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Abstract

Relative fractal drums generalize the notion of fractal sets in
Euclidean spaces of arbitrary dimension. We establish point-
wise and distributional fractal tube formulas for a large class
of relative fractal drums. These fractal tube formulas are ex-
pressed as sums of residues of suitable meromorphic func-
tions over the complex dimensions of the relative fractal drum
under consideration (i.e., over the poles of its Lapidus zeta
function which generalizes the well-known zeta function for
fractal strings). These results generalize to higher dimensions
the corresponding ones previously obtained for fractal strings
by M. L. Lapidus and M. van Frankenhuijsen. We illustrate our
results by several examples and apply them to obtain a new
Minkowski measurability criterion.

Definitions and preliminaries
The notion of a relative fractal drum (A,Ω) (in short RFD):
• ∅ ̸= A ⊂ RN

• δ-neighbourhood of A: Aδ = {x ∈ RN :d(x,A) < δ}
• d(x,A) denotes the Euclidean distance from x to A

• Ω ⊂ RN , |Ω| < ∞, ∃δ > 0, such that Ω ⊆ Aδ, r ∈ R
• lower and upper r-dimensional Minkowski content of (A,Ω):

Mr(A,Ω) := lim inf
δ→0+

|Aδ ∩ Ω|
δN−r

; Mr(A,Ω) := lim sup
δ→0+

|Aδ ∩ Ω|
δN−r

Relative Minkowski (or box) dimension

• lower and upper box dimension of (A,Ω):
dimB(A,Ω) = inf{r ∈ R : Mr(A,Ω) = 0}
dimB(A,Ω) = inf{r ∈ R : Mr(A,Ω) = 0}
dimB(A,Ω) = dimB(A,Ω)⇒ ∃ dimB(A,Ω)

• if ∃D ∈ R such that
0 < MD(A,Ω) = MD(A,Ω) < ∞,

then we define (A,Ω) to be Minkowski measurable ⇒
D = dimB(A,Ω)

The relative distance zeta function [LapRaŽu1]
• generalization of M. L. Lapidus’ definition of a zeta function
associated to bounded (fractal) sets (Catania 2009)

• (A,Ω) RFD in RN , |Ω| < ∞, s ∈ C and fix δ > 0

• the Lapidus (or distance) zeta function of (A,Ω):

ζA(s,Ω; δ) :=

∫
Aδ∩Ω

d(x,A)s−N dx (1)

Theorem 1 (Holomorphicity theorem from [LapRaŽu1])
Let (A,Ω) be an RFD in RN , then
(a) ζA(s,Ω) is holomorphic on {Re s > dimB(A,Ω)}, and

ζ ′A(s,Ω) =
∫
Aδ∩Ω

d(x,A)s−N log d(x,A) dx

(b) R ∋ s < dimB(A,Ω)⇒ the integral (1) defining ζA(s,Ω)
diverges
(c) (∃D = dimB(A,Ω) < N)(MD(A,Ω) > 0)⇒

ζA(s,Ω) → +∞ when R ∋ s → D+

The relative tube zeta function [LapRaŽu1]
Let (A,Ω) an RFD in RN and fix δ > 0.
• the tube zeta function of (A,Ω):

ζ̃A(s,Ω; δ) :=

∫ δ

0
ts−N−1|At ∩ Ω| dt (2)

• the exact analog of the the holomorphicity theorem holds
for ζ̃A(s,Ω; δ)

• the following functional equation connects the two zeta
functions:

ζA(s,Ω; δ) = δs−N |Aδ ∩ Ω| + (N − s)ζ̃A(s,Ω; δ) (3)

Fractal tube formulas for RFDs
• the goal: derive an asymptotic formula for the relative tube
function t 7→ |At ∩ Ω| as t → 0+ directly from the distance
zeta function ζA( · ,Ω) of (A,Ω)

• more precisely, express |At ∩ Ω| as a sum of residues over
the complex dimensions of (A,Ω) (the poles of ζA( · ,Ω))

• apply this to derive a Minkowski measurability criterion for
a large class of RFDs

• we observe that the tube zeta function can be expressed as

ζ̃A(s,Ω; δ) =

∫ +∞

0
ts−1

(
χ(0,δ)(t)t

−N |At ∩ Ω|
)

dt (4)

•Mellin inversion theorem⇒

Theorem 2 (The integral representation [Ra])
Let (A,Ω) be an RFD in RN and fix δ > 0.
Then, for every t ∈ (0, δ) and any c > dimB(A,Ω), we have

|At ∩ Ω| = 1

2πi

∫ c+i∞

c−i∞
tN−sζ̃A(s,Ω; δ) ds. (5)

• goal: express (5) as a sum over the residues of ζ̃A( · ,Ω) or,
by using the functional equation (3), of ζA( · ,Ω)

Figure 1. Left: The screen and the window. By using the
residue theorem we express |At ∩ Ω| as a sum over the com-
plex dimensions of (A,Ω); that is over the poles of ζ̃A(s,Ω; δ) or
of ζA(s,Ω; δ). Right: The fractal nest generated by the a-string.

Definition 3 (The screen, the window and admissibility of
RFDs; adapted from [Lap–vFr])

the screen: S := {S(τ ) + iτ : τ ∈ R}

S(τ ) is bounded, real-valued, Lipschitz continuous:
|S(x)− S(y)| ≤ ∥S∥Lip|x− y|, for all x, y,∈ R

infS := inf
τ∈R

S(τ ) and supS := sup
τ∈R

S(τ )

the window: W := {s ∈ C : Re s ≥ S(Im s)}

• (A,Ω) is admissible if its relative tube (or distance) zeta
function can be meromorphically extended to an open con-
nected neighborhood of some windowW

Definition 4 (d-Languidity; adapted from [Lap–vFr])
An admissible (A,Ω) is d-languid if for some δ > 0, ζA( · ,Ω; δ)
satisfies: (∃κd ∈ R), (∃C > 0), ∃(Tn)n∈Z such that
T−n < 0 < Tn for n ≥ 1 and limn→±∞ |Tn| = +∞ satisfying

L1 For all n ∈ Z and all σ ∈ (S(Tn), c),
|ζA(σ + iTn,Ω; δ)| ≤ C(|Tn| + 1)κd,

where c > dimB(A,Ω) is some constant.

L2 For all τ ∈ R, |τ | ≥ 1,
|ζA(S(τ ) + iτ,Ω; δ)| ≤ C|τ |κd.

Definition 5 (Strong d-languidity; adapted from [Lap–vFr])
(A,Ω) is strongly d-languid if L1 is satisfied for all σ ∈ (−∞, c)
and, additionally, ∃(Sm)m≥1 such that
supSm → −∞ and supm≥1 ∥Sm∥Lip < ∞ and

L2’ there exist B,C > 0 such that for all τ ∈ R andm ≥ 1,

|ζA(Sm(τ ) + iτ,Ω; δ)| ≤ CB|Sm(τ )|(|τ | + 1)κd.

Definition 6 (Complex dimensions of an RFD).
Assume that (A,Ω) is admissible for some windowW .
• visible complex dimensions of (A,Ω) (with respect toW ):

P(ζA( · ,Ω; δ),W ) := {ω ∈ W : ω is a pole of ζA( · ,Ω; δ)}.

• (W = C)⇒ the set of (all) complex dimensions of (A,Ω).
• the set of principal complex dimensions of (A,Ω):

dimPC(A,Ω) := {ω ∈ P(ζA( · ,Ω; δ),W ) : Reω = dimB(A,Ω)}.

The pointwise fractal tube formula

• let V [k]
(A,Ω)

(t) be the k-th primitve function of |At ∩ Ω|

• for k ∈ N we let (s)0 := 1 (s)k := s(s + 1) · · · (s + k − 1)

• for k ∈ Z we let (s)k :=
Γ(s+k)
Γ(s)

Theorem 7 (Pointwise formula with error term [Ra])
• let (A,Ω) be d-languid for some κd and let dimB(A,Ω) < N

• let k > κd be a nonnegative integer

Then, for every t ∈ (0, δ) we have

V
[k]
(A,Ω)

(t) =
∑

ω∈P(ζA( · ,Ω),W )

res
(

tN−s+k

(N−s)k+1
ζA(s,Ω; δ), ω

)
+R[k](t). (6)

The error term R[k] is given by the absolutely convergent inte-
gral

R[k](t) =
1

2πi

∫
S

tN−s+k

(N−s)k+1
ζA(s,Ω; δ) ds.

We have the following pointwise error estimate:

R[k](t) = O(tN−supS+k) as t → 0+.v

Moreover, if (∀τ ∈ R)(S(τ ) < supS), then
R[k](t) = o(tN−supS+k) as t → 0+.

Theorem 8 (Exact pointwise tube formula [Ra])
• let (A,Ω) be strongly d-languid for some δ > 0 and κd ∈ R
• let k > κd − 1 be a nonnegative integer and dimB(A,Ω) < N

Then, for every t ∈ (0,min{1, δ, B−1}) the fractal tube formula
(6) is an exact tube formula, i.e., R[k](t) ≡ 0 and W = C. Here,
B is the constant appearing in L2’.

When can we apply the fractal tube formula at level k = 0?
• tube formula with error term: if κd < 0

• exact tube formula: if κd < 1

The distributional fractal tube formula
• by removing the restriction on κd we derive a tube formula
only in the sense of Schwartz’s distributions

• exact analogs of the the tube formula with and without the
error term hold distributionally for any exponent κd ∈ R and
any k ∈ Z ; for instance, at level k = 0 we obtain:

|At ∩ Ω| =
∑

ω∈P(ζA( · ,Ω),W )

res
(
tN−s

N−s
ζA(s,Ω), ω

)
+R[0](t)

The Minkowski measurability criterion
Theorem 9 (The Minkowski measurability criterion [Ra])
• let (A,Ω) be such that ∃D := dimB(A,Ω) and D < N

• assume that (A,Ω) is d-languid for a screen passing strictly
between the critical line {Re s = D} and all the complex di-
mensions of (A,Ω) with real part strictly less than D

Then, the following is equivalent:
(a) (A,Ω) is Minkowski measurable.
(b) D is the only pole of ζA( · ,Ω) located on the critical line
{Re s = D} and it is simple.
Furthermore, we then have

MD(A,Ω) =
res(ζA( · ,Ω), D)

N −D
.

• (a) ⇒ (b) : follows from the distributional tube formula and
the Uniqueness theorem for almost periodic distributions
due to Schwartz

• (b) ⇒ (a) : is a consequence of a Tauberian theorem due to
Wiener and Pitt (conditions for this direction to hold can be
considerably weakened)

• the assumption D < N can be removed by appropriately
embedding the RFD in RN+1

Examples
The Sierpiński gasket

ζA(s; δ) =
6(
√
3)1−s2−s

s(s− 1)(2s − 3)
+ 2π

δs

s
+ 3

δs−1

s− 1

P(ζA) = {0, 1} ∪
(

log2 3 +
2π

log 2iZ
)

By letting ωk := log2 3 + pki and p := 2π/ log 2 we have that

|At| =
∑

ω∈P(ζA)

res
(

t2−s

2− s
ζA(s; δ), ω

)

= t2−log2 3 6
√
3

log 2

+∞∑
k=−∞

(4
√
3)−ωkt−pki

(2− ωk)(ωk − 1)ωk
+

(
3
√
3

2
+ π

)
t2,

valid pointwise for all t ∈ (0, 1/2
√
3).

The fractal nest generated by the a-string (See Figure 1, right.)
a > 0, aj := j−a, lj := j−a − (j + 1)−a, Ω := Ba1(0)

ζAa
(s; Ω) =

22−sπ

s− 1

∞∑
j=1

ls−1
j (aj + aj+1)

P(ζAa
( · ,Ω)) ⊆ {1, 2/(a + 1), 1/(a + 1)}∪{−m/(a + 1) : m ∈ N}

a ̸= 1, D := 2/(1 + a)⇒

|(Aa)t ∩ Ω| = 22−DDπaD−1t2−D

(2−D)(D − 1)
+
(
4πζ(a)− 2π

)
t +O

(
t2−

1
a+1
)
,

a = 1 ⇒ |(A1)t ∩ Ω| = res
(

t2−s

2− s
ζA1

(s,Ω), 1

)
+ o(t)

= 2πt log t−1 + const · t + o(t) as t → 0+

Figure 2. The Cantor set of second order. Only the first three
iterations are shown here. More precisely, from left to right we
have the middle-third Cantor set C in [0, 1], then two copies of
C scaled by 1/3, and then four copies of C scaled by 1/9.
The second order Cantor set (See Figure 2.)
Let C be the standard middle-third Cantor set in [0, 1], Ω :=
(0, 1). Define the generator (G,Ω) := (Ω \ C,Ω) and let r1 =
r2 = 1/3 be the scaling ratios of the self-similar RFD (C2,Ω2).

ζC2
(s,Ω2) =

3s ζC(s,Ω)

3s − 2
=

3s

2s−1s(3s − 2)2

P(ζC2
( ·Ω2)) = {0} ∪

(
log3 2 +

2π

log 3iZ
)

|(C2)t ∩ Ω2| = t1−log3 2
(

log t−1G(log t−1) +H(log t−1)
)
+ 2t

where G,H : R → R are nonconstant, periodic with T = log 3.
• in general, a complex dimension ω of order m generates
terms of type tN−ω(log t−1)k−1 for k = 1, . . . ,m in |At ∩ Ω|
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