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Overview of the presentation - Main results

We analyze fractal properties of oscillatory solutions of

t2x′′(t)+ t(2−µ)x′(t)+(t2−ν
2)x(t) = 0, (1)

having parameters µ ∈ (0,2) and ν ∈ R (it is Bessel equation for µ = 1).
We use the concept of fractal dimension, examining a phase portrait of solutions.
We use Minkowski–Bouligand dimension, known as box-counting dimension.
Phase portraits of solutions of (1) are spirals in the plane near the origin.
We examine fractal properties of chirp-like functions related to solutions of (1),

x1(t) = p(t)sin t, x2(t) = p(t)cos t,

where p(t) is “similar” to t−α , α ∈ (0,1).
We examine fractal properties of solutions of 3D systems of ODEs having 3D
spiral trajectories related to chirp-like solutions.
We examine fractal properties of generalized Euler spirals defined parametrically
by

Γq · · ·
{

x(t) =
∫ t

0 cos(q(s))ds
y(t) =

∫ t
0 sin(q(s))ds,

where t ≥ 0, q(t) is “similar” to tp.
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Minkowski content

Definition (ε-neighbourhood)

Let A⊂ Rn, A is bounded. The ε-neighbourhood of set A is

Aε := {y ∈ Rn : d(y,A)< ε}.

Definition (Lower an upper s-dimensional Minkowski content)

Lower s-dimensional Minkowski content of bounded set A⊂ Rn, s≥ 0 is

M s
∗ (A) := liminf

ε→0

|Aε |
εn−s .

Upper s-dimensional Minkowski content M ∗s(A), s≥ 0 is

M ∗s(A) := limsup
ε→0

|Aε |
εn−s .

If M ∗s(A) = M s
∗ (A), the common value is called the s-dimensional Minkowski

content of A, and is denoted by M s(A).
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Box dimension 1/2

Definition (Lower and upper box dimension)

Lower box dimension of bounded set A⊂ R is

dimBA := inf{s≥ 0 : M s
∗ (A) = 0}= sup{s≥ 0 : M s

∗ (A) = ∞}.

Upper box dimension of A is

dimBA := inf{s≥ 0 : M ∗s(A) = 0}= sup{s≥ 0 : M ∗s(A) = ∞}.

Generally dimBA≤ dimBA.

Definition (Box dimension)

If dimBA = dimBA we define the box dimension of A to be

dimB A := dimBA = dimBA.
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Box dimension 2/2

Definition (Minkowski nondegenerate or degenerate set)

If 0 < M d
∗ (A) ≤M ∗d(A) < ∞ for some

d, then we say that A is Minkowski
nondegenerate. In this case obviously
d = dimB A.

In the case when lower or upper d-
dimensional Minkowski contents of
A are 0 or ∞, where d = dimB A, or
dimBA < dimBA, we say that A is Min-
kowski degenerate.

Definition (Minkowski measurable set)

If there exists M d(A) for some d and M d(A) ∈ (0,∞), we say that A is Minkowski
measurable.
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Box dimension - examples

Examples of some sets and their box dimensions

Let n = 2, ambient space is R2.
A is a single point, dimB A = 0
A is a line segment, dimB A = 1
A is a disk, dimB A = 2
A is a smooth rectifiable curve, dimB A = 1
A is a non-rectifiable power spiral, 0 < α < 1, given in polar coordinates by

r = ϕ
−α , ϕ ∈ [ϕ0,∞), dimB A =

2
1+α

∈ (1,2), (C. Tricot, 1993)

A is a graph of a non-rectifiable (α,β )-chirp near the origin, 0 < α < β , given by

f (τ) = τ
α cosτ

−β
τ ∈ (0,τ0], dimB A = 2− α +1

β +1
∈ (1,2),

(C. Tricot, Curves and Fractal Dimension, 1993)
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Oscillatory function near infinity

Definition (Oscillatory function near t = ∞)

Let f : [t0,∞)→ R, t0 > 0, be a continuous function. f (t) is an oscillatory function
near t = ∞ if there exists sequence tk→ ∞ such that f (tk) = 0, and restrictions
f |(tk,tk+1) intermittently change sign for k ∈ N.

Example: f (x) = 1
x sin(x).

It is (α,β )-chirp near infinity, f (t) = t−α sin tβ , t ∈ [t0,∞), for α = β = 1.
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Oscillatory function near the origin

Definition (Oscillatory function near the origin)

Let g : (0,τ0]→ R, τ0 > 0, be a continuous function. g(t) is an oscillatory function
near the origin if there exists sequence sk such that sk↘ 0 as k→ ∞, g(sk) = 0 and
restrictions g|(sk+1,sk) intermittently change sign for k ∈ N.

Example: g(x) = xsin(1/x).
Notice it is (1,1)-chirp near the origin.
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Phase oscillatory function

Definition (Phase oscillatory function (Pašić, Žubrinić, Županović))

Let x : [t0,∞)→ R, t0 > 0 and x ∈ C1. x(t) is a phase oscillatory function if set

Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)}

in the plane is a spiral converging to the origin.

Definition (Spiral)

A spiral is the graph of function r = f (ϕ), ϕ ≥ ϕ1 > 0, in polar coordinates, where

f : [ϕ1,∞)→ (0,∞) is such that f (ϕ)→ 0 as ϕ → ∞,

f is radially decreasing (ie, for any fixed ϕ ≥ ϕ1 the function
N 3 k 7→ f (ϕ +2kπ) is decreasing) .

A mirror image of a spiral over the x-axes will be also called a spiral.
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Phase dimension

Definition (Phase dimension (Pašić, Žubrinić, Županović))

The phase dimension dimph(x) of phase oscillatory function x(t) is the box dimension
of corresponding spiral Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)}.
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Bessel equation

Bessel equation of order ν

t2x′′(t)+ tx′(t)+(t2−ν
2)x(t) = 0, ν ∈ R

Linear second-order ordinary differential equation. Single parameter ν .
Two linearly independent solutions are called Bessel functions Jν(t) and Yν(t).
The solutions are oscillatory functions near t = ∞.
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Phase dimension of Bessel functions

Bessel system of order ν - substitution y = ẋ

ẋ = y

ẏ = (
ν2

t2 −1)x− 1
t

y, ν ∈ R

Theorem (Phase dimension of Bessel functions)

The phase dimension of Jν(t) and Yν(t) is

dimph(Jν) = dimph(Yν) =
4
3
, for all ν ∈ R

Remark
Problem: A spiral radius function is non-monotone - we get a wavy spiral.
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Reflected Bessel equation

Substitution t = 1
τ

in Bessel equation:

Reflected Bessel equation

x′′(τ)+
1
τ

x′(τ)+
(

1
τ4 −

ν2

τ2

)
x(τ) = 0, ν ∈ R

Solutions are oscillatory near the origin.

Generalized reflected Bessel equation

x′′(τ)+
µ

τ
x′(τ)+

(
λ

τσ
− ν2

τ2

)
x(τ) = 0, µ ∈ R, λ > 0, σ > 2, ν ∈ R

Introduced by Pašić, Tanaka, 2011.
Solutions are oscillatory near the origin.
They determined box dimension of graphs of solutions - oscillatory dimension
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Back to ∞

Substitution τ = 1
t will get us back to ∞.

Generalized Bessel equation

t2x′′(t)+ t(2−µ)x′(t)+(λ tσ−2−ν
2)x(t) = 0, µ ∈ R, λ > 0, σ > 2, ν ∈ R

Two linearly independent solutions.
Solutions are oscillatory near t = ∞.
We would like to determine phase dimension of the solutions.
µ = 1, λ = 1, σ = 4, ν ∈ R is the standard Bessel equation.
We fix λ = 1, σ = 4.
What is the phase dimension of the solutions depending on parameters µ and ν?
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Phase dimension of solutions of generalized Bessel equation

Generalized Bessel equation for µ ∈ R, λ = 1, σ = 4 and ν ∈ R

t2x′′(t)+ t(2−µ)x′(t)+(t2−ν
2)x(t) = 0

Two linearly independent solutions we call generalized Bessel functions

J̃ν ,µ(t) = t
µ−1

2 Jν̃(t),

Ỹν ,µ(t) = t
µ−1

2 Yν̃(t), where ν̃ =

√(
µ−1

2

)2

+ν2.

Theorem (Phase dimension of generalized Bessel functions)

The phase dimension of J̃ν ,µ(t) and Ỹν ,µ(t) is

dimph(J̃ν ,µ) = dimph(Ỹν ,µ) =
4

4−µ
, for all µ ∈ (0,2), ν ∈ R.
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The proof 1/4

Remarks

If µ ≥ 2 then J̃ν ,µ(t) and Ỹν ,µ(t) are not even phase oscillatory functions.
If µ < 0 then related spirals are rectifiable, phase dimension is equal to 1.

Sketch of the proof
1 Using asymptotic expansions of Bessel functions for large t, we carefully gather

information on “shape” of related spiral Γ1 . . .r = f (ϕ) in polar coordinates.
2 Γ1 is non-monotonically converging to the origin - we call it a wavy spiral
3 We construct a new spiral Γ2 that is “close” to spiral Γ1 and prove the existence

of bi-Lipschitz map F that maps Γ1 to Γ2.
4 We determine the box dimension of Γ2 using a generalization of a result about

the box dimension of spirals with a decreasing radius function, from Žubrinić,
Županović, 2005.

5 Finally, we use a result about box dimension being invariant under bi-Lipschitz
maps, from K. Falconer, Fractal geometry, 1990.
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The proof 2/4 - Step 1

Asymptotic expansions of Bessel functions
Hankel’s asymptotic expansions of Bessel functions Jν (t) and Yν (t) for large t

Jν (t) =

(
2
πt

) 1
2
[Pν (t)cos χ−Qν (t)sin χ] ,

Yν (t) =

(
2
πt

) 1
2
[Pν (t)sin χ +Qν (t)cos χ] , ν ∈ R, χ = t−

(
1
2

ν +
1
4

)
π.

Pν (t) =
N

∑
k=0

(−1)k (ν ,2k)
(2t)2k +O

(
t−2N−2) as t→ ∞,

Qν (t) =
N

∑
k=0

(−1)k (ν ,2k+1)
(2t)2k+1 +O

(
t−2N−3) as t→ ∞, expansions to N terms,

(ν ,k) =
(−1)k

k!
(

1
2
−ν)k(

1
2
+ν)k =

(4ν2−1)(4ν2−32) · · ·(4ν2− (2k−1)2)

22kk!
,

(ν ,0) = 1.

We must consider asymptotics of expressions like r′′(t) = d
dt

(
x(t)ẋ(t)+ẋ(t)ẍ(t)√

x(t)2+ẋ(t)2

)
, where

x(t) = J̃ν ,µ (t) = t
µ−1

2 Jν̃ (t). For N = 2 we easily get several hundred terms in fully expanded form!
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The proof 3/4 - Step 2

Definition (Wavy function)

Let r : [t0,∞)→ (0,∞) be a C1 function. Assume that r′(t0)≤ 0. We say that r = r(t) is a wavy function if the sequence (tn)
defined inductively by:

t2k+1 := inf{t : t > t2k ,r′(t)> 0}, k ∈ N0,

t2k+2 := inf{t : t > t2k+1,r(t) = r(t2k+1)}, k ∈ N0,

is well-defined, and satisfies the waviness condition:


(i) The sequence (tn) is increasing and tn→ ∞ as n→ ∞.

(ii) There exists ε > 0, such that for all k ∈ N0 holds t2k+1− t2k ≥ ε .

(iii) For all k sufficiently large it holds osc
t∈[t2k+1 ,t2k+2 ]

r(t) = o
(
t−α−1
2k+1

)
, α ∈ (0,1),

(2)

where osc
t∈I

r(t) = max
t∈I

r(t)−min
t∈I

r(t).

Definition (Wavy spiral)

Let a spiral Γ′, given in polar coordinates by r = f (ϕ), where f is a given function. If there exists increasing or decreasing
function of class C1, ϕ = ϕ(t), such that r(t) = f (ϕ(t)) is a wavy function, then we say Γ′ is a wavy spiral.
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The proof 4/4 - Steps 3–5

Theorem (Box dimension of a wavy spiral)

Let t0 > 0 and assume r : [t0,∞)→ (0,∞) is a wavy function. Assume that ϕ : [t0,∞)→ [ϕ0,∞) is an increasing function of
class C1 such that ϕ(t0) = ϕ0 > 0 and there exists ϕ̄0 ∈ R such that

|(ϕ(t)− ϕ̄0)− (t− t0)| → 0 as t→ ∞. (3)

Let f : [ϕ0,∞)→ (0,∞) be defined by f (ϕ(t)) = r(t). Assume that Γ′ is a spiral defined in polar coordinates by r = f (ϕ).
Let α ∈ (0,1) is the same value as in the definition of wavy function r, and assume ε ′ is such that 0 < ε ′ < ε , where ε is
determined by the definition of wavy function r. Assume that there exist positive constants m, m, a′ and M such that for all
ϕ ≥ ϕ0,

mϕ
−α ≤ f (ϕ)≤ mϕ

−α , (4)

|f ′(ϕ)| ≤Mϕ
−α−1, (5)

and for all4ϕ , such that θ ≤4ϕ ≤ 2π +θ , there holds

a′ϕ−α−1 ≤ f (ϕ)− f (ϕ +4ϕ), (6)

where θ := min{ε ′,π}.
Then Γ′ is a wavy spiral and

dimB Γ
′ =

2
1+α

.
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Generalized Bessel functions

x1(t) = J̃5,0.2(t), x2(t) = J̃5,1(t), x3(t) = J̃5,1.8(t),
dimph(x1) =

20
19 dimph(x2) =

4
3 dimph(x3) =

20
11
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(α,1)-chirp like equation

(α,1)-chirp equation

Generalized Bessel equation for µ ∈ (0,2), λ = 1, σ = 4 and ν =±
√

(2−µ)µ

2
becomes (α,1)-chirp like equation.

t2x′′(t)+2αtx′(t)+(t2−α(1−α))x(t) = 0, α =
2−µ

2
∈ (0,1), µ ∈ (0,2)

Two linearly independent solutions are (α,1)-chirps

x1(t) = t−α sin t, x2(t) = t−α cos t, α =
2−µ

2
∈ (0,1).

Solutions are oscillatory near t = ∞.
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Functions comparable of class k

Definition (Comparable of class k in the limit sense)

We write f (t)∼ g(t) as t→ ∞ if f (t)
g(t) → 1 as t→ ∞.

If k ∈ N, for f ,g ∈ Ck we write,

f (t)∼k g(t) as t→ ∞,

if f (j)(t)∼ g(j)(t) as t→ ∞ for all j = 0,1, ...,k.

For example, (t−1)4−α

t4 ∼3 t−α as t→ ∞, for α ∈ (0,1).

Definition (Comparable of class k)

We write f (t)' g(t) as t→ ∞ if there exist C,D > 0 such that C f (t)≤ g(t)≤ Df (t)
for all t sufficiently large. If k ∈ N, for f ,g ∈ Ck we write

f (t)'k g(t) as t→ ∞,

if f (j)(t)' g(j)(t) as t→ ∞ for all j = 0,1, ...,k.
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(α,1)-chirp like functions

Definition ((α,β )-chirp-like function)

Functions of the form

x(t) = p(t)sin(q(t)) or x(t) = p(t)cos(q(t)),

where p(t)' t−α , q(t)'1 tβ as t→ ∞, are called (α,β )-chirp-like functions near
infinity.

Theorem (Phase dimension of (α,1)-chirp like functions)

The phase dimension of (α,1)-chirp-like functions

x1(t) = p(t)sin t, x2(t) = p(t)cos t,

where p(t)∼3 t−α , α ∈ (0,1) is

dimph(x1) = dimph(x2) =
2

1+α
.
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Graph of x(t) = t−
1
2 cos t and plot in the phase plane

x(t) = t−
1
2 cos t Γ = {(x(t), ẋ(t)) : t ≥ t0}

dimph(x) = dimB Γ = 4
3
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(α,β )-chirp-like equation

(α,1)-chirp-like scalar equation

ẍ(t)− 2 p′(t)
p(t)

ẋ(t)+
[

1+
2p′2(t)
p2(t)

− p′′(t)
p(t)

]
x(t) = 0, t ∈ [t0,∞), t0 > 0,

p : [t0,∞)→ R, of class C2. The solution is x(t) = C1p(t)sin t+C2p(t)cos t.
For p(t)' t−α , x(t) is a linear combination of (α,1)-chirp-like functions near infinity.

(α,1)-chirp-like system

Substitutions y = ẋ and z = 1
t .

ẋ = y

ẏ = −

[
1+

2p′2( 1
z )

p2( 1
z )
−

p′′( 1
z )

p( 1
z )

]
x+

2p′( 1
z )

p( 1
z )

y

ż = −z2, z ∈ (0,
1
t0
].
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Box dimension of the 3D-system trajectories

Trajectory Γ of the solution of (α,1)-chirp-like system is, without loss of generality,

x(t) = p(t)sin t

y(t) = p′(t)sin t+p(t)cos t

z(t) =
1
t

Theorem (Trajectory in R3)

Let p(t)∼3 t−α as t→ ∞, α > 0.

(i) Phase dimension of any solution of (α,1)-chirp-like scalar equation is equal to
dimph(x) = 2

1+α
for α ∈ (0,1).

(ii) Trajectory Γ of (α,1)-chirp-like system has box dimension dimB Γ = 2
1+α

for
α ∈ (0,1).

(iii) Trajectory Γ of (α,1)-chirp-like system for α > 1 is rectifiable and dimB Γ = 1.
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3D-system trajectories 1/3

3D spiral trajectory of a solution of (α,1)-chirp-like system for p(t) = t−
1
4 , Lipschitz

case.
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3D-system trajectories 2/3

3D spiral trajectory of a solution of (α,1)-chirp-like system for p(t) = t−1, Lipschitz
case.
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3D-system trajectories 3/3

3D spiral trajectory of a solution of (α,1)-chirp-like system for p(t) = t−3, Hölder
case.

Domagoj Vlah Frac. anal. of osc. sol. of a class of ODEs inc. the Bessel eq. Maribor, 2015 29 / 36



Poincaré map

Proposition (Poincaré map)

Assume Γ is the planar spiral that is the trajectory of any solution of (α,1)-chirp-like
scalar equation near the origin. Let Pσ : (0,εσ )∩Γ→ (0,εσ )∩Γ be the Poincaré
map with respect to axis σ that passes through the origin.
Then map Pσ has the form Pσ (r) = r+dσ (r), where −dσ (r)' r

1
α
+1 as r→ 0.

Connection between the phase dimension and asymptotics of the Poincaré map of
(α,1)-chirp-like scalar equation

Phase dimension of any solution of (α,1)-chirp-like scalar equation is equal to
dimph(x) = 2

1+α
for α ∈ (0,1).

Map Pσ has the form Pσ (r) = r+dσ (r), where −dσ (r)' r
1
α
+1 as r→ 0.

The connection is achieved indirectly through parameter α .
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Box dimension of the clothoid

Definition
The clothoid or Euler spiral is a planar curve defined parametrically by

x(t) =
∫ t

0
cos(s2)ds,

y(t) =
∫ t

0
sin(s2)ds,

where t ∈ R.

Theorem (Dimension of the clothoid (Korkut, Žubrinić and Županović (2009)))

Box dimension of the clothoid Γ is equal to d =
4
3

. Furthermore, Γ is Minkowski
measurable and

M d(Γ) = 3 ·2−
2
3 ·π

1
3 .
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Clothoid or Euler spiral

The standard clothoid or Euler spiral Γ. Notice that dimB Γ = 4
3 .
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Box dimension of the p-clothoid

Definition
By p-clothoid, p > 1, we mean a planar curve defined parametrically by

x(t) =
∫ t

0
cos(sp)ds, y(t) =

∫ t

0
sin(sp)ds,

where t ≥ 0.

Theorem (Dimension of p-clothoid (Korkut, Vlah, Žubrinić and Županović (2008)))

Let Γp be the p-clothoid, p > 1. Then d = dimB Γp =
2p

2p−1
. Furthermore, Γp is

Minkowski measurable and

M d(Γp) = (2p−1)
(

p(p−1)p−1
)−2/(2p−1)

π
1/(2p−1).

Domagoj Vlah Frac. anal. of osc. sol. of a class of ODEs inc. the Bessel eq. Maribor, 2015 33 / 36



Box dimension of the q-clothoid

Definition (Clothoid generated by control function q - q-clothoid)

Let q : (0,∞)→ R be a given function such that q(t)∼ tp, p > 1, when t→ ∞. By the
clothoid generated by control function q, or q-clothoid Γq, we mean a planar curve
defined parametrically by

Γq · · ·
{

x(t) =
∫ t

0 cos(q(s))ds
y(t) =

∫ t
0 sin(q(s))ds, where t ≥ 0.

(7)

Theorem (Dimension of q-clothoid)

Assume that q : (0,∞)→ R is increasing, convex, and of class C5. Let

q(t)∼3 tp, q(4)(t) = O(tp−4), q(5)(t) = O(tp−5), as t→ ∞

be satisfied. Then d = dimB Γq =
2p

2p−1
. Furthermore, the spiral Γq is Minkowski

measurable, and its d-dimensional Minkowski content is equal to the value M d(Γp)
from the previous theorem.
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q-clothoids

q-clothoid for q(s) = s3 +2s+1, q-clothoid for q(s) =
√

s3 +2s+1,
dimB Γq =

6
5 dimB Γq =

3
2
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fractal properties of related spirals, Applied Mathematics and Computation, Vol.
206 (2008), 236—244.
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