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@ The coefficient of g"” obtained from the product side is a number of
partitions of n with parts congruent +1 mod 5.
@ The nth coefficient of the summand
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(‘;';n, (@m=(1—q)(1—q?) (1 q™).

is a number of partitions of n = j; + - -+ + js with parts j, at most m
such that a difference between two consecutive parts is at least two.
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Similar argument applies for a difference d > 2.
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NZ N2+ +N? | +N+Nepr+...+ N

- q
(1-¢™) ' =
mr>[1 n17n2’Z’m_1>0 (q)nl(q)n2 T (q)n/_1
m#0,+r(mod 2/41) a

where N =n;+nj 1 +...+n_gyand [ >2, 1< r <.
(We omitted even moduli.)



Analytic Rogers-Ramanujan identities have Gordon-Andrews-Bressoud'’s
generalization ([Go], [A2], [Br1], [Br2])

NZ N2+ +N? | +N+Nepr+...+ N

_m—1 _ q
II a-m= 3 @@

m>1 ni,nz,...,n—1>0
m#0,£r(mod 2/41)

e (q)”l—l

where N =n;+nj 1 +...+n_gyand [ >2, 1< r <.
(We omitted even moduli.)

@ Combinatorial Gordon identities: The nth coefficient of the right hand
side is is a number of partitions of n = j; + --- + js such that

120 > Js, Jp = 2+ jpti-1, Js—r+1 > 1.



Analytic Rogers-Ramanujan identities have Gordon-Andrews-Bressoud'’s
generalization ([Go], [A2], [Br1], [Br2])

NZ N2+ +N? | +N+Nepr+...+ N

_m—1 _ q
II a-m= 3 @@

m>1 ni,nz,...,n—1>0
m#0,£r(mod 2/41)

e (q)”l—l

where N =n;+nj 1 +...+n_gyand [ >2, 1< r <.
(We omitted even moduli.)

@ Combinatorial Gordon identities: The nth coefficient of the right hand
side is is a number of partitions of n = j; + --- + js such that

120 > Js, Jp = 2+ jpti-1, Js—r+1 > 1.

@ Combinatorial RR identities for | =2, a=10 for r = 2.



Analytic Rogers-Ramanujan identities have Gordon-Andrews-Bressoud'’s
generalization ([Go], [A2], [Br1], [Br2])

NZ N2+ +N? | +N+Nepr+...+ N

_m—1 _ q
II a-m= 3 @@

m>1 ni,nz,...,n—1>0
m#0,£r(mod 2/41)

e (q)”l—l

where N =n;+nj 1 +...+n_gyand [ >2, 1< r <.
(We omitted even moduli.)

@ Combinatorial Gordon identities: The nth coefficient of the right hand
side is is a number of partitions of n = j; + --- + js such that

120 > Js, Jp = 2+ jpti-1, Js—r+1 > 1.

@ Combinatorial RR identities for | =2, a=10 for r = 2.

@ In general we have difference conditions and initial conditions.
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The level of standard representation L(A) is k = A(c) = ko + k.
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Let g = slp with the invariant form (x, y) = trxy and the standard basis

=(55) =(20) (s 9)

The affine Lie algebra sl “in the homogeneous picture” is
d=goC[t!,t ]®CcaCd,
where c is a nonzero central element in g, and for x,y € g and m,n € Z,

[X ® tm7y ® tn] = [Xv)/] X tm-i—n + <X7y> m6m+n,0ca
[d,x®t"] = mx® t™.

The affine Lie algebra 5A[2 “in the principal picture” is the subalgebra

42 heC[t?, t 2] @ span {e, f} @ tC[t*, t 2] ® Cc @ Cd.
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span {B(m), c : m € 2Z + 1} is the principal Heisenberg subalgebra of sl,.

The principal Heisenberg subalgebra normalizes {X(n) : n € Z}.
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Let A = koo for ko = 2/ + 1 odd.
Theorem ([LW4])

The set of vectors
Zy(B) - Zi(B)va, s=0,
such that
0 1 <jp<...<js<0,
@ jmil—Jm=>2 forallm 1<m<s—1,

is a basis of Q).

Remark
This basis corresponds with the basis of the standard module L(A) ([MP]),

B(i)--- B(ir)X(j1) -~ X(js)  forodd i <...<i, <O0.




(e[IELET -5 Definition

Set

X(¢) =Y X(n)

nez

B(Q)= Y. B(nX"

ne27+1



Set

X(Q)=>_X(n)"

nez

B(Q)= Y. B(nX"

n€2Z+1
We have

[B(C), B =c¢ Y n(c/&)",

ne2Z+1

[B(C), X(&)] =2X(&) Y (/)"

ne2Z+1

[X(), X()] = —2B(£)d(=¢/€) + (D) (=(/£).



Set

X(Q)=>_X(n)"

nez

B(Q)= Y. B(nX"

n€2Z+1
We have

[B(C), B =c¢ Y n(c/&)",

ne2Z+1

[B(C), X(&)] =2X(&) Y (/)"

ne2Z+1

[X(), X()] = —2B(£)d(=¢/€) + (D) (=(/£).

Note that (14 (/€)0(=¢/€) = (14 (/&) X open(—C/€)" =



(e[IELET -5 Definition

Since
(COTHCHEPX(OX(E) = (COTHC +E°X()X(C),
we can define for a positive integer p

XOQ) = fim T[T (GG + G X(G) -+ X (G).

1<i<j<p



(e[IELET -5 Definition

Since
(C)THE +E)PX(O)X(€) = (€O HC + X ()X(0),

we can define for a positive integer p

XOQ) = fim T[T (GG + G X(G) -+ X (G).

1<i<j<p

The quasi-particle X(p)(n) of degree n and charge p is the coefficient in

XP(Q) = 3" XD ()",

nez



(e[IELET -5 Definition

Since
(C)THE +E)PX(O)X(€) = (€O HC + X ()X(0),

we can define for a positive integer p

XO¢)=tlim ] (GG) G+ G X(G) - X ()

e <idjcp
The quasi-particle X(p)(n) of degree n and charge p is the coefficient in

X(p) () = Zx(p) n)¢",

nez

Quasi-particles in homogeneous picture [FS], [Ge] are coefficients in

Xpa(2) = Xa(z P—<Zxa z " 1) .

nezZ



(e[IELET -5 Definition

Since
(C)THE +E)PX(O)X(€) = (€O HC + X ()X(0),

we can define for a positive integer p

XO¢)=tlim ] (GG) G+ G X(G) - X ()

T <icg<p

The quasi-particle X(p)(n) of degree n and charge p is the coefficient in

XP)(¢) = Zx(p)

nez

Quasi-particles in homogeneous picture [FS], [Ge] are coefficients in

Xpa(2) = Xxo(2)P = <ZX0‘ z - 1) .

nezZ

xg(z)k*1 = 0 are defining relations for level k standard modules.



Theorem
The set Byyn) of vectors

B(i1)--- B(i,)X®P(j) - XP) (i )va

such that

r>0 andodd i1 <...<i <-1,
s>0 and 1<p; <...<ps,

Js < —ps,

pr < pi41 implies jy < —p;—2p(s — 1),
pr = pi+1 implies j; < =2p;+ ji41

is a basis of the Verma module M(N).
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For spanning we use relations such as

X(p)(c)x(q)(c) ~ X (pta) (€)

(Z a(i)<") > b)) ~ (Z c(n)<">
i€z = ez
c(n) ~---+a(n—jo+1)b(jo—1)+a(n—jo)b(jo)+a(n—jo—1)b(jo+1)+. ..

to express monomial a(n — jo)b(jo), for example when a = b and n = 2jy.

e for p = g = 1 we have difference 2 (V5)
e for p = g = 2 we have difference 4 (V5)
e for p =1, g =2 we have “interaction”  (V4)

For linear independence we “check” the character.
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Relations for standard modules L(N\)

EX(Q) =) EX(#)(F =exp (2 > B(n)"/n

i>0 ne£(2N+1)
On level k standard g-module L(ko/Ao + k1/A\1) we have ([LW4], [MP]):

o Forp>k+1 XP)(¢)=0.
@ For p,g >0, p+q =k,
apXP)(() = (~1)°agE~ (=X D (=Q)E*(=¢) =0,
where a, = 277(=2) /rl.

@ There are some “initial” relations Ié\(n)v/\ =0 for n > —np(p).

Note that for k = 3 we can express X(®(¢) in terms of X(V(—().
Relations in the case p = q = k/2 are “special”.



Since we have a surjection M(A) — L(A), monomial vectors (V) such that
1<p1 <...<ps<kJ/2 & initial conditions hold

give a spanning set of L(A). By using analytic identities we see this is a
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Since we have a surjection M(A) — L(A), monomial vectors (V) such that
1<p1 <...<ps<kJ/2 & initial conditions hold

give a spanning set of L(A). By using analytic identities we see this is a
basis.

For L((/ 4 1)Ao + /A1) we can prove linear indepenence of monomial
vectors (V) directly. Hence
Corollary

NZ4+NZ+...+N?

n\—1 __ q
H (1-q¢")" = Z (@) (- (@)

n>1 ny,no,....,n; >0
n#0,£(/+2)(mod 2/+3)
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Questions:
@ Can one prove “directly” all Gordon-Andrews-Bressoud identites?

@ Can one extend the construction to ;[,,?
@ What is the proper VOA setting for this construction? We have

XP)(z71/2) = 22P=) 2P x(2)_1 ... x(2)_1x(2)

where x(z) is a field for twisted representaion of VOA for sl,.
But then, where “lives”

apXP(Q) = (~1)°agE~ (~OXD(=QEH () ?

@ Is the proper setting Dong-Lepowsky-Wilson's Z-algebra 25y with
some sort of “Z-quasi-particle” relations

apZP)(¢) = (~1)f0agZI(~¢) ?

In the homogeneous picture “this” is parafermion algebra.



Thank you for your attention.
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