Outline Definitions

Lapidus zeta functions

Relative Lapidus zeta functions

References

Lapidus zeta functions of fractal sets and their residues

Darko Žubrinić

University of Zagreb, Croatia Centre for Nonlinear Dynamics, Zagreb

Fractals and Related Fields III Porquerolles, France September 2015

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
	000	0000000000	000000000	

Definitions

- Minkowski content and box dimension
- Minkowski nondegeneracy and Minkowski measurability

2 Lapidus zeta functions

- Definition
- Analyticity and scaling property
- Residues
- Meromorphic extensions of zeta functions

8 Relative Lapidus zeta functions

- Relative fractal drums (RFDs)
- Analyticity and scaling property
- Meromorphic extensions
- Generating complex dimensions of any multiplicity
- Quasiperiodic sets and RFDs

4 References

Outline	Definitions 000	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions	References
Aims				

• joint work with Michel L. Lapidus, Univ. of California, Riverside, and Goran Radunović, Univ. of Zagreb

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References
Aims				

- joint work with Michel L. Lapidus, Univ. of California, Riverside, and Goran Radunović, Univ. of Zagreb
- \bullet the aim is to define complex dimensions of fractal sets in \mathbb{R}^{N}

Outline	Definitions 000	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions	References
Aims				

- joint work with Michel L. Lapidus, Univ. of California, Riverside, and Goran Radunović, Univ. of Zagreb
- the aim is to define complex dimensions of fractal sets in \mathbb{R}^N
- introducing a new class of zeta functions: Lapidus zeta functions associated with fractal sets

Outline	Definitions 000	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions	References
Aims				

- joint work with Michel L. Lapidus, Univ. of California, Riverside, and Goran Radunović, Univ. of Zagreb
- the aim is to define complex dimensions of fractal sets in \mathbb{R}^N
- introducing a new class of zeta functions: Lapidus zeta functions associated with fractal sets
- Professor Lapidus discovered them (during my lecture) in Catania in 2009

Outline	Definitions 000	Lapidus zeta functions 00000000000	Relative Lapidus zeta functions	References
Aims				

- joint work with Michel L. Lapidus, Univ. of California, Riverside, and Goran Radunović, Univ. of Zagreb
- the aim is to define complex dimensions of fractal sets in \mathbb{R}^N
- introducing a new class of zeta functions: Lapidus zeta functions associated with fractal sets
- Professor Lapidus discovered them (during my lecture) in Catania in 2009
- M. L. Lapidus, G. Radunović, D. Žubrinić, Fractal Zeta Functions and Fractal Drums / Higher-Dimensional Theory of Complex Dimensions, Springer Verlag, to appear in 2016, 620 pp.

Outline	Definitions 000	Lapidus zeta functions 00000000000	Relative Lapidus zeta functions	References
Aims				

- joint work with Michel L. Lapidus, Univ. of California, Riverside, and Goran Radunović, Univ. of Zagreb
- the aim is to define complex dimensions of fractal sets in \mathbb{R}^N
- introducing a new class of zeta functions: Lapidus zeta functions associated with fractal sets
- Professor Lapidus discovered them (during my lecture) in Catania in 2009
- M. L. Lapidus, G. Radunović, D. Žubrinić, Fractal Zeta Functions and Fractal Drums / Higher-Dimensional Theory of Complex Dimensions, Springer Verlag, to appear in 2016, 620 pp.
- Lapidus zeta functions: distance zeta functions, tube zeta functions and geometric zeta functions

Outline	Definitions ●00	Lapidus zeta functions	Relative Lapidus zeta functions	References	
Minkowski content and box dimension					
Minkows	ski content				

•
$$A \subset \mathbb{R}^N$$
 nonempty bounded set

Outline	Definitions ●○○	Lapidus zeta functions 00000000000	Relative Lapidus zeta functions	References
Minkowski con	tent and box dimensio	n		
Minkow	ski content			

- $A \subset \mathbb{R}^N$ nonempty bounded set
- *t*-neighbourhood of *A*, for t > 0:

$$A_t = \{y \in \mathbb{R}^N : d(y, A) < t\}$$

Minkows	ki content			
Minkowski conte	nt and box dimension			
Outline	Definitions ●00	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions	References

- $A \subset \mathbb{R}^N$ nonempty bounded set
- *t*-neighbourhood of *A*, for t > 0:

$$A_t = \{ y \in \mathbb{R}^N : d(y, A) < t \}$$

• Lower s-dimensional Minkowski content of A, $s \ge 0$:

$$\mathcal{M}^{s}_{*}(A) := \liminf_{t \to 0} \frac{|A_{t}|}{t^{N-s}}$$

where $|A_t| = N$ -dimensional Lebesgue measure of $|A_t|$

Minkov	vski content	t		
Minkowski co	ontent and box dimen	sion		
Outline	Definitions ●00	Lapidus zeta functions	Relative Lapidus zeta functions	References

- $A \subset \mathbb{R}^N$ nonempty bounded set
- *t*-neighbourhood of *A*, for t > 0:

$$A_t = \{ y \in \mathbb{R}^N : d(y, A) < t \}$$

• Lower s-dimensional Minkowski content of A, $s \ge 0$:

$$\mathcal{M}^{s}_{*}(A) := \liminf_{t \to 0} \frac{|A_{t}|}{t^{N-s}}$$

where $|A_t| = N$ -dimensional Lebesgue measure of $|A_t|$

• Upper s-dimensional Minkowski content of A:

$$\mathcal{M}^{*s}(A) := \limsup_{t \to 0} rac{|A_t|}{t^{N-s}}$$

Box dimens	sions			
Minkowski content a	nd box dimension			
Outline De	o O	Lapidus zeta functions 00000000000	Relative Lapidus zeta functions	References

• Lower box dimension: $\underline{\dim}_B A = \inf\{s > 0 : \mathcal{M}^s_*(A) = 0\}$

Box dime	ensions			
Minkowski conte	nt and box dimensior	I		
Outline	Definitions ○●○	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions	References

- Lower box dimension: $\underline{\dim}_B A = \inf\{s > 0 : \mathcal{M}^s_*(A) = 0\}$
- Upper box dimension: $\overline{\dim}_B A = \inf\{s > 0 : \mathcal{M}^{*s}(A) = 0\}$

Box dime	ensions			
Minkowski conte	nt and box dimensior	I		
Outline	Definitions ○●○	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions	References

- Lower box dimension: $\underline{\dim}_B A = \inf\{s > 0 : \mathcal{M}^s_*(A) = 0\}$
- Upper box dimension: $\overline{\dim}_B A = \inf\{s > 0 : \mathcal{M}^{*s}(A) = 0\}$

•
$$0 \leq \underline{\dim}_B A \leq \overline{\dim}_B A \leq N$$

Box dime	ensions			
Minkowski conte	nt and box dimensior	I		
Outline	Definitions ○●○	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions	References

- Lower box dimension: $\underline{\dim}_B A = \inf\{s > 0 : \mathcal{M}^s_*(A) = 0\}$
- Upper box dimension: $\overline{\dim}_B A = \inf\{s > 0 : \mathcal{M}^{*s}(A) = 0\}$

•
$$0 \leq \underline{\dim}_B A \leq \overline{\dim}_B A \leq N$$

• If $\underline{\dim}_B A = \overline{\dim}_B A$ we write $\dim_B A$, box dimension of A.

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References	
	000				
Ministration of the second state of the					

Minkowski measurable and nondegenerate sets

• If there is $D \ge 0$ with

$$0 < \mathcal{M}^D_*(A) \leq \mathcal{M}^{*D}(A) < \infty,$$

we say A to be Minkowski nondegenerate set. Clearly, $D = \dim_B A$.

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References	
	000				
Minkowski pondegeneracy and Minkowski measurability					

Minkowski measurable and nondegenerate sets

• If there is $D \ge 0$ with

$$0 < \mathcal{M}^D_*(A) \leq \mathcal{M}^{*D}(A) < \infty,$$

we say A to be Minkowski nondegenerate set. Clearly, $D = \dim_B A$.

If M^s_{*}(A) = M^{*s}(A) for some s, we write M^s(A): s-dimensional Minkowski content of A.

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References	
	000				
Minkowski pondegeneracy and Minkowski measurability					

Minkowski measurable and nondegenerate sets

• If there is $D \ge 0$ with

$$0 < \mathcal{M}^D_*(A) \leq \mathcal{M}^{*D}(A) < \infty,$$

we say A to be Minkowski nondegenerate set. Clearly, $D = \dim_B A$.

- If \$\mathcal{M}_*^s(A) = \mathcal{M}^{*s}(A)\$ for some s, we write \$\mathcal{M}^s(A)\$: s-dimensional Minkowski content of \$A\$.
- If M^D(A) ∈ (0,∞) for some D ≥ 0, then A is said to be Minkowski measurable. Clearly, D = dim_B A.

Definit	ion of Lanic	lus zeta function		
Definition				
Outline	000		Relative Lapidus zeta functions	References
Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References

• $A \subset \mathbb{R}^N$ a given nonempty bounded set, $\delta > 0$ fixed

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References
Definition				

Definition of Lapidus zeta function

• $A \subset \mathbb{R}^N$ a given nonempty bounded set, $\delta > 0$ fixed

Definition (LRŽ)

The Lapidus zeta function of A (or distance z.f.) is defined by

$$\zeta_A(s) := \int_{A_\delta} d(x,A)^{s-N} \, \mathrm{d} x$$

for all $s \in \mathbb{C}$ with Res large enough.

Definition of Lapidus zeta function						
Definition						
Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References		

• $A \subset \mathbb{R}^N$ a given nonempty bounded set, $\delta > 0$ fixed

Definition (LRŽ)

The Lapidus zeta function of A (or distance z.f.) is defined by

$$\zeta_A(s) := \int_{A_\delta} d(x,A)^{s-N} \, \mathrm{d} x$$

for all $s \in \mathbb{C}$ with Res large enough.

for s such that Re s < N the subintegral function d(x, A)^{s-N} is singular on A

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
		0000000000		
Definition				

Definition of Lapidus zeta function

•
$$A \subset \mathbb{R}^N$$
 a given nonempty bounded set, $\delta > 0$ fixed

Definition (LRŽ)

The Lapidus zeta function of A (or distance z.f.) is defined by

$$\zeta_A(s) := \int_{A_\delta} d(x,A)^{s-N} \, \mathrm{d} x$$

for all $s \in \mathbb{C}$ with Res large enough.

- for s such that Re s < N the subintegral function d(x, A)^{s-N} is singular on A
- note that $\zeta_A(s) = \zeta_A(s; \delta)$ depends on δ as well

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
		0000000000		
Definition				

Definition of Lapidus zeta function

• $A \subset \mathbb{R}^N$ a given nonempty bounded set, $\delta > 0$ fixed

Definition (LRŽ)

The Lapidus zeta function of A (or distance z.f.) is defined by

$$\zeta_A(s) := \int_{A_\delta} d(x,A)^{s-N} \, \mathrm{d} x$$

for all $s \in \mathbb{C}$ with Res large enough.

- for s such that Re s < N the subintegral function d(x, A)^{s-N} is singular on A
- note that $\zeta_A(s) = \zeta_A(s; \delta)$ depends on δ as well
- $\delta < \delta_1$ implies that $\zeta_A(s; \delta_1) \zeta_A(s) = \int_{A_{\delta, \delta_1}} d(x, A)^{s-N} dx$ is entire function

Outline	Definitions 000	Lapidus zeta functions 0●000000000	Relative Lapidus zeta functions	References
Definition				

Graph of Sierpiński carpet distance function $x \mapsto d(x, A)$

Outline Definitions

Lapidus zeta functions

Relative Lapidus zeta functions

References

Definition

Graph of the function $x \mapsto d(x, A)^{s-N}$ **for** s < N

Definitions Lapidus zeta functions References

Analyticity and scaling property

Analyticity region of the Lapidus zeta function

• Let A be a nonempty bounded subset of \mathbb{R}^N

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References		
Analyticity and scaling property						

Analyticity region of the Lapidus zeta function

- Let A be a nonempty bounded subset of \mathbb{R}^N
- δ a fixed positive number, $\zeta_A(s) := \int_{A_{\delta}} d(x, A)^{s-N} \, \mathrm{d}x$

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
	000	00000000	0000000000	

Analyticity region of the Lapidus zeta function

- Let A be a nonempty bounded subset of \mathbb{R}^N
- δ a fixed positive number, $\zeta_A(s) := \int_{A_{\delta}} d(x, A)^{s-N} dx$

Theorem (LRŽ)

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
	000	000000000	0000000000	

Analyticity region of the Lapidus zeta function

- Let A be a nonempty bounded subset of \mathbb{R}^N
- δ a fixed positive number, $\zeta_A(s) := \int_{A_\delta} d(x, A)^{s-N} dx$

Theorem (LRŽ)

• The abscissa of (absolute) of convergence of ζ_A is

 $D(\zeta_A) = \overline{\dim}_B A.$

In particular, ζ_A is holomorphic on $\{\operatorname{Re} s > \overline{\dim}_B A\}$.

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
		000000000		

Analyticity region of the Lapidus zeta function

- Let A be a nonempty bounded subset of \mathbb{R}^N
- δ a fixed positive number, $\zeta_A(s) := \int_{A_\delta} d(x, A)^{s-N} dx$

Theorem (LRŽ)

• The abscissa of (absolute) of convergence of ζ_A is

 $D(\zeta_A) = \overline{\dim}_B A.$

In particular, ζ_A is holomorphic on {Re $s > \overline{\dim}_B A$ }.

• If there exists $D = \dim_B A$ and $\mathcal{M}^D_*(A) > 0$, then $\zeta_A(s) \to \infty$ as $s \in \mathbb{R}$ and $s \to D^+$.

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
		000000000		

Analyticity region of the Lapidus zeta function

- Let A be a nonempty bounded subset of \mathbb{R}^N
- δ a fixed positive number, $\zeta_A(s) := \int_{A_\delta} d(x, A)^{s-N} dx$

Theorem (LRŽ)

• The abscissa of (absolute) of convergence of ζ_A is

$$D(\zeta_A) = \overline{\dim}_B A.$$

In particular, ζ_A is holomorphic on {Re $s > \overline{\dim}_B A$ }.

- If there exists $D = \dim_B A$ and $\mathcal{M}^D_*(A) > 0$, then $\zeta_A(s) \to \infty$ as $s \in \mathbb{R}$ and $s \to D^+$.
- (scaling property) If $\lambda > 0$, then

$$\zeta_{\lambda A}(s; \lambda \delta) = \lambda^{s} \cdot \zeta_{A}(s; \delta)$$

for all $s \in \mathbb{C}$ such that $\operatorname{Re} s > \overline{\dim}_B A$.

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References		
Analyticity an	d scaling property					
The pro	The proof of analyticity					

• The proof is based on the following result:

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References	
Analyticity an	d scaling property				
The proof of analyticity					

• The proof is based on the following result:

Theorem (Harvey & Polking 1970)

Assume that A is a bounded set in \mathbb{R}^N and $\delta>0$ is given. Then

$$\gamma < \mathcal{N} - \overline{\dim}_B A \quad \Rightarrow \quad \int_{A_\delta} d(x, A)^{-\gamma} \, \mathrm{d}x < \infty$$

The proof of analyticity						
Analyticity and scaling property						
Outline	Definitions 000	Lapidus zeta functions ○○○○●○○○○○○	Relative Lapidus zeta functions	References		

• The proof is based on the following result:

Theorem (Harvey & Polking 1970)

Assume that A is a bounded set in \mathbb{R}^N and $\delta > 0$ is given. Then

$$\gamma < \mathcal{N} - \overline{\dim}_B \mathcal{A} \quad \Rightarrow \quad \int_{\mathcal{A}_{\delta}} d(x, \mathcal{A})^{-\gamma} \, \mathrm{d}x < \infty$$

If D := dim_B A exists, and M^D_{*}(A) > 0, then the converse also holds (D.Ž., ISAAC Proc. 2009). The Minkowski content condition is essential (D.Ž., RAE 2005)

Complex dimensions of a fractal set A							
Analyticity a	nd scaling property						
Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References			

Let A be such that ζ_A can be meromorphically extended to an open right half-plane W (window) containing the *critical line* {Re s = D(ζ_A)}
Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
		000000000		
Analyticity and	scaling property			

Complex dimensions of a fractal set A

Let A be such that ζ_A can be meromorphically extended to an open right half-plane W (window) containing the *critical line* {Re s = D(ζ_A)}

Definition

The multiset of poles of ζ_A contained in W, is denoted by

$$\mathcal{P}(\zeta_A) = \mathcal{P}(\zeta_A, W).$$

The poles are called complex dimensions of A (depend on W). Complex dimensions contained on the critical line are called principal complex dimensions, and the corresponding multiset is denoted by

$$\dim_{PC} A := \{ s \in \mathcal{P}(\zeta_A) : \operatorname{Re} s = D(\zeta_A) \}.$$

It does not depend on W.

Residue of distance zeta functions at $D := \dim_{P} A (D < N)$					
Residues					
Outline	Definitions 000	Lapidus zeta functions ○○○○○●○○○○	Relative Lapidus zeta functions	References	

We assume that ζ_A can be meromorphically extended to a neighbourhood of D := dim_B A, and D < N.

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References
Residues				

• We assume that ζ_A can be meromorphically extended to a neighbourhood of $D := \dim_B A$, and D < N.

Residue of distance zeta functions at $D := \dim_B A$ (D < N)

Theorem (LRŽ)

If A is Minkowski nonegenerate, then s = D is a simple pole, and

 $(N-D)\mathcal{M}^{D}_{*}(A) \leq \operatorname{res}(\zeta_{A}, D) \leq (N-D)\mathcal{M}^{*D}(A).$

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
	000	0000000000	0000000000	
Residues				

Residue of distance zeta functions at $D := \dim_B A$ (D < N)

We assume that ζ_A can be meromorphically extended to a neighbourhood of D := dim_B A, and D < N.

Theorem (LRŽ)

If A is Minkowski nonegenerate, then s = D is a simple pole, and

$$(N-D)\mathcal{M}^D_*(A) \leq \operatorname{res}(\zeta_A,D) \leq (N-D)\mathcal{M}^{*D}(A)$$

• For the Cantor ternary set we have strict inequalities.

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
	000	0000000000	0000000000	
Residues				

Residue of distance zeta functions at $D := \dim_B A$ (D < N)

We assume that ζ_A can be meromorphically extended to a neighbourhood of D := dim_B A, and D < N.

Theorem (LRŽ)

If A is Minkowski nonegenerate, then s = D is a simple pole, and

$$(N-D)\mathcal{M}^D_*(A) \leq \operatorname{res}(\zeta_A,D) \leq (N-D)\mathcal{M}^{*D}(A)$$

• For the Cantor ternary set we have strict inequalities.

Corollary (LRŽ)

If A is Minkowski measurable, i.e., $\mathcal{M}^{D}(A) \in (0,\infty)$, then

$$\operatorname{res}(\zeta_A, D) = (N - D)\mathcal{M}^D(A).$$

Outline	Definitions 000	Lapidus zeta functions ○○○○○○●○○○	Relative Lapidus zeta functions	References	
Residues					
Residue of tube zeta functions at $D := \dim_B A$ ($D \le N$)					

• Tube zeta function associated with the *tube fct*. $t \mapsto |A_t|$:

$$ilde{\zeta}_{\mathcal{A}}(s) = \int_0^{\delta} t^{s-N-1} |A_t| \, \mathrm{d}t.$$

Residue of tube zeta functions at $D := \dim_B A$ ($D \le N$)

• Tube zeta function associated with the *tube fct*. $t \mapsto |A_t|$:

$$\tilde{\zeta}_A(s) = \int_0^{\delta} t^{s-N-1} |A_t| \, \mathrm{d}t.$$

Corollary (LRŽ)

If $D = \dim_B A$ exists, and $\tilde{\zeta}_A$ has a merom. ext. near s = D, then $\mathcal{M}^D_*(A) < \operatorname{res}(\tilde{\zeta}_A, D) < \mathcal{M}^{*D}(A).$

In particular, if A is Minkowski measurable, then

$$\operatorname{res}(\tilde{\zeta}_A, D) = \mathcal{M}^D(A).$$

Residue of tube zeta functions at $D := \dim_B A$ ($D \le N$)

• Tube zeta function associated with the *tube fct*. $t \mapsto |A_t|$:

$$\tilde{\zeta}_A(s) = \int_0^{\delta} t^{s-N-1} |A_t| \, \mathrm{d}t.$$

Corollary (LRŽ)

If $D = \dim_B A$ exists, and $\tilde{\zeta}_A$ has a merom. ext. near s = D, then $\mathcal{M}^D_*(A) \leq \operatorname{res}(\tilde{\zeta}_A, D) \leq \mathcal{M}^{*D}(A).$

In particular, if A is Minkowski measurable, then

$$\operatorname{res}(\tilde{\zeta}_A, D) = \mathcal{M}^D(A).$$

• The proof rests on the following identity on $\{\operatorname{Re} s > \overline{D}\}$:

$$\zeta_A(s) = \delta^{s-N} |A_\delta| + (N-s) \tilde{\zeta}_A(s)$$

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	Re
		00000000000		

Meromorphic extensions of zeta functions

Minkowski measurable sets

Theorem (LRŽ)

Assume $A \subset \mathbb{R}^N$ and there exist $\alpha > 0$, $\mathcal{M} \in (0, \infty)$ and $D \ge 0$ s.t.

$$|A_t| = t^{N-D} \left(\mathcal{M} + O(t^{lpha})
ight) \quad \text{as } t o 0.$$

Then A is Minkowski measurable, dim_B A = D, $\mathcal{M}^{D}(A) = \mathcal{M}$, $D(\tilde{\zeta}_{A}) = D$, \exists ! meromorphic extension of $\tilde{\zeta}_{A}(s)$ (at least) to

 $\{\operatorname{\mathsf{Re}} s > D - \alpha\}.$

The pole s = D is unique, simple, $\operatorname{res}(\tilde{\zeta}_A, D) = \mathcal{M}$.

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	Re
		00000000000		

Meromorphic extensions of zeta functions

Minkowski measurable sets

Theorem (LRŽ)

Assume $A \subset \mathbb{R}^N$ and there exist $\alpha > 0$, $\mathcal{M} \in (0, \infty)$ and $D \ge 0$ s.t.

$$|A_t| = t^{N-D} \left(\mathcal{M} + O(t^{lpha})
ight) \quad \text{as } t o 0.$$

Then A is Minkowski measurable, dim_B A = D, $\mathcal{M}^{D}(A) = \mathcal{M}$, $D(\tilde{\zeta}_{A}) = D$, \exists ! meromorphic extension of $\tilde{\zeta}_{A}(s)$ (at least) to

 $\{\operatorname{\mathsf{Re}} s > D - \alpha\}.$

The pole s = D is unique, simple, $\operatorname{res}(\tilde{\zeta}_A, D) = \mathcal{M}$.

Outline Definitions Lapidus zeta functions

Relative Lapidus zeta functions

References

Meromorphic extensions of zeta functions

Minkowski nonmeasurable sets

Theorem (LRŽ)

Assume $A \subset \mathbb{R}^N$ and there exist $D \ge 0$, a nonconstant periodic fct. $G : \mathbb{R} \to \mathbb{R}$ with the minimal period T > 0, and $\alpha > 0$, s.t.

$$|A_t| = t^{N-D} \left(G(\log t^{-1}) + O(t^{lpha})
ight) \quad \text{as } t o 0.$$

Then dim_B A = D, $\mathcal{M}^{D}_{*}(A) = \min G$, $\mathcal{M}^{*D}(A) = \max G$, $D(\tilde{\zeta}_{A}) = D$, and $\exists !$ meromorphic extension (at least) to {Re $s > D - \alpha$ }. The set of all of poles is

$$\mathcal{P}(ilde{\zeta}_{\mathcal{A}}) = \left\{ s_k = D + rac{2\pi}{T} \mathrm{i} k : \hat{G_0} \Big(rac{k}{T}\Big)
eq 0, \,\, k \in \mathbb{Z}
ight\}$$

they are all simple. Here $\hat{G}_0(s) := \int_0^T e^{-2\pi i s \cdot t} G(t) dt$.

Lapidus zeta functions

Relative Lapidus zeta functions

References

Meromorphic extensions of zeta functions

Definitions

Minkowski nonmeasurable measurable sets

Theorem (... continued)

For all $s_k \in \mathcal{P}(\tilde{\zeta}_A)$, $\operatorname{res}(\tilde{\zeta}_A, s_k) = \frac{1}{T}\hat{G}_0(\frac{k}{T})$. We have

$$|\operatorname{res}(ilde{\zeta}_{\mathcal{A}},s_k)| \leq rac{1}{T}\int_0^T G(au)\,d au, \quad \lim_{k o\infty}\operatorname{res}(ilde{\zeta}_{\mathcal{A}},s_k)=0$$

We have $D \in \mathcal{P}(ilde{\zeta}_{\mathcal{A}})$,

$$\operatorname{res}(ilde{\zeta}_{\mathcal{A}},D) = rac{1}{T}\int_{0}^{T}G(au)\,d au$$
 $\mathcal{M}^{D}_{*}(\mathcal{A}) < \operatorname{res}(ilde{\zeta}_{\mathcal{A}},D) < \mathcal{M}^{*D}(\mathcal{A})$

Examples: ternary Cantor set $C^{(2,1/3)}$, generalized Cantor sets $C^{(m,a)}$ (ma < 1)

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References		
Relative fractal drums (RFDs)						
Relative fractal drums						

Relative fractal drum (RFD) is a pair (A, Ω) of nonempty subsets A and Ω (open) of ℝ^N, s.t. |Ω| < ∞ and ∃δ > 0 s.t. Ω ⊂ A_δ. (A and Ω may be unbdd.)

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References		
Relative fractal drums (RFDs)						
Relative fractal drums						

- Relative fractal drum (RFD) is a pair (A, Ω) of nonempty subsets A and Ω (open) of \mathbb{R}^N , s.t. $|\Omega| < \infty$ and $\exists \delta > 0$ s.t. $\Omega \subset A_{\delta}$. (A and Ω may be unbdd.)
- Example: $(\partial \Omega, \Omega)$, where Ω is bdd.

Relativ	Relative fractal drums						
Relative frac	ctal drums (RFDs)						
Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References			

- Relative fractal drum (RFD) is a pair (A, Ω) of nonempty subsets A and Ω (open) of \mathbb{R}^N , s.t. $|\Omega| < \infty$ and $\exists \delta > 0$ s.t. $\Omega \subset A_{\delta}$. (A and Ω may be unbdd.)
- Example: $(\partial \Omega, \Omega)$, where Ω is bdd.
- upper *s*-dim. Minkowski content of A relative to Ω , for $s \in \mathbb{R}$:

$$\mathcal{M}^{*s}(A,\Omega) := \overline{\lim}_{t \to 0} \frac{|A_t \cap \Omega|}{t^{N-s}}$$

Relative fractal drums						
Relative frac	ctal drums (RFDs)					
Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References		

- Relative fractal drum (RFD) is a pair (A, Ω) of nonempty subsets A and Ω (open) of ℝ^N, s.t. |Ω| < ∞ and ∃δ > 0 s.t. Ω ⊂ A_δ. (A and Ω may be unbdd.)
- Example: $(\partial \Omega, \Omega)$, where Ω is bdd.
- upper *s*-dim. Minkowski content of A relative to Ω , for $s \in \mathbb{R}$:

$$\mathcal{M}^{*s}(A,\Omega) := \overline{\lim}_{t \to 0} rac{|A_t \cap \Omega|}{t^{N-s}}$$

• relative box dimension: $\overline{\dim}_B(A, \Omega) := \inf\{s \in \mathbb{R} : \mathcal{M}^{*s}(A, \Omega) = 0\}$

Relativ	e fractal dr	ums		
Relative frac	tal drums (RFDs)			
Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References

- Relative fractal drum (RFD) is a pair (A, Ω) of nonempty subsets A and Ω (open) of ℝ^N, s.t. |Ω| < ∞ and ∃δ > 0 s.t. Ω ⊂ A_δ. (A and Ω may be unbdd.)
- Example: $(\partial \Omega, \Omega)$, where Ω is bdd.
- upper *s*-dim. Minkowski content of A relative to Ω , for $s \in \mathbb{R}$:

$$\mathcal{M}^{*s}(A,\Omega) := \overline{\lim}_{t \to 0} rac{|A_t \cap \Omega|}{t^{N-s}}$$

- relative box dimension: $\overline{\dim}_B(A,\Omega) := \inf\{s \in \mathbb{R} : \mathcal{M}^{*s}(A,\Omega) = 0\}$
- −∞ ≤ dim_B(A, Ω) ≤ dim_B(A, Ω) ≤ N (here, −∞ can be achieved)

Polativo fract	000	0000000000	•000000000	
Relativ	e fractal dr	ums		

- Relative fractal drum (RFD) is a pair (A, Ω) of nonempty subsets A and Ω (open) of \mathbb{R}^N , s.t. $|\Omega| < \infty$ and $\exists \delta > 0$ s.t. $\Omega \subset A_{\delta}$. (A and Ω may be unbdd.)
- Example: $(\partial \Omega, \Omega)$, where Ω is bdd.
- upper *s*-dim. Minkowski content of A relative to Ω , for $s \in \mathbb{R}$:

$$\mathcal{M}^{*s}(A,\Omega) := \overline{\lim}_{t \to 0} rac{|A_t \cap \Omega|}{t^{N-s}}$$

- relative box dimension: $\overline{\dim}_B(A, \Omega) := \inf\{s \in \mathbb{R} : \mathcal{M}^{*s}(A, \Omega) = 0\}$
- -∞ ≤ dim_B(A, Ω) ≤ dim_B(A, Ω) ≤ N (here, -∞ can be achieved)
- each bdd set A can be identified with an RFD (A, A_{δ}), for any $\delta > 0$

Outline	Definitions 000	Lapidus zeta functions 00000000000	Relative Lapidus zeta functions	References
Relative fracta	I drums (RFDs)			
Relative	e zeta funct	ions		

• if (A, Ω) satisfies the cone property at a pt. $a \in \overline{A} \cap \overline{\Omega}$ w.r. to Ω , then $\overline{\dim}_B(A, \Omega) \ge 0$

Relativ	e zeta func	tions		
Relative fract	al drums (RFDs)			
Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References

• if (A, Ω) satisfies the cone property at a pt. $a \in \overline{A} \cap \overline{\Omega}$ w.r. to Ω , then $\overline{\dim}_B(A, \Omega) \ge 0$

• flatness condition on an RFD: $\overline{\dim}_B(A, \Omega) < 0$

Relativ	Relative zeta functions					
Relative frac	tal drums (RFDs)					
			000000000			
Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References		

- if (A, Ω) satisfies the cone property at a pt. $a \in \overline{A} \cap \overline{\Omega}$ w.r. to Ω , then $\overline{\dim}_B(A, \Omega) \ge 0$
- flatness condition on an RFD: $\overline{\dim}_B(A, \Omega) < 0$
- let (A, Ω) be a fixed RFD

Polativ	Polativo zota functions					
Relative frac	tal drums (RFDs)					
Outline	Definitions 000	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions	References		

- if (A, Ω) satisfies the cone property at a pt. $a \in \overline{A} \cap \overline{\Omega}$ w.r. to Ω , then $\overline{\dim}_B(A, \Omega) \ge 0$
- flatness condition on an RFD: $\overline{\dim}_B(A, \Omega) < 0$
- let (A, Ω) be a fixed RFD

Definition (Relative distance zeta function, LRŽ)

Distance zeta function of the RFD (A, Ω) (or relative distance z.f.) is defined by

$$\zeta_{A,\Omega}(s) := \int_{\Omega} d(x,A)^{s-N} \,\mathrm{d}x$$

for all $s \in \mathbb{C}$ with Res large enough.

Polativ	Polative zeta functions					
Relative frac	tal drums (RFDs)					
Outline	Definitions 000	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions	References		

- if (A, Ω) satisfies the cone property at a pt. $a \in \overline{A} \cap \overline{\Omega}$ w.r. to Ω , then $\overline{\dim}_B(A, \Omega) \ge 0$
- flatness condition on an RFD: $\overline{\dim}_B(A, \Omega) < 0$
- let (A, Ω) be a fixed RFD

Definition (Relative distance zeta function, LRŽ)

Distance zeta function of the RFD (A, Ω) (or relative distance z.f.) is defined by

$$\zeta_{A,\Omega}(s) := \int_{\Omega} d(x,A)^{s-N} \,\mathrm{d}x$$

for all $s \in \mathbb{C}$ with Res large enough.

• If A is bdd, then $\zeta_A = \zeta_{A,A_{\delta}}$

Lapidus zeta functions

Relative Lapidus zeta functions

References

Analyticity and scaling property

Analyticity of relative zeta functions

Theorem (LRŽ)

Definitions

• the abscissa of (absolute) convergence is $D(\zeta_{A,\Omega}) = \overline{\dim}_B(A, \Omega)$; in particular, $\zeta_{A,\Omega}$ is holomorphic on $\{\operatorname{Re} s > \overline{\dim}_B(A, \Omega)\};$

Lapidus zeta functions

Relative Lapidus zeta functions

References

Analyticity and scaling property

Analyticity of relative zeta functions

Theorem (LRŽ)

Definitions

- the abscissa of (absolute) convergence is $D(\zeta_{A,\Omega}) = \overline{\dim}_B(A, \Omega)$; in particular, $\zeta_{A,\Omega}$ is holomorphic on $\{\operatorname{Re} s > \overline{\dim}_B(A, \Omega)\};$
- assuming that $D = \dim_B(A, \Omega)$ exists and $\mathcal{M}^D_*(A, \Omega) > 0$, if $s \in \mathbb{R}$ and $s \to D^+$, then $\zeta_{A,\Omega}(s) \to \infty$;

Lapidus zeta functions

Relative Lapidus zeta functions

References

Analyticity and scaling property

Analyticity of relative zeta functions

Theorem (LRŽ)

Definitions

- the abscissa of (absolute) convergence is $D(\zeta_{A,\Omega}) = \overline{\dim}_B(A, \Omega)$; in particular, $\zeta_{A,\Omega}$ is holomorphic on $\{\operatorname{Re} s > \overline{\dim}_B(A, \Omega)\};$
- assuming that $D = \dim_B(A, \Omega)$ exists and $\mathcal{M}^D_*(A, \Omega) > 0$, if $s \in \mathbb{R}$ and $s \to D^+$, then $\zeta_{A,\Omega}(s) \to \infty$;

• (scaling property) for any $\lambda > 0$,

$$\zeta_{\lambda A,\lambda \Omega}(s) = \lambda^s \zeta_{A,\Omega}(s)$$

for all $s \in \mathbb{C}$ with $\operatorname{Re} s > \overline{\dim}_B(A, \Omega)$.

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta function
			0000000000

References

ns

Meromorphic extensions

Meromorphic extensions of relative zeta functions

Theorem (LRŽ; gauge functions; Mink. meas. case)

Let (A, Ω) be a relative fractal drum in \mathbb{R}^N s.t.

$$|A_t \cap \Omega| = t^{N-D}(\log t^{-1})^{m-1}(\mathcal{M} + O(t^{lpha})) \quad \text{as } t o 0,$$

where $m \in \mathbb{N}$, $D \in (-\infty, N]$. Then $D(\tilde{\zeta}_{A,\Omega}) = D$, and $\tilde{\zeta}_{A,\Omega}$ has a unique meromorphic extension to $\{\operatorname{Re} s > D - \alpha\}$. s = D is the unique pole, of order m. If m = 1, then $\operatorname{res}(\tilde{\zeta}_{A,\Omega}, D) = \mathcal{M}$.

Outline	Definitions 000	Lapidus zeta functions 00000000000	Relative Lapidus zeta functions	References
Meromorphic extensions				

Converse of the previous theorem

Theorem (LRŽ; gauge functions; Mink. meas. case; converse)

Let (A, Ω) be a relative fractal drum in \mathbb{R}^N s.t. $\tilde{\zeta}_{A,\Omega}$ is languid, $m \in \mathbb{N}$, $D \in (-\infty, N]$. Let $D(\tilde{\zeta}_{A,\Omega}) = D$, and $\tilde{\zeta}_{A,\Omega}$ has a meromorphic extension to $\{\operatorname{Re} s > D - \alpha\}$, and s = D is the unique pole, of order m. Then

$$|A_t \cap \Omega| = t^{N-D} (\log t^{-1})^{m-1} (\mathcal{M} + O(t^{\alpha})) \quad \text{as } t \to 0.$$
 (*)

If m = 1, then $res(\tilde{\zeta}_{A,\Omega}, D) = \mathcal{M}$.

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
Meromorphic ext	ensions			

Converse of the previous theorem

Theorem (LRŽ; gauge functions; Mink. meas. case; converse)

Let (A, Ω) be a relative fractal drum in \mathbb{R}^N s.t. $\tilde{\zeta}_{A,\Omega}$ is languid, $m \in \mathbb{N}$, $D \in (-\infty, N]$. Let $D(\tilde{\zeta}_{A,\Omega}) = D$, and $\tilde{\zeta}_{A,\Omega}$ has a meromorphic extension to $\{\operatorname{Re} s > D - \alpha\}$, and s = D is the unique pole, of order m. Then

$$|A_t \cap \Omega| = t^{N-D}(\log t^{-1})^{m-1}(\mathcal{M} + O(t^{\alpha})) \quad \text{as } t \to 0.$$
 (*)

If
$$m = 1$$
, then $\operatorname{res}(\tilde{\zeta}_{A,\Omega}, D) = \mathcal{M}$.

Furthermore, the supremum of all α satisfying (*) is

$$\sup_{(*)} \alpha = D - \sup \{ \operatorname{Re} s : s \in \mathcal{P}(\tilde{\zeta}_{A,\Omega}) \setminus \{D\} \}.$$

Lapidus zeta functions

Relative Lapidus zeta functions

References

Meromorphic extensions

Definitions

Meromorphic extensions of relative zeta functions

Theorem (LRŽ; gauge functions; Mink. nonmeas. case)

Let (A, Ω) be a relative fractal drum in \mathbb{R}^N , s.t. $\exists D \ge 0$, a nonconstant periodic fct. $G : \mathbb{R} \to \mathbb{R}$ with the min. period T > 0, $m \in \mathbb{N}$, $D \in (-\infty, N]$, $\alpha > 0$, satisfying

$$|A_t \cap \Omega| = t^{N-D} (\log t^{-1})^{m-1} \left(G(\log t^{-1}) + O(t^{lpha})
ight) \quad ext{ as } t o 0$$

Then dim_{*B*}(*A*, Ω) = *D*, $D(\tilde{\zeta}_{A,\Omega}) = D$, and $\tilde{\zeta}_{A,\Omega}$ has a unique meromorphic extension (at least) to {Re $s > D - \alpha$ }. All of its poles are of order *m*, and

$$\mathcal{P}(ilde{\zeta}_{\mathcal{A},\Omega}) = \left\{ s_k = D + rac{2\pi}{T} \mathrm{i} k \in \mathbb{C} : \hat{G}_0(rac{k}{T})
eq 0, \ k \in \mathbb{Z}
ight\}$$

Also, $s_0 = D \in \mathcal{P}(\tilde{\zeta}_{A,\Omega}).$

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions
	000	0000000000	0000000000

References

Meromorphic extensions

Meromorphic extensions of relative zeta functions (continued)

Theorem (LRŽ; gauge functions; Mink. meas. case; cntnd.)

For $s_0 = D$ (i.e., k = 0) we have

$$c_{-m}^{(0)} = rac{(m-1)!}{T} \int_0^T G(au) \, d au$$

Definining the h-Minkowski content by $\mathcal{M}^{*r}(A, \Omega, h) := \overline{\lim}_{t \to 0^+} \frac{|A_t \cap \Omega|}{h(t)t^{N-r}}$, where $h(t) := (\log t^{-1})^{m-1}$ is the gauge fct., and similarly $\mathcal{M}^r_*(A, \Omega, h)$, we have

$$(m-1)!\mathcal{M}^{D}_{*}(A,\Omega,h) < c^{(0)}_{-m} < (m-1)!\mathcal{M}^{*D}(A,\Omega,h).$$

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions
	000	0000000000	000000000

References

Meromorphic extensions

Meromorphic extensions of relative zeta functions (continued)

Theorem (LRŽ; gauge functions; Mink. meas. case; cntnd.)

For
$$s_0 = D$$
 (i.e., $k = 0$) we have

$$c_{-m}^{(0)} = rac{(m-1)!}{T} \int_0^T G(\tau) \ d au$$

Definining the h-Minkowski content by $\mathcal{M}^{*r}(A, \Omega, h) := \overline{\lim}_{t \to 0^+} \frac{|A_t \cap \Omega|}{h(t)t^{N-r}}$, where $h(t) := (\log t^{-1})^{m-1}$ is the gauge fct., and similarly $\mathcal{M}^r_*(A, \Omega, h)$, we have

$$(m-1)!\mathcal{M}^{D}_{*}(A,\Omega,h) < c^{(0)}_{-m} < (m-1)!\mathcal{M}^{*D}(A,\Omega,h).$$

For m = 1 we have $\operatorname{res}(\zeta_{A,\Omega}, D) = \frac{1}{T} \int_0^T G(\tau) d\tau$ and

 $\mathcal{M}^{D}_{*}(A,\Omega) < \operatorname{res}(\zeta_{A,\Omega},D) < \mathcal{M}^{*D}(A,\Omega).$

Generating complex dimensions of any multiplicity

Tensor products of fractal strings

A bounded fractal string \mathcal{L} is any nondecreasing sequence $(\ell_j)_{j\geq 1}$ of positive numbers, such that $\sum_{j=1}^{\infty} \ell_j < \infty$. It can be identified with the set

$$A=A_{\mathcal{L}}:=\{a_k=\sum_{j\geq k}\ell_j:k\geq 1\}.$$

Generating complex dimensions of any multiplicity

Tensor products of fractal strings

A bounded fractal string \mathcal{L} is any nondecreasing sequence $(\ell_j)_{j\geq 1}$ of positive numbers, such that $\sum_{j=1}^{\infty} \ell_j < \infty$. It can be identified with the set

$$A = A_{\mathcal{L}} := \{a_k = \sum_{j \ge k} \ell_j : k \ge 1\}.$$

Let $\mathcal{L} = (\ell_j)_{j \geq 1}$ and $\mathcal{M} = (m_k)_{k \geq 1}$ be two bdd fractal strings.

Their tensor product is the multiset

$$\mathcal{L}\otimes\mathcal{M}:=\{\ell_j m_k: j\geq 1, \ k\geq 1\}$$

 Outline
 Definitions
 Lapidus zeta functions
 Relative Lapidus zeta functions
 References

 000
 0000000000
 0000000000
 000000000
 0000000000
 References
 References

Generating complex dimensions of any multiplicity

Tensor products of fractal strings

A bounded fractal string \mathcal{L} is any nondecreasing sequence $(\ell_j)_{j\geq 1}$ of positive numbers, such that $\sum_{j=1}^{\infty} \ell_j < \infty$. It can be identified with the set

$$A = A_{\mathcal{L}} := \{a_k = \sum_{j \ge k} \ell_j : k \ge 1\}.$$

Let $\mathcal{L} = (\ell_j)_{j \geq 1}$ and $\mathcal{M} = (m_k)_{k \geq 1}$ be two bdd fractal strings.

Their tensor product is the multiset

$$\mathcal{L}\otimes\mathcal{M}:=\{\ell_jm_k:j\geq 1,\ k\geq 1\}.$$

Using iterated tensor products of fractal strings, it is possible to construct a subset $A \subset [0, 1]$ with arbitrarily high multiplicities of complex dimensions, and even with essential singularities of ζ_A .

Outline	Definitions 000	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions	References
Generating complex dimensions of any multiplicity				
m-Cantor string				

It is easy to see that

$$\zeta_{\mathcal{L}\otimes\mathcal{M}}(s) = \zeta_{\mathcal{L}}(s) \cdot \zeta_{\mathcal{M}}(s)$$

for all $s \in \mathbb{C}$ with Ress sufficiently large.
Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References		
Generating complex dimensions of any multiplicity						
<i>m</i> -Cant	or string					

It is easy to see that

$$\zeta_{\mathcal{L}\otimes\mathcal{M}}(s) = \zeta_{\mathcal{L}}(s) \cdot \zeta_{\mathcal{M}}(s)$$

for all $s \in \mathbb{C}$ with Ress sufficiently large.

Let \mathcal{L}_{CS} be the Cantor string, $m \ge 2$, and define its *m*-fold tensor product (or *m*-Cantor string) by

$$\mathcal{L}_{CS}^{m\otimes} := \mathcal{L}_{CS} \otimes \cdots \otimes \mathcal{L}_{CS}.$$

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References
Generating co	mplex dimensions of	any multiplicity		
<i>m</i> -Cant	or string			

It is easy to see that

$$\zeta_{\mathcal{L}\otimes\mathcal{M}}(s) = \zeta_{\mathcal{L}}(s) \cdot \zeta_{\mathcal{M}}(s)$$

for all $s \in \mathbb{C}$ with Res sufficiently large. Let \mathcal{L}_{CS} be the Cantor string, $m \ge 2$, and define its *m*-fold tensor product (or *m*-Cantor string) by

$$\mathcal{L}_{CS}^{m\otimes} := \mathcal{L}_{CS} \otimes \cdots \otimes \mathcal{L}_{CS}.$$

All of its complex dimensions (i.e., poles of $\zeta_{\mathcal{L}^{m\otimes}_{CS}}$),

$$\dim_{PC} \mathcal{L}_{CS}^{m\otimes} = \log_3 2 + \frac{2\pi}{\log 3} \mathrm{i}\mathbb{Z},$$

are of multiplicity m, since

$$\zeta_{\mathcal{L}_{CS}^{m\otimes}}(s) = \left(\zeta_{\mathcal{L}_{CS}}(s)\right)^m = (1 - 2 \cdot 3^{-s})^{-m}$$

Outline	Definitions 000	Lapidus zeta functions 00000000000	Relative Lapidus zeta functions	References
Generating co	omplex dimensions of	any multiplicity		
∞ -Can	tor string			

Taking a disjoint union of scaled copies of $\mathcal{L}_{CS}^{m\otimes}$,

$$\mathcal{L}_{CS}^{\infty} := \bigsqcup_{m=2}^{\infty} \frac{3^{-m}}{m!} \mathcal{L}_{CS}^{m\otimes},$$

 $\log_3 2 + \frac{2\pi}{\log_3} i\mathbb{Z}$ becomes the set of essential singularities of $\zeta_{\mathcal{L}^{\infty}_{CS}}$.

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References
Generating co	mplex dimensions of	any multiplicity		
∞ -Can	tor string			

Taking a disjoint union of scaled copies of $\mathcal{L}_{CS}^{m\otimes}$,

$$\mathcal{L}_{CS}^{\infty} := \bigsqcup_{m=2}^{\infty} \frac{3^{-m}}{m!} \mathcal{L}_{CS}^{m\otimes},$$

$$\begin{split} \log_3 2 + \frac{2\pi}{\log 3} i\mathbb{Z} \text{ becomes the set of } \underline{\text{essential singularities}} \text{ of } \zeta_{\mathcal{L}^\infty_{CS}}. \end{split}$$
 The proof is based on

$$egin{aligned} \zeta_{\mathcal{L}^\infty_{CS}}(s) &= \sum_{m=2}^\infty rac{3^{-ms}}{(m!)^s} ig(\zeta_{\mathcal{L}_{CS}}(s)ig)^m \ &= \sum_{m=2}^\infty rac{3^{-ms}}{(m!)^s} \cdot rac{1}{(1-2\cdot 3^{-s})^m}, \end{aligned}$$

which is holomrphic on $\{\operatorname{Re} s > 0\} \setminus (\log_3 2 + \frac{2\pi}{\log 3}i\mathbb{Z}).$

Quasipe	riodic sets and RFDs			
Quasipe	ooo eriodic sets and RFDs	0000000000	000000000	
Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References

Definition

 $A \subset \mathbb{R}^N$ is said to be 2-quasiperiodic set if $|A_t| = t^{N-D}(G(\log 1/t) + O(t^{\alpha}))$ as $t \to 0$, for some $D \ge 0$, $\alpha > 0$, and $G(\tau)$ is a 2-quasiperiodic function, that is, $G(\tau) = G_1(\tau) + G_2(\tau)$ and G_j are T_j -periodic, where T_1/T_2 is irrational.

n-Quas	sineriodic se	ets		
Quasiperiod	ic sets and RFDs			
Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References

Definition

 $A \subset \mathbb{R}^N$ is said to be 2-quasiperiodic set if $|A_t| = t^{N-D}(G(\log 1/t) + O(t^{\alpha}))$ as $t \to 0$, for some $D \ge 0$, $\alpha > 0$, and $G(\tau)$ is a 2-quasiperiodic function, that is, $G(\tau) = G_1(\tau) + G_2(\tau)$ and G_j are T_j -periodic, where T_1/T_2 is irrational.

Example. Using suitably chosen generalized Cantor sets $C^{(m_1,a_1)}$ and $C^{(m_2,a_2)}$, it is possible to achieve that for their (disjoint) union A, T_1/T_2 is even transcendental. We use Gel'fond–Schneider's theorem from number theory, 1934. We say that A is transcendentally 2-quasiperiodic set.

Outline	Definitions 000	Lapidus zeta functions 0000000000	Relative Lapidus zeta functions ○○○○○○○○●	References
Quasiperiodi	c sets and RFDs			
	inoriodic co	to		

Definition

 $A \subset \mathbb{R}^N$ is said to be 2-quasiperiodic set if $|A_t| = t^{N-D}(G(\log 1/t) + O(t^{\alpha}))$ as $t \to 0$, for some $D \ge 0$, $\alpha > 0$, and $G(\tau)$ is a 2-quasiperiodic function, that is, $G(\tau) = G_1(\tau) + G_2(\tau)$ and G_j are T_j -periodic, where T_1/T_2 is irrational.

Example. Using suitably chosen generalized Cantor sets $C^{(m_1,a_1)}$ and $C^{(m_2,a_2)}$, it is possible to achieve that for their (disjoint) union A, T_1/T_2 is even transcendental. We use Gel'fond–Schneider's theorem from number theory, 1934. We say that A is transcendentally 2-quasiperiodic set. It is possible to construct transcendentally *n*-quasiperiodic sets for any $n \ge 2$, and even for $n = \infty$. We use Baker's theorem from number theory.

Outline	Definitions 000	Lapidus zeta functions	Relative Lapidus zeta functions	References

Fractal zeta functions

- M. L. Lapidus, G. Radunović, D. Žubrinić, *Fractal Zeta Functions and Fractal Drums / Higher-Dimensional Theory of Complex Dimensions*, Springer Verlag, to appear in 2016, 620 pp.
- M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions of relative fractal drums, J. Fixed Point Theory and Appl. No. 2, 15 (2014), 321–378. Festschrift issue in honor of Haim Brezis' 70th birthday. (DOI: 10.1007/s11784-014-0207-y.) (Also: e-print, arXiv:1407.8094v3 [math-ph], 2014.)

Outline	Definitions	Lapidus zeta functions	Relative Lapidus zeta functions	References
	000	0000000000	0000000000	

Fractal zeta functions

- M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions: A general higher-dimensional theory, survey article, in: *Geometry and Stochastics V* (C. Bandt, K. Falconer and M. Zähle, eds.), Proc. Fifth Internat. Conf. (Tabarz, Germany, March 2014), *Progress in Probability*, Birkhäuser, Basel, Boston and Berlin, in press, 2015. (Based on a plenary lecture given by the first author at that conference.) (Also: e-print, arXiv:1502.00878v2 [math.CV], 2015.)
- D. Žubrinić, Analysis of Minkowski contents of fractal sets and applications, Real Anal. Exchange, Vol 31(2), 2005/2006, 315–354.
- Centre for Nonlinear Dynamics, Zagreb, www.math.pmf.unizg.hr/cnd/