Quasi-particles in the principal picture of ${\widehat{\mathfrak{s}} 2_{2}}$ and Rogers-Ramanujan-type identities

Mirko Primc

Department of Mathematics
University of Zagreb
supported by CSF, grant 2634
arXiv:1406.1924
Representation Theory XIV
Dubrovnik, June 21-27, 2015

Joint work with Slaven Kožić

(1) Introduction

- Rogers-Ramanujan-type identities
- The principal and homogeneous picture of $\widehat{\mathfrak{s l}}_{2}$
(2) Quasi-particles
- Definition
(3) Quasi-particle bases
- Verma modules $M(\Lambda)$
- Standard modules $L(\Lambda)$
(4) Questions

Rogers-Ramanujan identities are two analytic identities, for $a=0,1$,

$$
\prod_{m \geq 0} \frac{1}{\left(1-q^{5 m+1+a}\right)\left(1-q^{5 m+4-a}\right)}=\sum_{m \geq 0} \frac{q^{m^{2}+a m}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}
$$

$$
\text { Let } a=0 \text {. }
$$

- The coefficient of q^{n} obtained from the product side is a number of partitions of n with parts congruent $\pm 1 \bmod 5$.
- The nth coefficient of the summand

$$
(q)_{m}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right),
$$

is a number of partitions of $n=j_{1}+\cdots+j_{s}$ with parts j_{r} at most m such that a difference between two consecutive parts is at least two.

Rogers-Ramanujan identities are two analytic identities, for $a=0,1$,

$$
\prod_{m \geq 0} \frac{1}{\left(1-q^{5 m+1+a}\right)\left(1-q^{5 m+4-a}\right)}=\sum_{m \geq 0} \frac{q^{m^{2}+a m}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}
$$

Let $a=0$.

- The coefficient of q^{n} obtained from the product side is a number of partitions of n with parts congruent $\pm 1 \bmod 5$.
- The nth coefficient of the summand

$$
(q)_{m}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)
$$

is a number of partitions of $n=j_{1}+\cdots+j_{s}$ with parts j_{r} at most m such that a difference between two consecutive parts is at least two.

Rogers-Ramanujan identities are two analytic identities, for $a=0,1$,

$$
\prod_{m \geq 0} \frac{1}{\left(1-q^{5 m+1+a}\right)\left(1-q^{5 m+4-a}\right)}=\sum_{m \geq 0} \frac{q^{m^{2}+a m}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}
$$

Let $a=0$.

- The coefficient of q^{n} obtained from the product side is a number of partitions of n with parts congruent $\pm 1 \bmod 5$.
- The nth coefficient of the summand

$$
\frac{q^{m^{2}}}{(q)_{m}}, \quad(q)_{m}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)
$$

is a number of partitions of $n=j_{1}+\cdots+j_{s}$ with parts j_{r} at most m such that a difference between two consecutive parts is at least two.

Factor $q^{m^{2}}$ "represents" the partition

$$
(2 m-1)+\ldots+3+1=m^{2}
$$

on which we "add" partitions $\lambda_{1}+\ldots+\lambda_{s}$ with parts at most m "counted" by $1 /(q)_{m}$.

For example, q^{16} "represents" the smallest partition

$$
7+5+3+1=16
$$

satisfying difference condition, on which we "add" partitions with parts at most 4 , such as $14=4+3+3+3+1$, to obtain a partition satisfying difference condition

Similar argument applies for a difference $d>2$.

Factor $q^{m^{2}}$ "represents" the partition

$$
(2 m-1)+\ldots+3+1=m^{2}
$$

on which we "add" partitions $\lambda_{1}+\ldots+\lambda_{s}$ with parts at most m "counted" by $1 /(q)_{m}$.

For example, q^{16} "represents" the smallest partition

$$
7+5+3+1=16
$$

satisfying difference condition, on which we "add" partitions with parts at most 4 , such as $14=4+3+3+3+1$, to obtain a partition satisfying difference condition

Similar argument applies for a difference $d>2$.

Factor $q^{m^{2}}$ "represents" the partition

$$
(2 m-1)+\ldots+3+1=m^{2}
$$

on which we "add" partitions $\lambda_{1}+\ldots+\lambda_{s}$ with parts at most m "counted" by $1 /(q)_{m}$.

For example, q^{16} "represents" the smallest partition

$$
7+5+3+1=16
$$

satisfying difference condition, on which we "add" partitions with parts at most 4 , such as $14=4+3+3+3+1$, to obtain a partition satisfying difference condition

Similar argument applies for a difference $d>2$.

Analytic Rogers-Ramanujan identities have Gordon-Andrews-Bressoud's generalization ([Go], [A2], [Br1], [Br2])
$\prod_{m \geq 1}\left(1-q^{m}\right)^{-1}=\sum_{n_{1}, n_{2}, \ldots, n_{l-1} \geq 0} \frac{q^{N_{1}^{2}+N_{2}^{2}+\ldots+N_{l-1}^{2}+N_{r}+N_{r+1}+\ldots+N_{l-1}}}{(q)_{n_{1}}(q)_{n_{2}} \cdots(q)_{n_{l-1}}}$
$m \neq 0, \pm r(\bmod 2 /+1)$
where $N_{j}=n_{j}+n_{j+1}+\ldots+n_{I-1}$ and $l \geq 2,1 \leq r \leq I$.
(We omitted even moduli.)

- Combinatorial Gordon identities: The nth coefficient of the right hand side is is a number of partitions of $n=j_{1}+\cdots+j_{s}$ such that
- Combinatorial RR identities for $I=2, \quad a=0$ for $r=2$.
- In general we have difference conditions and initial conditions.

Analytic Rogers-Ramanujan identities have Gordon-Andrews-Bressoud's generalization ([Go], [A2], [Br1], [Br2])
$\prod_{m \geq 1}\left(1-q^{m}\right)^{-1}=\sum_{n_{1}, n_{2}, \ldots, n_{l-1} \geq 0} \frac{q^{N_{1}^{2}+N_{2}^{2}+\ldots+N_{l-1}^{2}+N_{r}+N_{r+1}+\ldots+N_{l-1}}}{(q)_{n_{1}}(q)_{n_{2}} \cdots(q)_{n_{l-1}}}$
$m \neq 0, \pm r(\bmod 2 /+1)$
where $N_{j}=n_{j}+n_{j+1}+\ldots+n_{l-1}$ and $l \geq 2,1 \leq r \leq I$.
(We omitted even moduli.)

- Combinatorial Gordon identities: The nth coefficient of the right hand side is is a number of partitions of $n=j_{1}+\cdots+j_{s}$ such that

$$
j_{1} \geq j_{2} \cdots \geq j_{s}, \quad j_{p} \geq 2+j_{p+l-1}, \quad j_{s-r+1}>1
$$

- Combinatorial RR identities for $1=2, \quad a=0$ for $r=2$.
- In general we have difference conditions and initial conditions.

Analytic Rogers-Ramanujan identities have Gordon-Andrews-Bressoud's generalization ([Go], [A2], [Br1], [Br2])
$\prod_{\substack{m \geq 1}}\left(1-q^{m}\right)^{-1}=\sum_{n_{1}, n_{2}, \ldots, n_{l-1} \geq 0} \frac{q^{N_{1}^{2}+N_{2}^{2}+\ldots+N_{l-1}^{2}+N_{r}+N_{r+1}+\ldots+N_{l-1}}}{(q)_{n_{1}}(q)_{n_{2}} \cdots(q)_{n_{l-1}}}$
$m \neq 0, \pm r(\bmod 2 /+1)$
where $N_{j}=n_{j}+n_{j+1}+\ldots+n_{l-1}$ and $l \geq 2,1 \leq r \leq I$.
(We omitted even moduli.)

- Combinatorial Gordon identities: The nth coefficient of the right hand side is is a number of partitions of $n=j_{1}+\cdots+j_{s}$ such that

$$
j_{1} \geq j_{2} \cdots \geq j_{s}, \quad j_{p} \geq 2+j_{p+l-1}, \quad j_{s-r+1}>1
$$

- Combinatorial RR identities for $I=2, \quad a=0$ for $r=2$.
- In general we have difference conditions and initial conditions.

Analytic Rogers-Ramanujan identities have Gordon-Andrews-Bressoud's generalization ([Go], [A2], [Br1], [Br2])
$\prod_{\substack{m \geq 1}}\left(1-q^{m}\right)^{-1}=\sum_{n_{1}, n_{2}, \ldots, n_{l-1} \geq 0} \frac{q^{N_{1}^{2}+N_{2}^{2}+\ldots+N_{l-1}^{2}+N_{r}+N_{r+1}+\ldots+N_{l-1}}}{(q)_{n_{1}}(q)_{n_{2}} \cdots(q)_{n_{l-1}}}$
$m \neq 0, \pm r(\bmod 2 /+1)$
where $N_{j}=n_{j}+n_{j+1}+\ldots+n_{l-1}$ and $l \geq 2,1 \leq r \leq I$.
(We omitted even moduli.)

- Combinatorial Gordon identities: The nth coefficient of the right hand side is is a number of partitions of $n=j_{1}+\cdots+j_{s}$ such that

$$
j_{1} \geq j_{2} \cdots \geq j_{s}, \quad j_{p} \geq 2+j_{p+l-1}, \quad j_{s-r+1}>1 .
$$

- Combinatorial RR identities for $l=2, \quad a=0$ for $r=2$.
- In general we have difference conditions and initial conditions.

From the Weyl-Kac formula for $\widehat{\mathfrak{s l}}_{2}$ and $\Lambda=k_{0} \Lambda_{0}+k_{1} \Lambda_{1}$ we have ([LM]),

$$
\operatorname{ch}_{q} L(\Lambda)= \begin{cases}F \cdot \prod_{\substack{n \geq 1 \\ n \neq 0}}\left(1-q^{n}\right)^{-1} & \text { if } k_{0} \neq k_{1}, \\ F \cdot \prod_{\substack{n \geq 1 \\ n \neq 0,\left(k_{0}+1\right)}}\left(1-q^{n}\right)^{-1} \prod_{\substack{n \geq 1 \\ n \neq k_{0}+1}}\left(1-q^{n}\right) & \text { if } k_{0}=k_{1},\end{cases}
$$

where all congruences are modulo $k_{0}+k_{1}+2$ and

$$
F=\prod_{n \geq 1}\left(1-q^{2 n-1}\right)^{-1}
$$

From the Weyl-Kac formula for $\widehat{\mathfrak{s l}}_{2}$ and $\Lambda=k_{0} \Lambda_{0}+k_{1} \Lambda_{1}$ we have ([LM]),

$$
\operatorname{ch}_{q} L(\Lambda)= \begin{cases}F \cdot \prod_{\substack{n \geq 1 \\ n \neq 0}}\left(1-q^{n}\right)^{-1} & \text { if } k_{0} \neq k_{1}, \\ F \cdot \prod_{\substack{n \geq 1 \\ n \neq 0,\left(k_{0}+1\right)}}\left(1-q^{n}\right)^{-1} \prod_{\substack{n \geq 1 \\ n \neq k_{0}+1}}\left(1-q^{n}\right) & \text { if } k_{0}=k_{1},\end{cases}
$$

where all congruences are modulo $k_{0}+k_{1}+2$ and

$$
F=\prod_{n \geq 1}\left(1-q^{2 n-1}\right)^{-1}
$$

The level of standard representation $L(\Lambda)$ is $k=\Lambda(c)=k_{0}+k_{1}$.

Let $\mathfrak{g}=\mathfrak{s l}_{2}$ with the invariant form $\langle x, y\rangle=\operatorname{tr} x y$ and the standard basis

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad h=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

The affine Lie algebra $\widehat{\mathfrak{s l}}_{2}$ "in the homogeneous picture" is

$$
\hat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t^{1}, t^{-1}\right] \oplus \mathbb{C} c \oplus \mathbb{C} d,
$$

where c is a nonzero central element in $\hat{\mathfrak{g}}$, and for $x, y \in \mathfrak{g}$ and $m, n \in \mathbb{Z}$,

$$
\begin{aligned}
{\left[x \otimes t^{m}, y \otimes t^{n}\right] } & =[x, y] \otimes t^{m+n}+\langle x, y\rangle m \delta_{m+n, 0}, \\
{\left[d, x \otimes t^{m}\right] } & =m x \otimes t^{m}
\end{aligned}
$$

The affine Lie algebra $\widehat{\mathfrak{s}}_{2}$ "in the principal picture" is the subalgebra

$$
\hat{\mathfrak{g}} \cong h \otimes \mathbb{C}\left[t^{2}, t^{-2}\right] \oplus \operatorname{span}\{e, f\} \otimes t \mathbb{C}\left[t^{2}, t^{-2}\right] \oplus \mathbb{C} c \oplus \mathbb{C} d .
$$

Let $\mathfrak{g}=\mathfrak{s l}_{2}$ with the invariant form $\langle x, y\rangle=\operatorname{tr} x y$ and the standard basis

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad h=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

The affine Lie algebra $\widehat{\mathfrak{s l}}_{2}$ "in the homogeneous picture" is

$$
\hat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t^{1}, t^{-1}\right] \oplus \mathbb{C} c \oplus \mathbb{C} d
$$

where c is a nonzero central element in $\hat{\mathfrak{g}}$, and for $x, y \in \mathfrak{g}$ and $m, n \in \mathbb{Z}$,

$$
\begin{aligned}
{\left[x \otimes t^{m}, y \otimes t^{n}\right] } & =[x, y] \otimes t^{m+n}+\langle x, y\rangle m \delta_{m+n, 0} c \\
{\left[d, x \otimes t^{m}\right] } & =m x \otimes t^{m}
\end{aligned}
$$

The affine Lie algebra $\widehat{\mathfrak{s l}}_{2}$ "in the principal picture" is the subalgebra
\square

Let $\mathfrak{g}=\mathfrak{s l}_{2}$ with the invariant form $\langle x, y\rangle=\operatorname{tr} x y$ and the standard basis

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad h=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The affine Lie algebra $\widehat{\mathfrak{s l}}_{2}$ "in the homogeneous picture" is

$$
\hat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t^{1}, t^{-1}\right] \oplus \mathbb{C} c \oplus \mathbb{C} d
$$

where c is a nonzero central element in $\hat{\mathfrak{g}}$, and for $x, y \in \mathfrak{g}$ and $m, n \in \mathbb{Z}$,

$$
\begin{aligned}
{\left[x \otimes t^{m}, y \otimes t^{n}\right] } & =[x, y] \otimes t^{m+n}+\langle x, y\rangle m \delta_{m+n, 0} c \\
{\left[d, x \otimes t^{m}\right] } & =m x \otimes t^{m}
\end{aligned}
$$

The affine Lie algebra $\widehat{\mathfrak{s}}_{2}$ "in the principal picture" is the subalgebra

$$
\hat{\mathfrak{g}} \cong h \otimes \mathbb{C}\left[t^{2}, t^{-2}\right] \oplus \operatorname{span}\{e, f\} \otimes t \mathbb{C}\left[t^{2}, t^{-2}\right] \oplus \mathbb{C} c \oplus \mathbb{C} d
$$

Set

$$
\begin{aligned}
& B(n)=(e+f) \otimes t^{n} \quad \text { for } n \in 2 \mathbb{Z}+1 \\
& X(n)= \begin{cases}(f-e) \otimes t^{n} & \text { if } n \in 2 \mathbb{Z}+1 \\
h \otimes t^{n} & \text { if } n \in 2 \mathbb{Z}\end{cases}
\end{aligned}
$$

The set

$$
\{B(m), X(n), c, d: m \in 2 \mathbb{Z}+1, n \in \mathbb{Z}\}
$$

is a basis of $\hat{\mathfrak{g}}$. We have

$$
\begin{aligned}
& {[B(m), B(n)]=m \delta_{m+n, 0} \quad \text { for } m, n \in 2 \mathbb{Z}+1 ;} \\
& {[B(m), X(n)]=2 X(m+n) \text { for } m \in 2 \mathbb{Z}+1, n \in \mathbb{Z} ;} \\
& {[X(m), X(n)]=(-1)^{m+1} 2 B(m+n)+(-1)^{m} m \delta_{m+n, 0} \quad \text { for } m, n \in \mathbb{Z} .}
\end{aligned}
$$

span $\{B(m), c: m \in 2 \mathbb{Z}+1\}$ is the principal Heisenberg subalgebra of $\hat{s l}_{2}$.
The principal Heisenberg subalgebra normalizes $\{X(n): n \in \mathbb{Z}\}$.

Set

$$
\begin{aligned}
& B(n)=(e+f) \otimes t^{n} \\
& \text { for } n \in 2 \mathbb{Z}+1 \\
& X(n)= \begin{cases}(f-e) \otimes t^{n} & \text { if } n \in 2 \mathbb{Z}+1 \\
h \otimes t^{n} & \text { if } n \in 2 \mathbb{Z}\end{cases}
\end{aligned}
$$

The set

$$
\{B(m), X(n), c, d: m \in 2 \mathbb{Z}+1, n \in \mathbb{Z}\}
$$

is a basis of $\hat{\mathfrak{g}}$. We have

$$
\begin{aligned}
& {[B(m), B(n)]=m \delta_{m+n, 0} c \quad \text { for } m, n \in 2 \mathbb{Z}+1 ;} \\
& {[B(m), X(n)]=2 X(m+n) \quad \text { for } m \in 2 \mathbb{Z}+1, n \in \mathbb{Z} ;} \\
& {[X(m), X(n)]=(-1)^{m+1} 2 B(m+n)+(-1)^{m} m \delta_{m+n, 0} c \quad \text { for } m, n \in \mathbb{Z}}
\end{aligned}
$$

Set

$$
\begin{aligned}
& B(n)=(e+f) \otimes t^{n} \quad \text { for } n \in 2 \mathbb{Z}+1 \\
& X(n)= \begin{cases}(f-e) \otimes t^{n} & \text { if } n \in 2 \mathbb{Z}+1 \\
h \otimes t^{n} & \text { if } n \in 2 \mathbb{Z}\end{cases}
\end{aligned}
$$

The set

$$
\{B(m), X(n), c, d: m \in 2 \mathbb{Z}+1, n \in \mathbb{Z}\}
$$

is a basis of $\hat{\mathfrak{g}}$. We have

$$
\begin{aligned}
& {[B(m), B(n)]=m \delta_{m+n, 0} c \quad \text { for } m, n \in 2 \mathbb{Z}+1} \\
& {[B(m), X(n)]=2 X(m+n) \quad \text { for } m \in 2 \mathbb{Z}+1, n \in \mathbb{Z}} \\
& {[X(m), X(n)]=(-1)^{m+1} 2 B(m+n)+(-1)^{m} m \delta_{m+n, 0} c \quad \text { for } m, n \in \mathbb{Z}}
\end{aligned}
$$

Set

$$
\begin{aligned}
& B(n)=(e+f) \otimes t^{n} \\
& \text { for } n \in 2 \mathbb{Z}+1 \\
& X(n)= \begin{cases}(f-e) \otimes t^{n} & \text { if } n \in 2 \mathbb{Z}+1 \\
h \otimes t^{n} & \text { if } n \in 2 \mathbb{Z}\end{cases}
\end{aligned}
$$

The set

$$
\{B(m), X(n), c, d: m \in 2 \mathbb{Z}+1, n \in \mathbb{Z}\}
$$

is a basis of $\hat{\mathfrak{g}}$. We have

$$
\begin{aligned}
& {[B(m), B(n)]=m \delta_{m+n, 0} c \quad \text { for } m, n \in 2 \mathbb{Z}+1} \\
& {[B(m), X(n)]=2 X(m+n) \quad \text { for } m \in 2 \mathbb{Z}+1, n \in \mathbb{Z}} \\
& {[X(m), X(n)]=(-1)^{m+1} 2 B(m+n)+(-1)^{m} m \delta_{m+n, 0} c \quad \text { for } m, n \in \mathbb{Z}}
\end{aligned}
$$

span $\{B(m), c: m \in 2 \mathbb{Z}+1\}$ is the principal Heisenberg subalgebra of $\widehat{\mathfrak{s l}}_{2}$.

Set

$$
\begin{aligned}
& B(n)=(e+f) \otimes t^{n} \\
& \text { for } n \in 2 \mathbb{Z}+1 \\
& X(n)= \begin{cases}(f-e) \otimes t^{n} & \text { if } n \in 2 \mathbb{Z}+1 \\
h \otimes t^{n} & \text { if } n \in 2 \mathbb{Z}\end{cases}
\end{aligned}
$$

The set

$$
\{B(m), X(n), c, d: m \in 2 \mathbb{Z}+1, n \in \mathbb{Z}\}
$$

is a basis of $\hat{\mathfrak{g}}$. We have

$$
\begin{aligned}
& {[B(m), B(n)]=m \delta_{m+n, 0} c \quad \text { for } m, n \in 2 \mathbb{Z}+1} \\
& {[B(m), X(n)]=2 X(m+n) \quad \text { for } m \in 2 \mathbb{Z}+1, n \in \mathbb{Z}} \\
& {[X(m), X(n)]=(-1)^{m+1} 2 B(m+n)+(-1)^{m} m \delta_{m+n, 0} c \quad \text { for } m, n \in \mathbb{Z}}
\end{aligned}
$$

span $\{B(m), c: m \in 2 \mathbb{Z}+1\}$ is the principal Heisenberg subalgebra of $\widehat{\mathfrak{s l}}_{2}$.
The principal Heisenberg subalgebra normalizes $\{X(n): n \in \mathbb{Z}\}$.

Let $\Lambda=k_{0} \Lambda_{0}$ for $k_{0}=2 I+1$ odd.
Theorem ([LW4])
The set of vectors

$$
Z_{j_{1}}(\beta) \cdots Z_{j_{s}}(\beta) v_{\Lambda}, \quad s \geq 0
$$

such that

- $j_{1} \leq j_{2} \leq \ldots \leq j_{s}<0$,
- $j_{m+1}-j_{m} \geq 2$ for all $m, 1 \leq m \leq s-I$,
is a basis of $\Omega_{L(\Lambda)}$.

Remark

This basis corresponds with the basis of the standard module $L(\Lambda)$ ([MP]),

$$
B\left(i_{1}\right) \cdots B\left(i_{r}\right) X\left(j_{1}\right) \cdots X\left(j_{s}\right) \quad \text { for odd } i_{1} \leq \ldots \leq i_{r}<0 .
$$

Let $\Lambda=k_{0} \Lambda_{0}$ for $k_{0}=2 l+1$ odd.

Theorem ([LW4])

The set of vectors

$$
Z_{j_{1}}(\beta) \cdots Z_{j_{s}}(\beta) v_{\Lambda}, \quad s \geq 0
$$

such that

- $j_{1} \leq j_{2} \leq \ldots \leq j_{s}<0$,
- $j_{m+I}-j_{m} \geq 2$ for all $m, 1 \leq m \leq s-I$, is a basis of $\Omega_{L(\Lambda)}$.

Remark

This basis corresponds with the basis of the standard module $L(\Lambda)$ ([MP]),

Let $\Lambda=k_{0} \Lambda_{0}$ for $k_{0}=2 l+1$ odd.

Theorem ([LW4])

The set of vectors

$$
Z_{j_{1}}(\beta) \cdots Z_{j_{s}}(\beta) v_{\Lambda}, \quad s \geq 0
$$

such that

- $j_{1} \leq j_{2} \leq \ldots \leq j_{s}<0$,
- $j_{m+I}-j_{m} \geq 2$ for all $m, 1 \leq m \leq s-I$,
is a basis of $\Omega_{L(\Lambda)}$.

Remark

This basis corresponds with the basis of the standard module $L(\Lambda)$ ([MP]),

$$
B\left(i_{1}\right) \cdots B\left(i_{r}\right) X\left(j_{1}\right) \cdots X\left(j_{s}\right) \quad \text { for odd } i_{1} \leq \ldots \leq i_{r}<0 .
$$

Set

$$
\begin{aligned}
& X(\zeta)=\sum_{n \in \mathbb{Z}} X(n) \zeta^{n} \\
& B(\zeta)=\sum_{n \in 2 \mathbb{Z}+1} B(n) \zeta^{n} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& {[B(\zeta), B(\xi)]=c \sum_{n \in 2 \mathbb{Z}+1} n(\zeta / \xi)^{n}} \\
& {[B(\zeta), X(\xi)]=2 X(\xi) \sum_{n \in 2 \mathbb{Z}+1}(\zeta / \xi)^{n}} \\
& {[X(\zeta), X(\xi)]=-2 B(\xi) \delta(-\zeta / \xi)+c(D \delta)(-\zeta / \xi)}
\end{aligned}
$$

Note that $(1+\zeta / \xi) \delta(-\zeta / \xi)=(1+\zeta / \xi) \sum_{n \in \mathbb{Z}}(-\zeta / \xi)^{n}=0$.

Set

$$
\begin{aligned}
& X(\zeta)=\sum_{n \in \mathbb{Z}} X(n) \zeta^{n}, \\
& B(\zeta)=\sum_{n \in 2 \mathbb{Z}+1} B(n) \zeta^{n} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& {[B(\zeta), B(\xi)]=c \sum_{n \in 2 \mathbb{Z}+1} n(\zeta / \xi)^{n}} \\
& {[B(\zeta), X(\xi)]=2 X(\xi) \sum_{n \in 2 \mathbb{Z}+1}(\zeta / \xi)^{n}} \\
& {[X(\zeta), X(\xi)]=-2 B(\xi) \delta(-\zeta / \xi)+c(D \delta)(-\zeta / \xi)}
\end{aligned}
$$

Note that $(1+\zeta / \xi) \delta(-\zeta / \xi)=(1+\zeta / \xi) \sum_{n \in \mathbb{Z}}(-\zeta / \xi)^{n}=0$.

Set

$$
\begin{aligned}
X(\zeta) & =\sum_{n \in \mathbb{Z}} X(n) \zeta^{n} \\
B(\zeta) & =\sum_{n \in 2 \mathbb{Z}+1} B(n) \zeta^{n}
\end{aligned}
$$

We have

$$
\begin{aligned}
& {[B(\zeta), B(\xi)]=c \sum_{n \in 2 \mathbb{Z}+1} n(\zeta / \xi)^{n}} \\
& {[B(\zeta), X(\xi)]=2 X(\xi) \sum_{n \in 2 \mathbb{Z}+1}(\zeta / \xi)^{n}} \\
& {[X(\zeta), X(\xi)]=-2 B(\xi) \delta(-\zeta / \xi)+c(D \delta)(-\zeta / \xi)}
\end{aligned}
$$

Note that $(1+\zeta / \xi) \delta(-\zeta / \xi)=(1+\zeta / \xi) \sum_{n \in \mathbb{Z}}(-\zeta / \xi)^{n}=0$.

Since

$$
(\zeta \xi)^{-1}(\zeta+\xi)^{2} X(\zeta) X(\xi)=(\zeta \xi)^{-1}(\zeta+\xi)^{2} X(\xi) X(\zeta),
$$

we can define for a positive integer p

$$
X^{(p)}(\zeta):=\lim _{\zeta_{i} \rightarrow \zeta} \prod_{1 \leq i<j \leq p}\left(\zeta_{i} \zeta_{j}\right)^{-1}\left(\zeta_{i}+\zeta_{j}\right)^{2} X\left(\zeta_{1}\right) \cdots X\left(\zeta_{p}\right) .
$$

The quasi-particle $X^{(p)}(n)$ of degree n and charge p is the coefficient in

$$
X^{(p)}(\zeta)=\sum_{n \in \mathbb{Z}} X^{(p)}(n) \zeta^{n},
$$

Quasi-particles in homogeneous picture [FS], [Ge] are coefficients in

$$
x_{p \alpha}(z)=x_{\alpha}(z)^{p}=\left(\sum_{n \in \mathbb{Z}} x_{\alpha}(n) z^{-n-1}\right)^{p}
$$

Since

$$
(\zeta \xi)^{-1}(\zeta+\xi)^{2} X(\zeta) X(\xi)=(\zeta \xi)^{-1}(\zeta+\xi)^{2} X(\xi) X(\zeta)
$$

we can define for a positive integer p

$$
X^{(p)}(\zeta):=\lim _{\zeta_{i} \rightarrow \zeta} \prod_{1 \leq i<j \leq p}\left(\zeta_{i} \zeta_{j}\right)^{-1}\left(\zeta_{i}+\zeta_{j}\right)^{2} X\left(\zeta_{1}\right) \cdots X\left(\zeta_{p}\right)
$$

The quasi-particle $X^{(p)}(n)$ of degree n and charge p is the coefficient in

$$
X^{(p)}(\zeta)=\sum_{n \in \mathbb{Z}} X^{(p)}(n) \zeta^{n}
$$

Quasi-particles in homogeneous picture [FS], [Ge] are coefficients in

$$
x_{p \alpha}(z)=x_{\alpha}(z)^{p}=\left(\sum_{n \in \mathbb{Z}} x_{\alpha}(n) z^{-n-1}\right)^{\prime}
$$

Since

$$
(\zeta \xi)^{-1}(\zeta+\xi)^{2} X(\zeta) X(\xi)=(\zeta \xi)^{-1}(\zeta+\xi)^{2} X(\xi) X(\zeta)
$$

we can define for a positive integer p

$$
X^{(p)}(\zeta):=\lim _{\zeta_{i} \rightarrow \zeta} \prod_{1 \leq i<j \leq p}\left(\zeta_{i} \zeta_{j}\right)^{-1}\left(\zeta_{i}+\zeta_{j}\right)^{2} X\left(\zeta_{1}\right) \cdots X\left(\zeta_{p}\right)
$$

The quasi-particle $X^{(p)}(n)$ of degree n and charge p is the coefficient in

$$
X^{(p)}(\zeta)=\sum_{n \in \mathbb{Z}} X^{(p)}(n) \zeta^{n}
$$

Quasi-particles in homogeneous picture [FS], [Ge] are coefficients in

$$
x_{p \alpha}(z)=x_{\alpha}(z)^{p}=\left(\sum_{n \in \mathbb{Z}} x_{\alpha}(n) z^{-n-1}\right)^{p}
$$

Since

$$
(\zeta \xi)^{-1}(\zeta+\xi)^{2} X(\zeta) X(\xi)=(\zeta \xi)^{-1}(\zeta+\xi)^{2} X(\xi) X(\zeta)
$$

we can define for a positive integer p

$$
X^{(p)}(\zeta):=\lim _{\zeta_{i} \rightarrow \zeta} \prod_{1 \leq i<j \leq p}\left(\zeta_{i} \zeta_{j}\right)^{-1}\left(\zeta_{i}+\zeta_{j}\right)^{2} X\left(\zeta_{1}\right) \cdots X\left(\zeta_{p}\right)
$$

The quasi-particle $X^{(p)}(n)$ of degree n and charge p is the coefficient in

$$
X^{(p)}(\zeta)=\sum_{n \in \mathbb{Z}} X^{(p)}(n) \zeta^{n}
$$

Quasi-particles in homogeneous picture [FS], [Ge] are coefficients in

$$
x_{p \alpha}(z)=x_{\alpha}(z)^{p}=\left(\sum_{n \in \mathbb{Z}} x_{\alpha}(n) z^{-n-1}\right)^{p}
$$

$x_{\theta}(z)^{k+1}=0$ are defining relations for level k standard modules.

Theorem

The set $\mathcal{B}_{M(\Lambda)}$ of vectors

$$
\begin{equation*}
B\left(i_{1}\right) \cdots B\left(i_{r}\right) X^{\left(p_{1}\right)}\left(j_{1}\right) \cdots X^{\left(p_{s}\right)}\left(j_{s}\right) v_{\Lambda} \tag{V}
\end{equation*}
$$

such that

$$
\begin{align*}
& r \geq 0 \quad \text { and odd } \quad i_{1} \leq \ldots \leq i_{r} \leq-1 \tag{V1}\\
& s \geq 0 \quad \text { and } \quad 1 \leq p_{1} \leq \ldots \leq p_{s} \tag{V2}\\
& j_{s} \leq-p_{s}, \tag{V3}\\
& p_{l}<p_{l+1} \quad \text { implies } \quad j_{I} \leq-p_{l}-2 p_{l}(s-l) \tag{V4}\\
& p_{l}=p_{l+1} \quad \text { implies } \quad j_{l} \leq-2 p_{I}+j_{l+1} \tag{V5}
\end{align*}
$$

is a basis of the Verma module $M(\Lambda)$.

For spanning we use relations such as

$$
X^{(p)}(\zeta) X^{(q)}(\zeta) \sim X^{(p+q)}(\zeta)
$$

$$
\left(\sum_{i \in \mathbb{Z}} a(i) \zeta^{i}\right)\left(\sum_{j \in \mathbb{Z}} b(j) \zeta^{j}\right) \sim\left(\sum_{n \in \mathbb{Z}} c(n) \zeta^{n}\right)
$$

$c(n) \sim \cdots+a\left(n-j_{0}+1\right) b\left(j_{0}-1\right)+a\left(n-j_{0}\right) b\left(j_{0}\right)+a\left(n-j_{0}-1\right) b\left(j_{0}+1\right)+.$.
to express monomial $a(n-j 0) b(j 0)$, for example when $a=b$ and $n=2 j_{0}$.

- for $p=q=1$ we have difference 2
- for $p=q=2$ we have difference 4
- for $p=1, q=2$ we have "interaction"

For spanning we use relations such as

$$
\begin{gathered}
X^{(p)}(\zeta) X^{(q)}(\zeta) \sim X^{(p+q)}(\zeta) \\
\left(\sum_{i \in \mathbb{Z}} a(i) \zeta^{i}\right)\left(\sum_{j \in \mathbb{Z}} b(j) \zeta^{j}\right) \sim\left(\sum_{n \in \mathbb{Z}} c(n) \zeta^{n}\right)
\end{gathered}
$$

$$
c(n) \sim \cdots+a\left(n-j_{0}+1\right) b\left(j_{0}-1\right)+a\left(n-j_{0}\right) b\left(j_{0}\right)+a\left(n-j_{0}-1\right) b\left(j_{0}+1\right)+\ldots
$$

to express monomial $a\left(n-j_{0}\right) b\left(j_{0}\right)$, for example when $a=b$ and $n=2 j_{0}$.

- for $p=q=1$ we have difference 2
- for $p=q=2$ we have difference 4
- for $p=1, q=2$ we have "interaction"

For spanning we use relations such as

$$
\begin{gathered}
X^{(p)}(\zeta) X^{(q)}(\zeta) \sim X^{(p+q)}(\zeta) \\
\left(\sum_{i \in \mathbb{Z}} a(i) \zeta^{i}\right)\left(\sum_{j \in \mathbb{Z}} b(j) \zeta^{j}\right) \sim\left(\sum_{n \in \mathbb{Z}} c(n) \zeta^{n}\right)
\end{gathered}
$$

$$
c(n) \sim \cdots+a\left(n-j_{0}+1\right) b\left(j_{0}-1\right)+a\left(n-j_{0}\right) b\left(j_{0}\right)+a\left(n-j_{0}-1\right) b\left(j_{0}+1\right)+\ldots
$$

to express monomial $a\left(n-j_{0}\right) b\left(j_{0}\right)$, for example when $a=b$ and $n=2 j_{0}$.

- for $p=q=1$ we have difference 2
- for $p=q=2$ we have difference 4
- for $p=1, q=2$ we have "interaction"

For spanning we use relations such as

$$
\begin{gathered}
X^{(p)}(\zeta) X^{(q)}(\zeta) \sim X^{(p+q)}(\zeta) \\
\left(\sum_{i \in \mathbb{Z}} a(i) \zeta^{i}\right)\left(\sum_{j \in \mathbb{Z}} b(j) \zeta^{j}\right) \sim\left(\sum_{n \in \mathbb{Z}} c(n) \zeta^{n}\right)
\end{gathered}
$$

$c(n) \sim \cdots+a\left(n-j_{0}+1\right) b\left(j_{0}-1\right)+a\left(n-j_{0}\right) b\left(j_{0}\right)+a\left(n-j_{0}-1\right) b\left(j_{0}+1\right)+\ldots$
to express monomial $a\left(n-j_{0}\right) b\left(j_{0}\right)$, for example when $a=b$ and $n=2 j_{0}$.

- for $p=q=1$ we have difference 2
- for $p=q=2$ we have difference 4
- for $p=1, q=2$ we have "interaction"

For spanning we use relations such as

$$
\begin{gathered}
X^{(p)}(\zeta) X^{(q)}(\zeta) \sim X^{(p+q)}(\zeta) \\
\left(\sum_{i \in \mathbb{Z}} a(i) \zeta^{i}\right)\left(\sum_{j \in \mathbb{Z}} b(j) \zeta^{j}\right) \sim\left(\sum_{n \in \mathbb{Z}} c(n) \zeta^{n}\right)
\end{gathered}
$$

$c(n) \sim \cdots+a\left(n-j_{0}+1\right) b\left(j_{0}-1\right)+a\left(n-j_{0}\right) b\left(j_{0}\right)+a\left(n-j_{0}-1\right) b\left(j_{0}+1\right)+\ldots$
to express monomial $a\left(n-j_{0}\right) b\left(j_{0}\right)$, for example when $a=b$ and $n=2 j_{0}$.

- for $p=q=1$ we have difference 2
- for $p=q=2$ we have difference 4
- for $p=1, q=2$ we have "interaction"
(V5)

For spanning we use relations such as

$$
\begin{gathered}
X^{(p)}(\zeta) X^{(q)}(\zeta) \sim X^{(p+q)}(\zeta) \\
\left(\sum_{i \in \mathbb{Z}} a(i) \zeta^{i}\right)\left(\sum_{j \in \mathbb{Z}} b(j) \zeta^{j}\right) \sim\left(\sum_{n \in \mathbb{Z}} c(n) \zeta^{n}\right)
\end{gathered}
$$

$c(n) \sim \cdots+a\left(n-j_{0}+1\right) b\left(j_{0}-1\right)+a\left(n-j_{0}\right) b\left(j_{0}\right)+a\left(n-j_{0}-1\right) b\left(j_{0}+1\right)+\ldots$
to express monomial $a\left(n-j_{0}\right) b\left(j_{0}\right)$, for example when $a=b$ and $n=2 j_{0}$.

- for $p=q=1$ we have difference 2
- for $p=q=2$ we have difference 4
- for $p=1, q=2$ we have "interaction"

For spanning we use relations such as

$$
\begin{gathered}
X^{(p)}(\zeta) X^{(q)}(\zeta) \sim X^{(p+q)}(\zeta) \\
\left(\sum_{i \in \mathbb{Z}} a(i) \zeta^{i}\right)\left(\sum_{j \in \mathbb{Z}} b(j) \zeta^{j}\right) \sim\left(\sum_{n \in \mathbb{Z}} c(n) \zeta^{n}\right)
\end{gathered}
$$

$c(n) \sim \cdots+a\left(n-j_{0}+1\right) b\left(j_{0}-1\right)+a\left(n-j_{0}\right) b\left(j_{0}\right)+a\left(n-j_{0}-1\right) b\left(j_{0}+1\right)+\ldots$
to express monomial $a\left(n-j_{0}\right) b\left(j_{0}\right)$, for example when $a=b$ and $n=2 j_{0}$.

- for $p=q=1$ we have difference 2
- for $p=q=2$ we have difference 4
- for $p=1, q=2$ we have "interaction"

For linear independence we "check" the character.

Relations for standard modules $L(\Lambda)$

$$
E^{ \pm}(\zeta)=\sum_{i>0} E^{ \pm}(\pm i) \zeta^{ \pm i}=\exp \left(2 \sum_{n \in \pm(2 \mathbb{N}+1)} B(n) \zeta^{n} / n\right) .
$$

On level k standard $\hat{\mathfrak{g}}$-module $L\left(k_{0} \Lambda_{0}+k_{1} \Lambda_{1}\right)$ we have ([LW4], [MP]):

- For $p \geq k+1 \quad X^{(p)}(\zeta)=0$.
- For $p, q \geq 0, p+q=k$,

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta)=0,
$$

where $a_{r}=2^{-r(r-2)} / r!$.

- There are some "initial" relations $I_{p}^{\wedge}(n) v_{\wedge}=0$ for $n>-n_{\wedge}(p)$.

Note that for $k=3$ we can express $X^{(2)}(\zeta)$ in terms of $X^{(1)}(-\zeta)$. Relations in the case $p=q=k / 2$ are "special"

Relations for standard modules $L(\Lambda)$

$$
E^{ \pm}(\zeta)=\sum_{i>0} E^{ \pm}(\pm i) \zeta^{ \pm i}=\exp \left(2 \sum_{n \in \pm(2 \mathbb{N}+1)} B(n) \zeta^{n} / n\right) .
$$

On level k standard $\hat{\mathfrak{g}}$-module $L\left(k_{0} \Lambda_{0}+k_{1} \Lambda_{1}\right)$ we have ([LW4], [MP]):

- For $p \geq k+1 \quad X^{(p)}(\zeta)=0$.
- For $p, q \geq 0, p+q=k$,

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta)=0,
$$

where $a_{r}=2^{-r(r-2)} / r!$.

- There are some "initial" relations $/_{p}^{\wedge}(n) v_{\wedge}=0$ for $n>-n_{\lambda}(p)$.

Note that for $k=3$ we can express $X^{(2)}(\zeta)$ in terms of $X^{(1)}(-\zeta)$. Relations in the case $p=q=k / 2$ are "special"

Relations for standard modules $L(\Lambda)$

$$
E^{ \pm}(\zeta)=\sum_{i>0} E^{ \pm}(\pm i) \zeta^{ \pm i}=\exp \left(2 \sum_{n \in \pm(2 \mathbb{N}+1)} B(n) \zeta^{n} / n\right)
$$

On level k standard $\hat{\mathfrak{g}}$-module $L\left(k_{0} \Lambda_{0}+k_{1} \Lambda_{1}\right)$ we have ([LW4], [MP]):

- For $p \geq k+1 \quad X^{(p)}(\zeta)=0$.
- For $p, q \geq 0, p+q=k$,

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta)=0
$$

where $a_{r}=2^{-r(r-2)} / r!$.

- There are some "initial" relations $l_{p}^{\wedge}(n) v_{\Lambda}=0$ for $n>-n_{\Lambda}(p)$.

Relations for standard modules $L(\Lambda)$

$$
E^{ \pm}(\zeta)=\sum_{i>0} E^{ \pm}(\pm i) \zeta^{ \pm i}=\exp \left(2 \sum_{n \in \pm(2 \mathbb{N}+1)} B(n) \zeta^{n} / n\right)
$$

On level k standard $\hat{\mathfrak{g}}$-module $L\left(k_{0} \Lambda_{0}+k_{1} \Lambda_{1}\right)$ we have ([LW4], [MP]):

- For $p \geq k+1 \quad X^{(p)}(\zeta)=0$.
- For $p, q \geq 0, p+q=k$,

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta)=0
$$

where $a_{r}=2^{-r(r-2)} / r!$.

- There are some "initial" relations $I_{p}^{\wedge}(n) v_{\Lambda}=0$ for $n>-n_{\Lambda}(p)$.

Relations for standard modules $L(\Lambda)$

$$
E^{ \pm}(\zeta)=\sum_{i>0} E^{ \pm}(\pm i) \zeta^{ \pm i}=\exp \left(2 \sum_{n \in \pm(2 \mathbb{N}+1)} B(n) \zeta^{n} / n\right)
$$

On level k standard $\hat{\mathfrak{g}}$-module $L\left(k_{0} \Lambda_{0}+k_{1} \Lambda_{1}\right)$ we have ([LW4], [MP]):

- For $p \geq k+1 \quad X^{(p)}(\zeta)=0$.
- For $p, q \geq 0, p+q=k$,

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta)=0
$$

where $a_{r}=2^{-r(r-2)} / r!$.

- There are some "initial" relations $l_{p}^{\wedge}(n) v_{\Lambda}=0$ for $n>-n_{\Lambda}(p)$.

Note that for $k=3$ we can express $X^{(2)}(\zeta)$ in terms of $X^{(1)}(-\zeta)$.

Relations for standard modules $L(\Lambda)$

$$
E^{ \pm}(\zeta)=\sum_{i>0} E^{ \pm}(\pm i) \zeta^{ \pm i}=\exp \left(2 \sum_{n \in \pm(2 \mathbb{N}+1)} B(n) \zeta^{n} / n\right)
$$

On level k standard $\hat{\mathfrak{g}}$-module $L\left(k_{0} \Lambda_{0}+k_{1} \Lambda_{1}\right)$ we have ([LW4], [MP]):

- For $p \geq k+1 \quad X^{(p)}(\zeta)=0$.
- For $p, q \geq 0, p+q=k$,

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta)=0
$$

where $a_{r}=2^{-r(r-2)} / r!$.

- There are some "initial" relations $l_{p}^{\wedge}(n) v_{\Lambda}=0$ for $n>-n_{\Lambda}(p)$.

Note that for $k=3$ we can express $X^{(2)}(\zeta)$ in terms of $X^{(1)}(-\zeta)$. Relations in the case $p=q=k / 2$ are "special".

Since we have a surjection $M(\Lambda) \rightarrow L(\Lambda)$, monomial vectors (V) such that

$$
1 \leq p_{1} \leq \ldots \leq p_{s} \leq k / 2 \quad \& \quad \text { initial conditions hold }
$$

give a spanning set of $L(\Lambda)$. By using analytic identities we see this is a basis.

For $L\left((I+1) \Lambda_{0}+I \Lambda_{1}\right)$ we can prove linear indepenence of monomial vectors (V) directly. Hence

Corollary
$n \neq 0, \pm(I+2)(\bmod 2 I+3)$

Since we have a surjection $M(\Lambda) \rightarrow L(\Lambda)$, monomial vectors (V) such that

$$
1 \leq p_{1} \leq \ldots \leq p_{s} \leq k / 2 \quad \& \quad \text { initial conditions hold }
$$

give a spanning set of $L(\Lambda)$. By using analytic identities we see this is a basis.

For $L\left((I+1) \Lambda_{0}+I \Lambda_{1}\right)$ we can prove linear indepenence of monomial vectors (V) directly. Hence

Corollary

$$
\prod_{\substack{n \geq 1 \\ n \neq 0, \pm(1+2)(\bmod 2 l+3)}}
$$

Questions:

- Can one prove "directly" all Gordon-Andrews-Bressoud identites?
- Can one extend the construction to $\mathfrak{s l}_{n}$?
- What is the proper VOA setting for this construction? We have

$$
x^{(p)}\left(z^{-1 / 2}\right)=2^{2(p-1)} z^{p} \times(z)_{-1} \ldots x(z)_{-1} x(z)
$$

where $x(z)$ is a field for twisted representaion of VOA for $\widehat{\mathfrak{s}}_{2}$. But then, where "lives"

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta) ?
$$

- Is the proper setting Dong-Lepowsky-Wilson's Z-algebra $\Omega_{L(\Lambda)}$ with some sort of "Z-quasi-particle" relations

$$
a_{p} Z^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} Z^{(q)}(-\zeta) ?
$$

In the homogeneous picture "this" is parafermion algebra.

Questions:

- Can one prove "directly" all Gordon-Andrews-Bressoud identites?
- Can one extend the construction to $\widehat{\mathfrak{s l}}_{n}$?
- What is the proper VOA setting for this construction? We have

$$
X^{(p)}\left(z^{-1 / 2}\right)=2^{2(p-1)} z^{p} x(z)_{-1} \ldots x(z)_{-1} x(z)
$$

where $x(z)$ is a field for twisted representaion of VOA for $\widehat{\mathfrak{s}}_{2}$. But then, where "lives"

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta) ?
$$

- Is the proper setting Dong-Lepowsky-Wilson's Z-algebra $\Omega_{L(\Lambda)}$ with some sort of "Z-quasi-particle" relations

$$
a_{p} Z^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} Z^{(q)}(-\zeta) ?
$$

In the homogeneous picture "this" is parafermion algebra.

Questions:

- Can one prove "directly" all Gordon-Andrews-Bressoud identites?
- Can one extend the construction to $\widehat{\mathfrak{s l}}_{n}$?
- What is the proper VOA setting for this construction? We have

$$
X^{(p)}\left(z^{-1 / 2}\right)=2^{2(p-1)} z^{p} x(z)_{-1} \ldots x(z)_{-1} x(z)
$$

where $x(z)$ is a field for twisted representaion of VOA for $\widehat{\mathfrak{s}}_{2}$. But then, where "lives"

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta) ?
$$

- Is the proper setting Dong-Lepowsky-Wilson's Z-algebra $\Omega_{L(\Lambda)}$ with some sort of "Z-quasi-particle" relations

$$
a_{p} Z^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} Z^{(q)}(-\zeta) ?
$$

In the homogeneous picture "this" is parafermion algebra.

Questions:

- Can one prove "directly" all Gordon-Andrews-Bressoud identites?
- Can one extend the construction to $\widehat{\mathfrak{s l}}_{n}$?
- What is the proper VOA setting for this construction? We have

$$
X^{(p)}\left(z^{-1 / 2}\right)=2^{2(p-1)} z^{p} x(z)_{-1} \ldots x(z)_{-1} x(z)
$$

where $x(z)$ is a field for twisted representaion of VOA for $\widehat{\mathfrak{s}}_{2}$.
But then, where "lives"

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta) ?
$$

- Is the proper setting Dong-Lepowsky-Wilson's Z-algebra $\Omega_{L(\Lambda)}$ with some sort of "Z-quasi-particle" relations

$$
a_{p} Z^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} Z^{(q)}(-\zeta) ?
$$

In the homogeneous picture "this" is parafermion algebra.

Questions:

- Can one prove "directly" all Gordon-Andrews-Bressoud identites?
- Can one extend the construction to $\widehat{\mathfrak{s l}}_{n}$?
- What is the proper VOA setting for this construction? We have

$$
X^{(p)}\left(z^{-1 / 2}\right)=2^{2(p-1)} z^{p} x(z)_{-1} \ldots x(z)_{-1} x(z)
$$

where $x(z)$ is a field for twisted representaion of VOA for $\widehat{\mathfrak{s l}}_{2}$. But then, where "lives"

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta) ?
$$

- Is the proper setting Dong-Lepowsky-Wilson's Z-algebra $\Omega_{L(\Lambda)}$ with some sort of "Z-quasi-particle" relations

$$
a_{p} Z^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} Z^{(q)}(-\zeta) ?
$$

Questions:

- Can one prove "directly" all Gordon-Andrews-Bressoud identites?
- Can one extend the construction to $\widehat{\mathfrak{s l}}_{n}$?
- What is the proper VOA setting for this construction? We have

$$
X^{(p)}\left(z^{-1 / 2}\right)=2^{2(p-1)} z^{p} x(z)_{-1} \ldots x(z)_{-1} x(z)
$$

where $x(z)$ is a field for twisted representaion of VOA for $\widehat{\mathfrak{s l}}_{2}$. But then, where "lives"

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta) ?
$$

- Is the proper setting Dong-Lepowsky-Wilson's Z-algebra $\Omega_{L(\Lambda)}$ with some sort of "Z-quasi-particle" relations

$$
a_{p} Z^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} Z^{(q)}(-\zeta) ?
$$

In the homogeneous picture "this" is parafermion algebra.

Questions:

- Can one prove "directly" all Gordon-Andrews-Bressoud identites?
- Can one extend the construction to $\widehat{\mathfrak{s}}_{n}$?
- What is the proper VOA setting for this construction? We have

$$
X^{(p)}\left(z^{-1 / 2}\right)=2^{2(p-1)} z^{p} x(z)_{-1} \ldots x(z)_{-1} x(z)
$$

where $x(z)$ is a field for twisted representaion of VOA for $\widehat{\mathfrak{s l}}_{2}$. But then, where "lives"

$$
a_{p} X^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} E^{-}(-\zeta) X^{(q)}(-\zeta) E^{+}(-\zeta) ?
$$

- Is the proper setting Dong-Lepowsky-Wilson's Z-algebra $\Omega_{L(\Lambda)}$ with some sort of "Z-quasi-particle" relations

$$
a_{p} Z^{(p)}(\zeta)-(-1)^{k_{0}} a_{q} Z^{(q)}(-\zeta) ?
$$

In the homogeneous picture "this" is parafermion algebra.

Thank you for your attention.
[A1] G. E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4082-4085.
[A2] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2, Addison-Wesley, 1976.
[BM] A. Berkovich, B. M. McCoy, Rogers-Ramanujan identities: A century of progress from mathematics to physics, Documenta Math, Extra volume ICM 1998 III (1998), 163-172.
[Br1] D. M. Bressoud, A generalization of the Rogers-Ramanujan identities for all moduli, J. Comb. Theory Ser. A 27 (1979), 64-68.
[Br2] D. M. Bressoud, An analytic generalization of the RogersRamanujan identities with interpretation, Quart. J. Math. Oxford 31 (1980), 385-399.
[Bu] M. Butorac, Combinatorial bases of principal subspaces for the affine Lie algebra of type $B_{2}^{(1)}$, J. Pure Appl. Algebra 218 (2014), 424-447; arXiv:1212.5920 [math.QA].
[CLM] C. Calinescu, J. Lepowsky, A. Milas, Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E, J. Algebra 323 (2010), no. 1, 167-192; arXiv:0908.4054 [math.QA].
[FS] A. V. Stoyanovsky, B. L. Feigin, Functional models of the representations of current algebras, and semi-infinite Schubert cells, (Russian) Funktsional. Anal. i Prilozhen. 28 (1994), no. 1, 68-90, 96; translation in Funct. Anal. Appl. 28 (1994), no. 1, 55-72; preprint B.
L. Feigin and A. V. Stoyanovsky, Quasi-particles models for the representations of Lie algebras and geometry of flag manifold; arXiv:hep-th/9308079.
[Ge] G. Georgiev, Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace, J. Pure Appl. Algebra 112 (1996), 247-286; arXiv:hep-th/9412054.
[Go] B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961), 393-399.
[JMS] N. Jing, K. C. Misra, C. D. Savage, On multi-color partitions and the generalized Rogers-Ramanujan identities, Commun. Contemp. Math. Vol. 03, No. 04 (2001), 533-548; arXiv:math/9907183 [math.CO].
[Ka] V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990.
[Ko] S. Kožić, Principal subspaces for quantum affine algebra $U_{q}\left(A_{n}^{(1)}\right)$, J. Pure Appl. Algebra 218 (2014), 2119-2148; arXiv:1306.3712 [math.QA].
[LL] J. Lepowsky, H.-S. Li, Introduction to Vertex Operator Algebras and Their Representations, Progress in Math., Vol. 227, Birkhauser, Boston, 2004.
[LM] J. Lepowsky, S. Milne, Lie algebraic approaches to classical partition identities, Adv. Math. 29 (1978), 15-59.
[LP] J. Lepowsky, M. Primc, Structure of the standard modules for the affine Lie Algebra $A_{1}^{(1)}$, Contemporary Math. 46 (1985), 1-84.
[LW1] J. Lepowsky, R. L. Wilson, Construction of the affine Lie algebra $A_{1}^{(1)}$, Comm. Math. Phys. 62 (1978), 43-53.
[LW2] J. Lepowsky, R. L. Wilson, A new family of algebras underlying the Rogers-Ramanujan identities and generalizations, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 7254-7258.
[LW3] J. Lepowsky, R. L. Wilson, A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities, Adv. Math. 45 (1982), 21-72.
[LW4] J. Lepowsky, R. L. Wilson, The structure of standard modules, I:
Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), 199-290; II, The case A_{1}, principal gradation, Invent. Math. 79 (1985), 417-442.
[Li] H.-S. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Contemporary Math. 193 (1996), 203-236; arXiv:q-alg/9504022.
[MP] A. Meurman, M. Primc, Annihilating ideals of standard modules of $\mathfrak{s l}(2, \mathbb{C})^{r}$ and combinatorial identities, Adv. Math, 64 (1987), 177-240.
[Wa] S. O. Warnaar, The $A_{2 n}^{(2)}$ Rogers-Ramanujan identities, arXiv:1309.5216v2 [math.CO].
[Wi] R. L. Wilson, Andrews' analytic generalizations of the Rogers-Ramanujan identities and certain representations of $A_{1}^{(1)}$, presented at International Conference on Vertex Operator Algebras and Related Areas, Illinois State University, July, 2008.

