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the aim is to define complex dimensions of fractal sets in R
N

introducing a new class of zeta functions:
Lapidus zeta functions associated with fractal sets

Professor Lapidus discovered them (during my lecture) in
Catania in 2009

M. L. Lapidus, G. Radunović, D. Žubrinić, Fractal Zeta
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where |At | = N-dimensional Lebesgue measure of |At |
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Minkowski content and box dimension

Minkowski content

A ⊂ R
N nonempty bounded set

t-neighbourhood of A, for t > 0:

At = {y ∈ R
N : d(y ,A) < t}

Lower s-dimensional Minkowski content of A, s ≥ 0:

Ms
∗(A) := lim inf

t→0

|At |

tN−s

where |At | = N-dimensional Lebesgue measure of |At |

Upper s-dimensional Minkowski content of A:

M∗s(A) := lim sup
t→0

|At |

tN−s
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Minkowski content and box dimension

Box dimensions

Lower box dimension: dimBA = inf{s > 0 : Ms
∗(A) = 0}

Upper box dimension: dimBA = inf{s > 0 : M∗s(A) = 0}

0 ≤ dimBA ≤ dimBA ≤ N

If dimBA = dimBA we write dimB A, box dimension of A.
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Minkowski nondegeneracy and Minkowski measurability

Minkowski measurable and nondegenerate sets

If there is D ≥ 0 with

0 < MD
∗ (A) ≤ M∗D(A) < ∞,

we say A to be Minkowski nondegenerate set. Clearly,
D = dimB A.
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Minkowski nondegeneracy and Minkowski measurability

Minkowski measurable and nondegenerate sets

If there is D ≥ 0 with

0 < MD
∗ (A) ≤ M∗D(A) < ∞,

we say A to be Minkowski nondegenerate set. Clearly,
D = dimB A.

If Ms
∗(A) = M∗s(A) for some s, we write Ms(A):

s-dimensional Minkowski content of A.

If MD(A) ∈ (0,∞) for some D ≥ 0, then A is said to be
Minkowski measurable. Clearly, D = dimB A.
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Definition of Lapidus zeta function

A ⊂ R
N a given nonempty bounded set, δ > 0 fixed
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Definition of Lapidus zeta function

A ⊂ R
N a given nonempty bounded set, δ > 0 fixed

Definition (LRŽ)

The Lapidus zeta function of A (or distance z.f.) is defined by

ζA(s) :=

∫

Aδ

d(x ,A)s−N dx

for all s ∈ C with Re s large enough.
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The Lapidus zeta function of A (or distance z.f.) is defined by

ζA(s) :=

∫

Aδ

d(x ,A)s−N dx

for all s ∈ C with Re s large enough.

for s such that Re s < N the subintegral function d(x ,A)s−N

is singular on A

note that ζA(s) = ζA(s; δ) depends on δ as well



Outline Definitions Lapidus zeta functions Relative Lapidus zeta functions References

Definition

Definition of Lapidus zeta function

A ⊂ R
N a given nonempty bounded set, δ > 0 fixed

Definition (LRŽ)

The Lapidus zeta function of A (or distance z.f.) is defined by

ζA(s) :=

∫

Aδ

d(x ,A)s−N dx

for all s ∈ C with Re s large enough.

for s such that Re s < N the subintegral function d(x ,A)s−N

is singular on A

note that ζA(s) = ζA(s; δ) depends on δ as well

δ < δ1 implies that ζA(s; δ1)− ζA(s) =
∫

Aδ,δ1
d(x ,A)s−N dx is

entire function
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Definition

Graph of Sierpiński carpet distance function x 7→ d(x ,A)
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Definition

Graph of the function x 7→ d(x ,A)s−N for s < N
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Analyticity and scaling property

Analyticity region of the Lapidus zeta function

Let A be a nonempty bounded subset of RN
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Analyticity and scaling property

Analyticity region of the Lapidus zeta function

Let A be a nonempty bounded subset of RN

δ a fixed positive number, ζA(s) :=
∫

Aδ
d(x ,A)s−N dx

Theorem (LRŽ)
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Analyticity and scaling property

Analyticity region of the Lapidus zeta function

Let A be a nonempty bounded subset of RN

δ a fixed positive number, ζA(s) :=
∫

Aδ
d(x ,A)s−N dx

Theorem (LRŽ)

The abscissa of (absolute) of convergence of ζA is

D(ζA) = dimBA.

In particular, ζA is holomorphic on {Re s > dimBA}.



Outline Definitions Lapidus zeta functions Relative Lapidus zeta functions References

Analyticity and scaling property

Analyticity region of the Lapidus zeta function

Let A be a nonempty bounded subset of RN

δ a fixed positive number, ζA(s) :=
∫

Aδ
d(x ,A)s−N dx

Theorem (LRŽ)

The abscissa of (absolute) of convergence of ζA is

D(ζA) = dimBA.

In particular, ζA is holomorphic on {Re s > dimBA}.

If there exists D = dimB A and MD
∗
(A) > 0,

then ζA(s) → ∞ as s ∈ R and s → D+.



Outline Definitions Lapidus zeta functions Relative Lapidus zeta functions References

Analyticity and scaling property

Analyticity region of the Lapidus zeta function

Let A be a nonempty bounded subset of RN

δ a fixed positive number, ζA(s) :=
∫

Aδ
d(x ,A)s−N dx

Theorem (LRŽ)

The abscissa of (absolute) of convergence of ζA is

D(ζA) = dimBA.

In particular, ζA is holomorphic on {Re s > dimBA}.

If there exists D = dimB A and MD
∗
(A) > 0,

then ζA(s) → ∞ as s ∈ R and s → D+.

(scaling property) If λ > 0, then

ζλA(s;λδ) = λs · ζA(s; δ)

for all s ∈ C such that Re s > dimBA.
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Analyticity and scaling property

The proof of analyticity

The proof is based on the following result:
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Analyticity and scaling property

The proof of analyticity

The proof is based on the following result:

Theorem (Harvey & Polking 1970)

Assume that A is a bounded set in R
N and δ > 0 is given. Then

γ < N − dimBA ⇒

∫

Aδ

d(x ,A)−γ dx < ∞
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Analyticity and scaling property

The proof of analyticity

The proof is based on the following result:

Theorem (Harvey & Polking 1970)

Assume that A is a bounded set in R
N and δ > 0 is given. Then

γ < N − dimBA ⇒

∫

Aδ

d(x ,A)−γ dx < ∞

If D := dimB A exists, and MD
∗ (A) > 0, then the converse

also holds (D.Ž., ISAAC Proc. 2009). The Minkowski content
condition is essential (D.Ž., RAE 2005)
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Analyticity and scaling property

Complex dimensions of a fractal set A

Let A be such that ζA can be meromorphically extended to an
open right half-plane W (window) containing the critical line
{Re s = D(ζA)}
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Analyticity and scaling property

Complex dimensions of a fractal set A

Let A be such that ζA can be meromorphically extended to an
open right half-plane W (window) containing the critical line
{Re s = D(ζA)}

Definition

The multiset of poles of ζA contained in W , is denoted by

P(ζA) = P(ζA,W ).

The poles are called complex dimensions of A (depend on W ).
Complex dimensions contained on the critical line are called
principal complex dimensions, and the corresponding multiset is
denoted by

dimPC A := {s ∈ P(ζA) : Re s = D(ζA)}.

It does not depend on W .
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Residues

Residue of distance zeta functions at D := dimB A (D < N)

We assume that ζA can be meromorphically extended to a
neighbourhood of D := dimB A, and D < N.
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Residue of distance zeta functions at D := dimB A (D < N)

We assume that ζA can be meromorphically extended to a
neighbourhood of D := dimB A, and D < N.

Theorem (LRŽ)

If A is Minkowski nonegenerate, then s = D is a simple pole, and

(N − D)MD
∗ (A) ≤ res(ζA,D) ≤ (N − D)M∗D(A).
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For the Cantor ternary set we have strict inequalities.
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Residues

Residue of distance zeta functions at D := dimB A (D < N)

We assume that ζA can be meromorphically extended to a
neighbourhood of D := dimB A, and D < N.

Theorem (LRŽ)

If A is Minkowski nonegenerate, then s = D is a simple pole, and

(N − D)MD
∗ (A) ≤ res(ζA,D) ≤ (N − D)M∗D(A).

For the Cantor ternary set we have strict inequalities.

Corollary (LRŽ)

If A is Minkowski measurable, i.e., MD(A) ∈ (0,∞), then

res(ζA,D) = (N − D)MD(A).
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Residues

Residue of tube zeta functions at D := dimB A (D ≤ N)

Tube zeta function associated with the tube fct. t 7→ |At |:

ζ̃A(s) =

∫ δ

0
ts−N−1|At | dt.
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Residues

Residue of tube zeta functions at D := dimB A (D ≤ N)

Tube zeta function associated with the tube fct. t 7→ |At |:

ζ̃A(s) =

∫ δ

0
ts−N−1|At | dt.

Corollary (LRŽ)

If D = dimB A exists, and ζ̃A has a merom. ext. near s = D, then

MD
∗ (A) ≤ res(ζ̃A,D) ≤ M∗D(A).

In particular, if A is Minkowski measurable, then

res(ζ̃A,D) = MD(A).
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Residues

Residue of tube zeta functions at D := dimB A (D ≤ N)

Tube zeta function associated with the tube fct. t 7→ |At |:

ζ̃A(s) =

∫ δ

0
ts−N−1|At | dt.

Corollary (LRŽ)

If D = dimB A exists, and ζ̃A has a merom. ext. near s = D, then

MD
∗ (A) ≤ res(ζ̃A,D) ≤ M∗D(A).

In particular, if A is Minkowski measurable, then

res(ζ̃A,D) = MD(A).

The proof rests on the following identity on {Re s > D}:

ζA(s) = δs−N |Aδ|+ (N − s)ζ̃A(s)
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Meromorphic extensions of zeta functions

Minkowski measurable sets

Theorem (LRŽ)

Assume A ⊂ R
N and there exist α > 0, M ∈ (0,∞) and D ≥ 0

s.t.
|At | = tN−D (M+ O(tα)) as t → 0.

Then A is Minkowski measurable, dimB A = D, MD(A) = M,
D(ζ̃A) = D, ∃! meromorphic extension of ζ̃A(s) (at least) to

{Re s > D − α}.

The pole s = D is unique, simple, res(ζ̃A,D) = M.
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Meromorphic extensions of zeta functions

Minkowski measurable sets

Theorem (LRŽ)

Assume A ⊂ R
N and there exist α > 0, M ∈ (0,∞) and D ≥ 0

s.t.
|At | = tN−D (M+ O(tα)) as t → 0.

Then A is Minkowski measurable, dimB A = D, MD(A) = M,
D(ζ̃A) = D, ∃! meromorphic extension of ζ̃A(s) (at least) to

{Re s > D − α}.

The pole s = D is unique, simple, res(ζ̃A,D) = M.



Outline Definitions Lapidus zeta functions Relative Lapidus zeta functions References

Meromorphic extensions of zeta functions

Minkowski nonmeasurable sets

Theorem (LRŽ)

Assume A ⊂ R
N and there exist D ≥ 0, a nonconstant periodic

fct. G : R → R with the minimal period T > 0, and α > 0, s.t.

|At | = tN−D
(

G (log t−1) + O(tα)
)

as t → 0.

Then dimB A = D, MD
∗ (A) = minG, M∗D(A) = maxG,

D(ζ̃A) = D, and ∃! meromorphic extension (at least) to
{Re s > D − α}. The set of all of poles is

P(ζ̃A) =

{

sk = D +
2π

T
ik : Ĝ0

( k

T

)

6= 0, k ∈ Z

}

they are all simple. Here Ĝ0(s) :=
∫ T

0 e−2πis·tG (t) dt.
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Meromorphic extensions of zeta functions

Minkowski nonmeasurable measurable sets

Theorem (. . . continued)

For all sk ∈ P(ζ̃A), res(ζ̃A, sk) =
1
T
Ĝ0(

k
T
). We have

| res(ζ̃A, sk)| ≤
1

T

∫ T

0
G (τ) dτ, lim

k→∞
res(ζ̃A, sk) = 0

We have D ∈ P(ζ̃A),

res(ζ̃A,D) =
1

T

∫ T

0
G (τ) dτ

MD
∗ (A) < res(ζ̃A,D) < M∗D(A).

Examples: ternary Cantor set C (2,1/3), generalized Cantor sets
C (m,a) (ma < 1)
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Relative fractal drums (RFDs)

Relative fractal drums

Relative fractal drum (RFD) is a pair (A,Ω) of nonempty
subsets A and Ω (open) of RN , s.t. |Ω| < ∞ and ∃δ > 0 s.t.
Ω ⊂ Aδ. (A and Ω may be unbdd.)
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Relative fractal drum (RFD) is a pair (A,Ω) of nonempty
subsets A and Ω (open) of RN , s.t. |Ω| < ∞ and ∃δ > 0 s.t.
Ω ⊂ Aδ. (A and Ω may be unbdd.)

Example: (∂Ω,Ω), where Ω is bdd.
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Relative fractal drums (RFDs)

Relative fractal drums

Relative fractal drum (RFD) is a pair (A,Ω) of nonempty
subsets A and Ω (open) of RN , s.t. |Ω| < ∞ and ∃δ > 0 s.t.
Ω ⊂ Aδ. (A and Ω may be unbdd.)

Example: (∂Ω,Ω), where Ω is bdd.

upper s-dim. Minkowski content of A relative to Ω, for s∈ R:

M∗s(A,Ω) := limt→0
|At ∩ Ω|

tN−s
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Relative fractal drums (RFDs)

Relative fractal drums

Relative fractal drum (RFD) is a pair (A,Ω) of nonempty
subsets A and Ω (open) of RN , s.t. |Ω| < ∞ and ∃δ > 0 s.t.
Ω ⊂ Aδ. (A and Ω may be unbdd.)

Example: (∂Ω,Ω), where Ω is bdd.

upper s-dim. Minkowski content of A relative to Ω, for s∈ R:

M∗s(A,Ω) := limt→0
|At ∩ Ω|

tN−s

relative box dimension:
dimB(A,Ω) := inf{s∈ R : M∗s(A,Ω) = 0}
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Relative fractal drums (RFDs)

Relative fractal drums

Relative fractal drum (RFD) is a pair (A,Ω) of nonempty
subsets A and Ω (open) of RN , s.t. |Ω| < ∞ and ∃δ > 0 s.t.
Ω ⊂ Aδ. (A and Ω may be unbdd.)

Example: (∂Ω,Ω), where Ω is bdd.

upper s-dim. Minkowski content of A relative to Ω, for s∈ R:

M∗s(A,Ω) := limt→0
|At ∩ Ω|

tN−s

relative box dimension:
dimB(A,Ω) := inf{s∈ R : M∗s(A,Ω) = 0}

−∞ ≤ dimB(A,Ω) ≤ dimB(A,Ω) ≤ N
(here, −∞ can be achieved)
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Relative fractal drums (RFDs)

Relative fractal drums

Relative fractal drum (RFD) is a pair (A,Ω) of nonempty
subsets A and Ω (open) of RN , s.t. |Ω| < ∞ and ∃δ > 0 s.t.
Ω ⊂ Aδ. (A and Ω may be unbdd.)

Example: (∂Ω,Ω), where Ω is bdd.

upper s-dim. Minkowski content of A relative to Ω, for s∈ R:

M∗s(A,Ω) := limt→0
|At ∩ Ω|

tN−s

relative box dimension:
dimB(A,Ω) := inf{s∈ R : M∗s(A,Ω) = 0}

−∞ ≤ dimB(A,Ω) ≤ dimB(A,Ω) ≤ N
(here, −∞ can be achieved)

each bdd set A can be identified with an RFD (A,Aδ), for any
δ > 0
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Relative fractal drums (RFDs)

Relative zeta functions

if (A,Ω) satisfies the cone property at a pt. a ∈ A ∩ Ω w.r. to
Ω, then dimB(A,Ω) ≥ 0
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Relative fractal drums (RFDs)

Relative zeta functions

if (A,Ω) satisfies the cone property at a pt. a ∈ A ∩ Ω w.r. to
Ω, then dimB(A,Ω) ≥ 0

flatness condition on an RFD: dimB(A,Ω) < 0
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Relative fractal drums (RFDs)

Relative zeta functions

if (A,Ω) satisfies the cone property at a pt. a ∈ A ∩ Ω w.r. to
Ω, then dimB(A,Ω) ≥ 0

flatness condition on an RFD: dimB(A,Ω) < 0

let (A,Ω) be a fixed RFD
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Relative fractal drums (RFDs)

Relative zeta functions

if (A,Ω) satisfies the cone property at a pt. a ∈ A ∩ Ω w.r. to
Ω, then dimB(A,Ω) ≥ 0

flatness condition on an RFD: dimB(A,Ω) < 0

let (A,Ω) be a fixed RFD

Definition (Relative distance zeta function, LRŽ)

Distance zeta function of the RFD (A,Ω) (or relative distance z.f.)
is defined by

ζA,Ω(s) :=

∫

Ω
d(x ,A)s−N dx

for all s ∈ C with Re s large enough.
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Relative fractal drums (RFDs)

Relative zeta functions

if (A,Ω) satisfies the cone property at a pt. a ∈ A ∩ Ω w.r. to
Ω, then dimB(A,Ω) ≥ 0

flatness condition on an RFD: dimB(A,Ω) < 0

let (A,Ω) be a fixed RFD

Definition (Relative distance zeta function, LRŽ)

Distance zeta function of the RFD (A,Ω) (or relative distance z.f.)
is defined by

ζA,Ω(s) :=

∫

Ω
d(x ,A)s−N dx

for all s ∈ C with Re s large enough.

If A is bdd, then ζA = ζA,Aδ
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Analyticity and scaling property

Analyticity of relative zeta functions

Theorem (LRŽ)

the abscissa of (absolute) convergence is
D(ζA,Ω) = dimB(A,Ω); in particular, ζA,Ω is holomorphic on
{Re s > dimB(A,Ω)};
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Analyticity and scaling property

Analyticity of relative zeta functions

Theorem (LRŽ)

the abscissa of (absolute) convergence is
D(ζA,Ω) = dimB(A,Ω); in particular, ζA,Ω is holomorphic on
{Re s > dimB(A,Ω)};

assuming that D = dimB(A,Ω) exists and MD
∗ (A,Ω) > 0, if

s ∈ R and s → D+, then ζA,Ω(s) → ∞;
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Analyticity and scaling property

Analyticity of relative zeta functions

Theorem (LRŽ)

the abscissa of (absolute) convergence is
D(ζA,Ω) = dimB(A,Ω); in particular, ζA,Ω is holomorphic on
{Re s > dimB(A,Ω)};

assuming that D = dimB(A,Ω) exists and MD
∗ (A,Ω) > 0, if

s ∈ R and s → D+, then ζA,Ω(s) → ∞;

(scaling property) for any λ > 0,

ζλA,λΩ(s) = λsζA,Ω(s)

for all s ∈ C with Re s > dimB(A,Ω).
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Meromorphic extensions

Meromorphic extensions of relative zeta functions

Theorem (LRŽ; gauge functions; Mink. meas. case)

Let (A,Ω) be a relative fractal drum in R
N s.t.

|At ∩ Ω| = tN−D(log t−1)m−1(M+ O(tα)) as t → 0,

where m ∈ N, D ∈ (−∞,N]. Then D(ζ̃A,Ω) = D, and ζ̃A,Ω has a
unique meromorphic extension to {Re s > D − α}.
s = D is the unique pole, of order m. If m = 1, then
res(ζ̃A,Ω,D) = M.
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Meromorphic extensions

Converse of the previous theorem

Theorem (LRŽ; gauge functions; Mink. meas. case; converse)

Let (A,Ω) be a relative fractal drum in R
N s.t. ζ̃A,Ω is languid,

m ∈ N, D ∈ (−∞,N]. Let D(ζ̃A,Ω) = D, and ζ̃A,Ω has a
meromorphic extension to {Re s > D − α}, and s = D is the
unique pole, of order m. Then

|At ∩ Ω| = tN−D(log t−1)m−1(M+ O(tα)) as t → 0. (∗)

If m = 1, then res(ζ̃A,Ω,D) = M.



Outline Definitions Lapidus zeta functions Relative Lapidus zeta functions References

Meromorphic extensions

Converse of the previous theorem

Theorem (LRŽ; gauge functions; Mink. meas. case; converse)

Let (A,Ω) be a relative fractal drum in R
N s.t. ζ̃A,Ω is languid,

m ∈ N, D ∈ (−∞,N]. Let D(ζ̃A,Ω) = D, and ζ̃A,Ω has a
meromorphic extension to {Re s > D − α}, and s = D is the
unique pole, of order m. Then

|At ∩ Ω| = tN−D(log t−1)m−1(M+ O(tα)) as t → 0. (∗)

If m = 1, then res(ζ̃A,Ω,D) = M.

Furthermore, the supremum of all α satisfying (∗) is

sup
(∗)

α = D − sup
{

Re s : s ∈ P(ζ̃A,Ω) \ {D}
}

.
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Meromorphic extensions

Meromorphic extensions of relative zeta functions

Theorem (LRŽ; gauge functions; Mink. nonmeas. case)

Let (A,Ω) be a relative fractal drum in R
N , s.t. ∃ D ≥ 0, a

nonconstant periodic fct. G : R → R with the min. period T > 0,
m ∈ N, D ∈ (−∞,N], α > 0, satisfying

|At ∩ Ω| = tN−D(log t−1)m−1
(

G (log t−1) + O(tα)
)

as t → 0

Then dimB(A,Ω) = D, D(ζ̃A,Ω) = D, and ζ̃A,Ω has a unique
meromorphic extension (at least) to {Re s > D − α}. All of its
poles are of order m, and

P(ζ̃A,Ω) =

{

sk = D +
2π

T
ik ∈ C : Ĝ0(

k

T
) 6= 0, k ∈ Z

}

Also, s0 = D ∈ P(ζ̃A,Ω).
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Meromorphic extensions

Meromorphic extensions of relative zeta functions (continued)

Theorem (LRŽ; gauge functions; Mink. meas. case; cntnd.)

For s0 = D (i.e., k = 0) we have

c
(0)
−m =

(m − 1)!

T

∫ T

0
G (τ) dτ

Definining the h-Minkowski content by
M∗r (A,Ω, h) := limt→0+

|At∩Ω|
h(t)tN−r , where h(t) := (log t−1)m−1 is

the gauge fct., and similarly Mr
∗(A,Ω, h), we have

(m − 1)!MD
∗ (A,Ω, h) < c

(0)
−m < (m − 1)!M∗D(A,Ω, h).
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Meromorphic extensions

Meromorphic extensions of relative zeta functions (continued)

Theorem (LRŽ; gauge functions; Mink. meas. case; cntnd.)

For s0 = D (i.e., k = 0) we have

c
(0)
−m =

(m − 1)!

T

∫ T

0
G (τ) dτ

Definining the h-Minkowski content by
M∗r (A,Ω, h) := limt→0+

|At∩Ω|
h(t)tN−r , where h(t) := (log t−1)m−1 is

the gauge fct., and similarly Mr
∗(A,Ω, h), we have

(m − 1)!MD
∗ (A,Ω, h) < c

(0)
−m < (m − 1)!M∗D(A,Ω, h).

For m = 1 we have res(ζA,Ω,D) = 1
T

∫ T

0 G (τ) dτ and

MD
∗ (A,Ω) < res(ζA,Ω,D) < M∗D(A,Ω).
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Generating complex dimensions of any multiplicity

Tensor products of fractal strings

A bounded fractal string L is any nondecreasing sequence (ℓj)j≥1

of positive numbers, such that
∑∞

j=1 ℓj < ∞. It can be identified
with the set

A = AL := {ak =
∑

j≥k

ℓj : k ≥ 1}.
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Generating complex dimensions of any multiplicity

Tensor products of fractal strings

A bounded fractal string L is any nondecreasing sequence (ℓj)j≥1

of positive numbers, such that
∑∞

j=1 ℓj < ∞. It can be identified
with the set

A = AL := {ak =
∑

j≥k

ℓj : k ≥ 1}.

Let L = (ℓj)j≥1 and M = (mk)k≥1 be two bdd fractal strings.

Their tensor product is the multiset

L ⊗M := {ℓjmk : j ≥ 1, k ≥ 1}.
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Generating complex dimensions of any multiplicity

Tensor products of fractal strings

A bounded fractal string L is any nondecreasing sequence (ℓj)j≥1

of positive numbers, such that
∑∞

j=1 ℓj < ∞. It can be identified
with the set

A = AL := {ak =
∑

j≥k

ℓj : k ≥ 1}.

Let L = (ℓj)j≥1 and M = (mk)k≥1 be two bdd fractal strings.

Their tensor product is the multiset

L ⊗M := {ℓjmk : j ≥ 1, k ≥ 1}.

Using iterated tensor products of fractal strings, it is possible to

construct a subset A ⊂ [0, 1] with arbitrarily high multiplicities of
complex dimensions, and even with essential singularities of ζA.
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Generating complex dimensions of any multiplicity

m-Cantor string

It is easy to see that

ζL⊗M(s) = ζL(s) · ζM(s)

for all s ∈ C with Re s sufficiently large.
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Generating complex dimensions of any multiplicity

m-Cantor string

It is easy to see that

ζL⊗M(s) = ζL(s) · ζM(s)

for all s ∈ C with Re s sufficiently large.
Let LCS be the Cantor string, m ≥ 2, and define its m-fold tensor
product (or m-Cantor string) by

Lm⊗
CS := LCS ⊗ · · · ⊗ LCS .
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Generating complex dimensions of any multiplicity

m-Cantor string

It is easy to see that

ζL⊗M(s) = ζL(s) · ζM(s)

for all s ∈ C with Re s sufficiently large.
Let LCS be the Cantor string, m ≥ 2, and define its m-fold tensor
product (or m-Cantor string) by

Lm⊗
CS := LCS ⊗ · · · ⊗ LCS .

All of its complex dimensions (i.e., poles of ζLm⊗

CS
),

dimPC Lm⊗
CS = log3 2 +

2π

log 3
iZ,

are of multiplicity m, since
ζLm⊗

CS
(s) =

(

ζLCS
(s)

)m
= (1− 2 · 3−s)−m
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Generating complex dimensions of any multiplicity

∞-Cantor string

Taking a disjoint union of scaled copies of Lm⊗
CS ,

L∞
CS :=

∞
⊔

m=2

3−m

m!
Lm⊗
CS ,

log3 2 +
2π
log 3 iZ becomes the set of essential singularities of ζL∞

CS
.
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Generating complex dimensions of any multiplicity

∞-Cantor string

Taking a disjoint union of scaled copies of Lm⊗
CS ,

L∞
CS :=

∞
⊔

m=2

3−m

m!
Lm⊗
CS ,

log3 2 +
2π
log 3 iZ becomes the set of essential singularities of ζL∞

CS
.

The proof is based on

ζL∞
CS
(s) =

∞
∑

m=2

3−ms

(m!)s
(

ζLCS
(s)

)m

=
∞
∑

m=2

3−ms

(m!)s
·

1

(1− 2 · 3−s)m
,

which is holomrphic on {Re s > 0} \
(

log3 2 +
2π
log 3 iZ

)

.
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Quasiperiodic sets and RFDs

n-Quasiperiodic sets

Definition

A ⊂ R
N is said to be 2-quasiperiodic set if

|At | = tN−D(G (log 1/t) + O(tα)) as t → 0, for some D ≥ 0,
α > 0, and G (τ) is a 2-quasiperiodic function, that is,
G (τ) = G1(τ) + G2(τ) and Gj are Tj -periodic, where T1/T2 is
irrational.
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Quasiperiodic sets and RFDs

n-Quasiperiodic sets

Definition

A ⊂ R
N is said to be 2-quasiperiodic set if

|At | = tN−D(G (log 1/t) + O(tα)) as t → 0, for some D ≥ 0,
α > 0, and G (τ) is a 2-quasiperiodic function, that is,
G (τ) = G1(τ) + G2(τ) and Gj are Tj -periodic, where T1/T2 is
irrational.

Example. Using suitably chosen generalized Cantor sets C (m1,a1)

and C (m2,a2), it is possible to achieve that for their (disjoint) union
A, T1/T2 is even transcendental. We use Gel’fond–Schneider’s
theorem from number theory, 1934.
We say that A is transcendentally 2-quasiperiodic set.
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Quasiperiodic sets and RFDs

n-Quasiperiodic sets

Definition

A ⊂ R
N is said to be 2-quasiperiodic set if

|At | = tN−D(G (log 1/t) + O(tα)) as t → 0, for some D ≥ 0,
α > 0, and G (τ) is a 2-quasiperiodic function, that is,
G (τ) = G1(τ) + G2(τ) and Gj are Tj -periodic, where T1/T2 is
irrational.

Example. Using suitably chosen generalized Cantor sets C (m1,a1)

and C (m2,a2), it is possible to achieve that for their (disjoint) union
A, T1/T2 is even transcendental. We use Gel’fond–Schneider’s
theorem from number theory, 1934.
We say that A is transcendentally 2-quasiperiodic set.
It is possible to construct transcendentally n-quasiperiodic sets for
any n ≥ 2, and even for n = ∞. We use Baker’s theorem from
number theory.
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Fractal zeta functions

M. L. Lapidus, G. Radunović, D. Žubrinić, Fractal Zeta Functions
and Fractal Drums / Higher-Dimensional Theory of Complex
Dimensions, Springer Verlag, to appear in 2016, 620 pp.

M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta
functions and complex dimensions of relative fractal drums, J.
Fixed Point Theory and Appl. No. 2, 15 (2014), 321–378.
Festschrift issue in honor of Haim Brezis’ 70th birthday. (DOI:
10.1007/s11784-014-0207-y.) (Also: e-print, arXiv:1407.8094v3
[math-ph], 2014.)
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Fractal zeta functions

M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta
functions and complex dimensions: A general higher-dimensional
theory, survey article, in: Geometry and Stochastics V (C. Bandt,
K. Falconer and M. Zähle, eds.), Proc. Fifth Internat. Conf.
(Tabarz, Germany, March 2014), Progress in Probability,
Birkhäuser, Basel, Boston and Berlin, in press, 2015. (Based on a
plenary lecture given by the first author at that conference.) (Also:
e-print, arXiv:1502.00878v2 [math.CV], 2015.)

D. Žubrinić, Analysis of Minkowski contents of fractal sets and
applications, Real Anal. Exchange, Vol 31(2), 2005/2006, 315–354.

Centre for Nonlinear Dynamics, Zagreb,
www.math.pmf.unizg.hr/cnd/
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