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Introduction Rogers-Ramanujan-type identities

Rogers-Ramanujan identities are two analytic identities, for a = 0, 1,

∏
m≥0

1

(1− q5m+1+a)(1− q5m+4−a)
=
∑
m≥0

qm2+am

(1− q)(1− q2) · · · (1− qm)
.

Let a = 0.

The coefficient of qn obtained from the product side is a number of
partitions of n with parts congruent ±1 mod 5.

The nth coefficient of the summand

qm2

(q)m
, (q)m = (1− q)(1− q2) · · · (1− qm),

is a number of partitions of n = j1 + · · ·+ js with parts jr at most m
such that a difference between two consecutive parts is at least two.
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Introduction Rogers-Ramanujan-type identities

Factor qm2
“represents” the partition

(2m − 1) + . . .+ 3 + 1 = m2,

on which we “add” partitions λ1 + . . .+ λs with parts at most m
“counted” by 1/(q)m.

For example, q16 “represents” the smallest partition

7 + 5 + 3 + 1 = 16

satisfying difference condition, on which we “add” partitions with parts at
most 4, such as 14 = 4 + 3 + 3 + 3 + 1, to obtain a partition satisfying
difference condition

Similar argument applies for a difference d > 2.
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Introduction Rogers-Ramanujan-type identities

Analytic Rogers-Ramanujan identities have Gordon-Andrews-Bressoud’s
generalization ([Go], [A2], [Br1], [Br2])

∏
m≥1

m 6≡0,±r(mod 2l+1)

(1−qm)−1 =
∑

n1,n2,...,nl−1≥0

qN2
1 +N2

2 +...+N2
l−1+Nr+Nr+1+...+Nl−1

(q)n1(q)n2 · · · (q)nl−1

where Nj = nj + nj+1 + . . .+ nl−1 and l ≥ 2, 1 ≤ r ≤ l .
(We omitted even moduli.)

Combinatorial Gordon identities: The nth coefficient of the right hand
side is is a number of partitions of n = j1 + · · ·+ js such that

j1 ≥ j2 · · · ≥ js , jp ≥ 2 + jp+l−1, js−r+1 > 1.

Combinatorial RR identities for l = 2, a = 0 for r = 2.

In general we have difference conditions and initial conditions.
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Introduction Rogers-Ramanujan-type identities

From the Weyl-Kac formula for ŝl2 and Λ = k0Λ0 + k1Λ1 we have ([LM]),

ch qL(Λ) =


F ·

∏
n≥1

n 6≡0,±(k0+1)

(1− qn)−1 if k0 6= k1,

F ·
∏
n≥1

n 6≡0,(k0+1)

(1− qn)−1
∏
n≥1

n≡k0+1

(1− qn) if k0 = k1,

where all congruences are modulo k0 + k1 + 2 and

F =
∏
n≥1

(1− q2n−1)−1.

The level of standard representation L(Λ) is k = Λ(c) = k0 + k1.



Introduction Rogers-Ramanujan-type identities
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Introduction The principal and homogeneous picture of ŝl2

Let g = sl2 with the invariant form 〈x , y〉 = tr xy and the standard basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

The affine Lie algebra ŝl2 “in the homogeneous picture” is

ĝ = g⊗ C[t1, t−1]⊕ Cc ⊕ Cd ,

where c is a nonzero central element in ĝ, and for x , y ∈ g and m, n ∈ Z,

[x ⊗ tm, y ⊗ tn] = [x , y ]⊗ tm+n + 〈x , y〉mδm+n,0c ,

[d , x ⊗ tm] = mx ⊗ tm.

The affine Lie algebra ŝl2 “in the principal picture” is the subalgebra

ĝ ∼= h ⊗ C[t2, t−2]⊕ span {e, f } ⊗ tC[t2, t−2]⊕ Cc ⊕ Cd .
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The affine Lie algebra ŝl2 “in the homogeneous picture” is
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Introduction The principal and homogeneous picture of ŝl2

Set

B(n) = (e + f )⊗ tn for n ∈ 2Z + 1,

X (n) =

{
(f − e)⊗ tn if n ∈ 2Z + 1,
h ⊗ tn if n ∈ 2Z.

The set
{B(m),X (n), c , d : m ∈ 2Z + 1, n ∈ Z}

is a basis of ĝ. We have

[B(m),B(n)] = mδm+n,0c for m, n ∈ 2Z + 1;

[B(m),X (n)] = 2X (m + n) for m ∈ 2Z + 1, n ∈ Z;

[X (m),X (n)] = (−1)m+12B(m + n) + (−1)mmδm+n,0c for m, n ∈ Z.

span {B(m), c : m ∈ 2Z + 1} is the principal Heisenberg subalgebra of ŝl2.

The principal Heisenberg subalgebra normalizes {X (n) : n ∈ Z}.
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Introduction The principal and homogeneous picture of ŝl2

Let Λ = k0Λ0 for k0 = 2l + 1 odd.

Theorem ([LW4])

The set of vectors
Zj1(β) · · ·Zjs (β)vΛ, s ≥ 0,

such that

j1 ≤ j2 ≤ . . . ≤ js < 0,

jm+l − jm ≥ 2 for all m, 1 ≤ m ≤ s − l ,

is a basis of ΩL(Λ).

Remark

This basis corresponds with the basis of the standard module L(Λ) ([MP]),

B(i1) · · ·B(ir )X (j1) · · ·X (js) for odd i1 ≤ . . . ≤ ir < 0.
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Quasi-particles Definition

Set

X (ζ) =
∑
n∈Z

X (n)ζn,

B(ζ) =
∑

n∈2Z+1

B(n)ζn.

We have

[B(ζ),B(ξ)] = c
∑

n∈2Z+1

n(ζ/ξ)n,

[B(ζ),X (ξ)] = 2X (ξ)
∑

n∈2Z+1

(ζ/ξ)n,

[X (ζ),X (ξ)] = −2B(ξ)δ(−ζ/ξ) + c(Dδ)(−ζ/ξ).

Note that (1 + ζ/ξ)δ(−ζ/ξ) = (1 + ζ/ξ)
∑

n∈Z(−ζ/ξ)n = 0.
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Quasi-particles Definition

Since
(ζξ)−1(ζ + ξ)2X (ζ)X (ξ) = (ζξ)−1(ζ + ξ)2X (ξ)X (ζ),

we can define for a positive integer p

X (p)(ζ) := lim
ζi→ζ

∏
1≤i<j≤p

(ζiζj)
−1 (ζi + ζj)

2 X (ζ1) · · ·X (ζp).

The quasi-particle X (p)(n) of degree n and charge p is the coefficient in

X (p)(ζ) =
∑
n∈Z

X (p)(n)ζn,

Quasi-particles in homogeneous picture [FS], [Ge] are coefficients in

xpα(z) = xα(z)p =

(∑
n∈Z

xα(n)z−n−1

)p

.

xθ(z)k+1 = 0 are defining relations for level k standard modules.
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Quasi-particle bases Verma modules M(Λ)

Theorem

The set BM(Λ) of vectors

B(i1) · · ·B(ir )X (p1)(j1) · · ·X (ps)(js)vΛ (V)

such that

r ≥ 0 and odd i1 ≤ . . . ≤ ir ≤ −1, (V1)

s ≥ 0 and 1 ≤ p1 ≤ . . . ≤ ps , (V2)

js ≤ −ps , (V3)

pl < pl+1 implies jl ≤ −pl − 2pl(s − l), (V4)

pl = pl+1 implies jl ≤ −2pl + jl+1 (V5)

is a basis of the Verma module M(Λ).



Quasi-particle bases Verma modules M(Λ)

For spanning we use relations such as

X (p)(ζ)X (q)(ζ) ∼ X (p+q)(ζ)

(∑
i∈Z

a(i)ζ i

)∑
j∈Z

b(j)ζ j

 ∼ (∑
n∈Z

c(n)ζn

)

c(n) ∼ · · ·+a(n−j0 +1)b(j0−1)+a(n−j0)b(j0)+a(n−j0−1)b(j0 +1)+. . .

to express monomial a(n − j0)b(j0), for example when a = b and n = 2j0.

for p = q = 1 we have difference 2 (V5)

for p = q = 2 we have difference 4 (V5)

for p = 1, q = 2 we have “interaction” (V4)

For linear independence we “check” the character.
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Quasi-particle bases Standard modules L(Λ)

Relations for standard modules L(Λ)

E±(ζ) =
∑
i>0

E±(±i)ζ±i = exp

2
∑

n∈±(2N+1)

B(n)ζn/n

 .

On level k standard ĝ-module L(k0Λ0 + k1Λ1) we have ([LW4], [MP]):

For p ≥ k + 1 X (p)(ζ) = 0.

For p, q ≥ 0, p + q = k ,

apX (p)(ζ)− (−1)k0aqE−(−ζ)X (q)(−ζ)E +(−ζ) = 0,

where ar = 2−r(r−2)/r !.

There are some “initial” relations I Λ
p (n)vΛ = 0 for n > −nΛ(p).

Note that for k = 3 we can express X (2)(ζ) in terms of X (1)(−ζ).
Relations in the case p = q = k/2 are “special”.
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Quasi-particle bases Standard modules L(Λ)

Since we have a surjection M(Λ)→ L(Λ), monomial vectors (V) such that

1 ≤ p1 ≤ . . . ≤ ps ≤ k/2 & initial conditions hold

give a spanning set of L(Λ). By using analytic identities we see this is a
basis.

For L((l + 1)Λ0 + lΛ1) we can prove linear indepenence of monomial
vectors (V) directly. Hence

Corollary ∏
n≥1

n 6≡0,±(l+2)(mod 2l+3)

(1− qn)−1 =
∑

n1,n2,...,nl≥0

qN2
1 +N2

2 +...+N2
l

(q)n1(q)n2 · · · (q)nl
.
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Questions

Questions:

Can one prove “directly” all Gordon-Andrews-Bressoud identites?

Can one extend the construction to ŝln?

What is the proper VOA setting for this construction? We have

X (p)(z−1/2) = 22(p−1)zp x(z)−1 . . . x(z)−1x(z)

where x(z) is a field for twisted representaion of VOA for ŝl2.
But then, where “lives”

apX (p)(ζ)− (−1)k0aqE−(−ζ)X (q)(−ζ)E +(−ζ) ?

Is the proper setting Dong-Lepowsky-Wilson’s Z-algebra ΩL(Λ) with
some sort of “Z-quasi-particle” relations

apZ (p)(ζ)− (−1)k0aqZ (q)(−ζ) ?

In the homogeneous picture “this” is parafermion algebra.
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Thank you for your attention.
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