.

We shall assume that

(5.12) k
T

2π
= K ∈ N.

Obviously, Lk : E → E is self adjoint, kerLk = E−K = span{e−iK 2π
T t}, the

restriction Lk/(E−K)⊥ is invertible and the spectrum of Lk is

σ(Lk) =

{

n+K
√

1 + |n|2
| n ∈ Z

}

∪ {−1, 1}.

Lemma 1. If we assume (5.12), then Ψk satisfies the Palais-Smale-Cerami
condition.

Proof. The idea of the proof is the same as that of lemma 3. Let (zn) ⊂
E be a sequence such that

(5.13)

{

|Ψk(zn)| ≤ C and

‖Ψ′
k(zn)‖E′‖zn‖E → 0

1st step: (zn) is bounded in Lp-norm and in L2-norm.

The same calculation as in lemma 3 gives

−C ≤ εn +
1

2

∫ T

0

Ĥ ′(t, zn) · zn dt−
∫ T

0

Ĥ(t, zn) dt ≤ C,

where εn → 0, and the boundedness in Lp-norm follows. Boundedness in
L2-norm follows from the embedding Lp →֒ L2, for p < 2.

2nd step: ‖u+
n ‖H1/2 is a bounded sequence.

Ψ′
k(zn)u

+
n is convergent because

0 ≤ |Ψ′
k(zn)u

+
n | ≤ ‖Ψ′

k(zn)‖E′ ‖zn‖E → 0.

This means that

∫ T

0

Lkzn · u+
n dt−

∫ T

0

Ĥ ′(t, zn) · u+
n dt =: εn → 0.
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On the other hand we have the following expression for 〈Lkz, v〉E :

〈Lkz, v〉E =

∫ T

0

Lkz · v dt

=

∫ T

0

Lkẑ · v̂ dt

= 2π
∑

n6=−K

(n+K)zn · vn.

If we use it in the above formula we obtain

2π
∑

n6=−K
n>0

(n+K)|zn|2 = εn +

∫ T

0

Ĥ ′(t, zn) · u+
n dt,

and

‖u+
n ‖2H1/2 +

2π

T
K
∑

n>0

T |zn|2 = εn +

∫ T

0

Ĥ ′(t, zn) · u+
n dt;

‖u+
n ‖2H1/2 + k‖u+

n ‖2L2 = εn +

∫ T

0

Ĥ ′(t, zn) · u+
n dt.

Using (H1) and repeating the same arguments as in the 2nd step on page 106
we finally have

‖u+
n ‖2H1/2 + k‖u+

n ‖2L2 ≤ C + C‖u+
n ‖H1/2 + CΘ2‖zn‖p−1

Lp ‖u+
n ‖H1/2 ,

where C is a constant such that sup εn < C. Using the imbedding H1/2 →֒ L2

the conclusion follows.

3rd step: ‖u−
n ‖H1/2 is bounded.

Ψk(zn) is a bounded sequence which implies that

C ≤ 1

2

∫ T

0

Lkzn · zn dt−
∫ T

0

Ĥ(t, zn) dt

≤ 1

2
‖u+

n ‖2H1/2 −
1

2
‖u−

n ‖2H1/2 +
k

2
‖zn‖2L2 − C1T − Θ1

p
‖zn‖pLp ,

where Θ1, C1 are the constants from lemma 2. Since ‖u+
n ‖H1/2 , ‖zn‖L2, ‖zn‖Lp

are already bounded we conclude that ‖u−
n ‖H1/2 is bounded.

4th step: Conclusion

We can write zn = u+
n +mn + u−

n = u+
n +mn + z−K

n + û−
n where u±

n ∈ E±,
mn ∈ E0, z−K

n ∈ E−K , û−
n ∈ E− \ E−K and u−

n = z−K
n + û−

n . The spaces
E−K and E0 are finite dimensional and all the norms on finite dimensional
spaces are equivalent. As (z−K

n ) and (mn) are bounded sequences in Lp-norm,
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they are bounded also in E. Finally, (zn) is bounded in E. On the other hand
Ψ′

k(zn) → 0,

Ψ′
k(zn) = L̂kẑn −K(zn) ∈ E′

where K is a compact operator and the restriction L̂k := Lk/(E−K)⊥ is
invertible. Then

ẑn = L̂−1
k Ψ′

k(zn) + L̂−1
k K(zn),

which implies that (ẑn) has a convergent subsequence. The sequence (z−K
n )

also has a convergent subsequence because it is a bounded sequence in a finite
dimensional space. Therefore (zn) has a convergent subsequence.

6. Proof of theorem 2

Let us denote T1 = lT . Then H and Ĥ are T1-periodic and we can apply
previous considerations to T1-periodic functions. Put K = kT1

2π . Then K ∈ N

and

Ψk(z) =
1

2
‖u+‖H1/2 − 1

2
‖u−‖2H1/2 +

k

2
‖z‖2L2 −

∫ T1

0

Ĥ(t, z) dt.

where we have used the same notation i.e. H1/2 in the context of T1-periodic
functions. From lemmas 1 and 2 we have inequality

1
2‖u+‖H1/2 − 1

2‖u−‖2
H1/2 +

k
2‖z‖2L2 − C2T − Θ2

p ‖z‖pLp

≤ Ψk(z) ≤
1
2‖u+‖H1/2 − 1

2‖u−‖2
H1/2 +

k
2‖z‖2L2 − C1T − Θ1

p ‖z‖pLp.

This inequality suggests to decompose the space into the orthogonal sum
E = E1 ⊕ E2 where E1 = E− and E2 = E0 + E+. Now, the following two
claims are easy to prove:

1. Ψk is coercive on E2, i.e. Ψk(z) → +∞ when ‖z‖ → +∞, z ∈ E2.

2. Ψk(z) → −∞ when ‖z‖E → +∞, z ∈ E1

The first one is evident because p < 2, and the second requires some
technical calculations. Recall that for u ∈ E− ⊕E+ we always have ‖u‖L2 ≤
‖u‖H1/2 . So, for any u ∈ E1 there holds

Ψk(u
−) ≤ −1

2
‖u−‖2H1/2 +

k

2
‖u−‖2L2 − C1T − Θ1

p
‖u−‖pLp

≤ 1

2
(k − 1)‖u−‖2H1/2 − C1T − Θ1

p
‖u−‖pLp .
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Here k < 1 and the last expression evidently tends to −∞ when ‖u−‖ → +∞.
If u ∈ kerLK = E−K then

Ψk(u) ≤ −C1T − Θ1

p
‖u‖pLp

which implies that Ψk(u) → −∞ when ‖u‖Lp → +∞. It should be noticed
that E−K is finite dimensional and all its norms are equivalent. So, Ψk(u) →
−∞ when ‖u‖Lp → +∞, what we wanted to prove.

To finish the proof of the theorem let us point out that we are exactly
in the situation described in the saddle point theorem (theorem A2 in the
Appendix).

Corollary 1. Assume that Hamiltonian system (H) is autonomous and

Ĥ satisfies (H1) and (H2) for some 0 < k < 1. Then, (H) has a T-periodic
solution for any T > 0 of the form T = 2π

k n, n ∈ N.

Proof. We can choose T̃ > 0 such that 1 = k
2π T̃ . Theorem 2 gives the

existence of nT̃ -periodic solution for all n ∈ N.

7. Relaxed sublinearity

The conditions (H1) and (H2) seems to be quite restrictive and that there
is still enough room for relaxation. A weaker form of sub-linearity is that

(H1’) lim sup
|z|→∞

|H ′(t, z)|
|z| = 0 uniformly on t ∈ R;

From dynamic point of view one expects periodic solutions to appear as
a consequence of attractive force, attractive at least outside a ball centered
at the origin. If F (q) is a force at position q ∈ R

n then the force is attractive
at q if it satisfies

−α ≥ q · F (q)

|q| |F |
for some α > 0. A slight generalisation of this condition is

(H2’)
H ′(t, z) · z
|H ′(t, z)| |z| ≥ α > 0,

outside a ball of radius r > 0 uniformly in t.
Another reasonable dynamic condition is that the force should not vanish

at infinity. The condition |F | ≥ β > 0 outside some ball seems to be too
strong. A weaker condition is |F | |q| ≥ β > 0 outside a ball. Still weaker
condition is

(H3) |H ′(t, z)||z| ≥ β > 0,

for |z| ≥ r > 0 uniformly in time. A Hamiltonian that satisfies conditions
(H1) and (H2) satisfies also (H1)’, (H2)’ and (H3) with β = Θ1/Θ2.
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We want to prove the existence of T -periodic solution of hamiltonian
system (H) with new, relaxed conditions. The first step in that direction is to
prove that functional Ψ : E → R defined by (2.1) satisfies the Palais–Smale–
Cerami condition. If we have inequality of the form

(7.14) ‖un‖L∞ ≤ δ|mn|+ γ, 0 < δ < 1

where zn = un +mn,
∫ T

0
undt = 0, mn ∈ R

2N for a PSC-sequence un, then
we could prove the Palais-Smale condition for Ψ using the same technique as
in [7].

Lemma 1. Let (zn) ⊂ E be a PS-sequence that satisfies (3.5). Then

(7.15) ‖un‖H1/2 ≤ δ|mn|+ γ,

where δ =
2εT 1/2

1− 2ε
, ε > 0 and γ ∈ R. Moreover, ε can be taken such that δ < 1

is arbitrarily small.

The passage from inequality (7.15) to inequality (7.14) is ‘not possible’
because the space E is not included in L∞. At the moment it seems that the
best we can prove is the inequality

(7.16) ‖un‖Lp ≤ δ|mn|+ γ, 0 < δ < 1,

for 1 < p < +∞, but this inequality is still not sufficient to prove PSC–
condition.

Proof of lemma 1. Because of (3.5) we have

〈Ψ′(zn), u
+
n 〉E′,E =: εn → 0 n −→ +∞

This means that
∫ T

0

−Jżn · u+
n dt =

∫ T

0

H ′(t, zn) · u+
n dt+ εn.

Condition (H1’) is equivalent to the following one
(

∀ε > 0
)(

∃Cε ∈ R
)

such that |H ′(t, z)| ≤ ε|z|+ Cε uniformly in t.

Using this on the right-hand side of above equality and formula (3a), Lemma
2, on the left-hand side we obtain

‖u+
n ‖2H1/2 ≤

∫ T

0
(ε|zn|+ Cε)|u+

n | dt+ εn

≤ ε ‖zn‖L2‖u+
n ‖L2 + CεT

1/2‖u+
n ‖L2 + εn

≤ ε
(

‖un‖L2 + T 1/2|mn|
)

‖u+
n ‖L2 + CεT

1/2‖u+
n ‖L2 + εn

≤ ε
(

‖un‖H1/2 + T 1/2|mn|
)

‖u+
n ‖H1/2 + CεT

1/2‖u+
n ‖H1/2 + εn,
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where we used that for u ∈ E,

‖u‖2L2 = 2π
∑

n∈Z

n6=0

|un|2

≤ 2π
∑

n6=0

|n| |un|2

= ‖u‖2H1/2 .

Using the triangle inequality ‖un‖H1/2 ≤ ‖u+
n ‖H1/2 + ‖u−

n ‖H1/2 , after
rearranging we obtain

(1− ε)‖u+
n ‖2H1/2 ≤ ε‖u−

n ‖H1/2‖u+
n ‖H1/2 + T 1/2(ε|mn|+ Cε)‖u+

n ‖H1/2 + εn,

and in the same way

(1− ε)‖u−
n ‖2H1/2 ≤ ε‖u−

n ‖H1/2‖u+
n ‖H1/2 + T 1/2(ε|mn|+ Cε‖u−

n ‖H1/2 + εn.

The second inequality follows from

〈Ψ′(zn),−u−
n 〉 = εn → 0, n → +∞.

Summing up both of them we obtain

(1 − ε)(‖u−
n ‖2H1/2 + ‖u+

n ‖2H1/2) ≤

2ε‖u−
n ‖H1/2‖u+

n ‖H1/2 + T 1/2
(

ε|mn|+ Cε

)(

‖u+
n ‖H1/2 + ‖u−

n ‖H1/2) + 2εn.

Using the notation α = ‖u−
n ‖H1/2 , β = ‖u+

n ‖H1/2 , ξ = α+β, and the inequality
(α+ β)2 ≤ 2(α2 + β2) we have

(
1

2
− ε)(α+ β)2 ≤ 1

2
(α+ β)2 − ε(α+ β)2

≤ α2 + β2 − ε(α+ β)2

≤ T 1/2(ε|mn|+ Cε)(α+ β) + 2εn.

If we take ε < 1
2 and use the inequality ξ ≤ B+

√
B2+4AC
2A ≤ B

A +
√

C
A whenever

Aξ2 ≤ Bξ + C where A,B,C are positive, then,

(7.17) 0 ≤ ξ ≤ 2(ε|mn|+ CεT
1/2

1− 2ε
+ (

4εn
1− 2ε

)1/2

or

‖un‖H1/2 ≤ ξ ≤ 2εT 1/2

1− 2ε
|mn|+

2CεT
1/2 + 2

√
εn(1− 2ε)1/2

1− 2ε
which proves the lemma.

To prove inequality (7.14) one needs a relation between ‖ · ‖L∞ norm and
‖ · ‖L2 norm (or ‖ · ‖H1/2 norm). The continuity of L−1 in this pair of norms
is just what we are looking for. Here is a slight generalisation of required
inequality.
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Lemma 2. Let us assume (5.12). Then, for each ẑ ∈ (E−K)⊥ we have

(7.18) ‖ẑ‖L∞ ≤
√

T

12
‖Lkẑ‖L2 .

Proof. Let ẑ =
∑

n6=−K

zne
i n 2π

T t be the Fourier expansion for ẑ. Then

Lkẑ =
2π

T

∑

n∈Z

n6=−K

(n+K)zne
i n 2π

T t,

en hence

‖Lkẑ‖L2 =
2π

T 1/2

(

∑

n6=−K

(n+K)2|zn|2
)1/2

.

|ẑ(t)| ≤
∑

n6=−K

|zn|

=
∑

n6=−K

|n+K| |zn|
1

|n+K|

=
(

∑

n6=−K

|n+K|2|zn|2
)1/2( ∑

n6=−K

1

(n+K)2

)1/2

=
π√
3

T 1/2

2π
‖Lkẑ‖L2

=
T 1/2

2
√
3
‖Lkẑ‖L2 .

In the special case when k = 0, we have Lk = L and inequality (7.18) can

be rewritten in the form ‖u‖L∞ ≤
√

T
12‖Lu‖L2 for all u ∈ E such that

∫ T

0
u(t) dt = 0. Inequality (7.14) is now a consequence of this inequality,

lemma 1 and the fact that the constants δ and γ in (7.14) do not depend
upon n.

Lemma 3. Assume that conditions (H1’), (H2’) and (H3) ere satisfied.
Then Ψ satisfies the PSC-condition.

Proof. We repeat the proof given in [7] without going to the details.
First, we prove that

(∗) H ′(t, z) ·m ≥ const > 0, for |m| big enough,
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where m = 1
T

∫

z(t) dt is the constant part of z. Because of (H2’) and (H3)
we have

H ′(t, z(t)
)

·m = H ′(t, z(t)
)

·
(

z(t)− u(t)
)

=
∣

∣H ′(t, z(t)
)
∣

∣

∣

∣z(t)
∣

∣

(

H ′(t, z(t)
)

· z(t)
|H ′(t, z(t)

)

||z(t)| −
H ′(t, z(t)

)

· u(t)
|H ′(t, z(t)

)

||z(t)|

)

≥ β

(

α− |u(t)|
|z(t)|

)

.

Now, using (7.14) we can write

|z(t)| ≥ (1− δ)|m| − γ,

for |m| ≥ R > 0 and R big enough (recall that 0 < δ < 1). Using this a priori
bound we get

|u(t)|
|z(t)| ≤ δ|m|+ γ

|m|(1− δ)− γ

=
δ + γ/|m|

(1− δ)− γ/|m| ,

and the expression on the right hand side can be made less than α
2 when

|m| → +∞. This proves (∗).
Let us suppose now that that (zn) is PSC-sequence. Then,

(7.19) ‖Ψ′(zn)‖ · ‖mn‖ → 0.

On the other side we always have inequality

‖Ψ′(zn)‖ · ‖mn‖ ≥
∣

∣

∣

∫

H ′(t, zn) ·mn dt
∣

∣

∣
.

We want to conclude that ‖mn‖ is bounded. If not, then, for R big enough
and |mn| ≥ R > 0 the right hand side of above inequality is bounded bellow
by a positive constant, because of (∗), which contradicts (7.19).

Till now we have proved boundedness of |mn| and boundedness of |zn(t)|.
To finish the proof we should follow the same arguments as in the 4th step of
the proof of lemma 3.

Now, it is easy to see that theorems 1 and 2 remain true also under relaxed
conditions (H1’), (H2’) and (H3).

8. Appendix

Let Ψ ∈ C1(E,R). We say that Ψ satisfies the Palais–Smale–Cerami
(PSC) condition in an open interval (α, β) ⊂ R, if for any c ∈ (α, β) and any
sequence (un) ⊂ E such that Ψ(un) → c and ‖Ψ′(un)‖ ‖un‖ → 0 there exists
convergent subsequence of un .
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This definition is a slightly generalized version of (PS)–condition where
the precompactness is required for a wider class of sequences (un) for which
Ψ(un) → c and Ψ′(un) → 0.

The following result, known as Deformation theorem, plays an important
role in the study of critical points. We shall state a simplified version that is
still sufficient to prove the existence of critical points.

Theorem A1 (Deformation theorem). Suppose that Ψ ∈ C1(E,R)
satisfies the following assumptions:

(Ψ1) Ψ(u) = 1
2 〈Lu, u〉 − b(u), where

(i) L is continuous self-adjoint operator on E;
(ii) b ∈ C1(E,R) and b′ is a compact operator.

(Ψ2) E = ⊕Eλ where Eλ’s are eigenspaces of L of finite dimension.
(Ψ3) Ψ satisfies (PSC)-condition or (PS)-condition in R.

Given c > 0, if c is not a critical value of Ψ, then there exist constants
ε̄ > ε > 0 and a homeomorphism η : E → E such that

(a) η(Ψc+ε) ⊂ Ψc−ε,
(b) η(u) = u ∀u 6∈ Ψ−1([c− ε̄, c+ ε̄]).

Moreover, η can be chosen to be of the form

(c) η(u) = eα(u)Lu+K(u),

where α : E → R is a continuous linear functional and K compact, and such
that all η’s of the form (c) form a group, which we denote by G.

The proof of this theorem is technically quite complicated and it is given
in [3].

Theorem A2 (Benci–Rabinowitz). Let us suppose that Ψ ∈ C1(E,R)
satisfies (Ψ1), (Ψ2) and (Ψ3) and

E = W ⊕ V (orthogonal sum)

is a decomposition of E into the sum of two L-invariant subspaces. Furthermore,
assume that

(i) Ψ(w) → −∞ when ‖w‖ → +∞, w ∈ W ;
(ii) The restriction Ψ/V is bounded from below.

Then Ψ has a critical point u ∈ E.

Proof. Let R > 0 and Q = {w ∈ W | ‖u‖ ≤ R} be such that

supΨ(∂Q) < inf Ψ(V ).

This is possible because of (i) and (ii). Then Q and V intersect with respect
to G∂Q (the subgroup of G that leaves ∂Q fixed). A number

c = inf
g∈G∂Q

supΨ(g(Q))
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belongs to interval [inf Ψ(V ), supΨ(Q)]. We claim that c is a critical value of
Ψ. Assuming the contrary, according to Deformation theorem, there exists a
homeomorphism η : E → E and ε̄ > ε > 0 such that

η(Ψc+ε) ⊂ Ψc−ε

η(u) = u for u 6∈ Ψ−1([c− ε̄, c+ ε̄]).

By the definition of c there exists h ∈ G∂Q such that

supΨ(h(Q)) < c+ ε.

Then η ◦ h ∈ G∂Q because u ∈ ∂Q ⇒ η(h(u)) = η(u) = u and

supΨ(η(h(Q))) < c− ε,

which contradicts the definition of c.
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[7] L. Čaklović, Periodic Solutions of a Subquadratic Nonconvex Second Order Hamil-

tonian System, Glasnik Matematički 29 (1994), 291–304.
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