Classifications of parabolic germs and ε -neighborhoods of orbits

Maja Resman

University of Zagreb, Croatia

Theoretical and computational methods in dynamical systems and fractal geometry, Maribor

April 9, 2015

Thesis supervisors:

Pavao Mardešić, Université de Bourgogne, France Vesna Županović, University of Zagreb, Croatia

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Germs of analytic diffeomorphisms $f : (\mathbb{C}, 0) \to (\mathbb{C}, 0)$

$$f(z) = \lambda z + a_1 z^{k+1} + a_2 z^{k+2} + \dots, \ \lambda, \ a_i \in \mathbb{C}.$$

• $|\lambda| \neq 1$ hyperbolic case, analytically linearizable, uninteresting

- $\blacksquare \ \lambda = e^{2\pi i \alpha}, \ \alpha \neq \mathbb{Q}$ irrational rotation, very complicated
- $\lambda = e^{2\pi i \alpha}, \ \alpha \in \mathbb{Q}$ rational rotation; suppose $\lambda = 1$, PARABOLIC CASE
- \star k + 1... the *multiplicity* of fixed point 0

Local discrete dynamics at the origin

- *** Leau-Fatou flower theorem** (1987):
 - k attracting directions: $(-a_1)^{-\frac{1}{k}};\,k$ repelling directions: $a_1^{-\frac{1}{k}}$



The problem considered

$O^f(z_0) = \{f^{\circ n}(z_0): n \in \mathbb{N}_0\} \dots$ the orbit of f, initial point z_0

Can we recognize a germ using fractal properties of only one orbit?

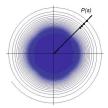
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- \star formal class of a germ
- ★ analytic class of a germ

Box dimension of spiral trajectory locally around singular point reveals complexity in bifurcations of singular point!

polynomial vector field, focus point at the origin

$$\begin{cases} \dot{x} &= -y + p(x, y), \\ \dot{y} &= x + q(x, y). \end{cases}$$



- The Poincaré map $P(s) = s s^{2k+1} + o(s^{2k+1})$, $k \in \mathbb{N}_0$; focus of order k
- cyclicity in generic bifurcations: k

$$\operatorname{dim}_B(S(x_0)) = \frac{4k}{2k+1}$$

(Žubrinić, Županović, Fractal analysis of spiral trajectories of some planar vector fields (2005))

...complex saddles...

Fractal properties of a set $U \subset \mathbb{C}$ (\mathbb{R}^2)

THE BOX DIMENSION OF A SET (fractal dimension)

- $U \subset \mathbb{R}^2$ bounded
- ${\ \ \ } \varepsilon > 0, \ |U_{\varepsilon}|$ the area of the $\varepsilon\text{-neighborhood}$
- For $s \in [0, 2]$, we consider

$$\lim_{\varepsilon \to 0} \frac{|U_{\varepsilon}|}{\varepsilon^{N-s}} \in [0,\infty],$$

and draw:

Figure:
$$s \mapsto \lim_{\varepsilon \to 0} \frac{|U_{\varepsilon}|}{\varepsilon^{2-s}}$$
, $s \in [0, 2]$.

- the moment of jump $s_0 \equiv$ the box dimension, $\dim_B(U) = s_0$.
- the value at $s_0 \equiv$ Minkowski content, $\mathcal{M}(U)$.

• if
$$|U_{\varepsilon}| \sim C \varepsilon^{2-s} \Rightarrow \dim_B(U) = s, \ \mathcal{M}(U) = C.$$

 \star More generally, the complete function

$$\varepsilon \mapsto |U_{\varepsilon}|$$

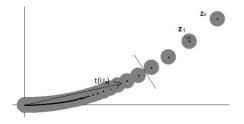
(日) (日) (日) (日) (日) (日) (日) (日)

as *fractal* property of set U

Definition (The DIRECTED area of the ε -neighborhood, R)

$$A^{\mathbb{C}}(U_{\varepsilon}) = |U_{\varepsilon}| \cdot t(U_{\varepsilon}) \in \mathbb{C},$$

 $t(U_{\varepsilon}) \in \mathbb{C}$ the *center of mass* of U_{ε} .



Formal classification of parabolic diffeomorphisms

(Birkhoff, Ècalle, Kimura, ~ 1950)

* formal changes of variables:

1.
$$\phi_1(z) = c_1 z$$
,
2. $\phi_i(z) = z + c_i z^i$, $c_i \in \mathbb{C}$, $i = 2, 3, ...$
 $\widehat{\phi}(z) = ... \circ \phi_2^{-1} \circ \phi_1^{-1}(z) = \sum_{l=1}^{\infty} d_k z^k$ (formal series)

 \Rightarrow formal normal form

$$f_0(z) = \widehat{\phi} \circ f \circ \widehat{\phi}^{-1}(z) = Exp\left(\frac{z^{k+1}}{1 + \frac{\lambda}{2\pi i}z^k}\frac{d}{dz}\right), \quad \lambda \in \mathbb{C},$$
$$\widetilde{f}_0(z) = z + z^{k+1} + \left(\frac{k+1}{2} - \frac{\lambda}{2\pi i}\right)z^{2k+1}.$$

 \star formal type: (k, λ) , $k \in \mathbb{N}, \ \lambda \in \mathbb{C}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Asymptotic expansion of the directed area of the ε -neighborhood of an orbit

 $z_0 \in V_+$ (attracting petal);

Theorem (R, 2013)

$$A^{\mathbb{C}}(\varepsilon, z_0) = K_1 \varepsilon^{1+\frac{2}{k+1}} + K_2 \varepsilon^{1+\frac{3}{k+1}} + \dots + K_{k-1} \varepsilon^{1+\frac{k}{k+1}} + H^f(z_0) \varepsilon^2 + K_k \varepsilon^{2+\frac{1}{k+1}} \log \varepsilon + R(z_0, \varepsilon), \qquad (1)$$
$$R(z_0, \varepsilon) = o(\varepsilon^{2+\frac{1}{k+1}} \log \varepsilon), \ \varepsilon \to 0,$$

 $K_i \in \mathbb{C}, i = 1, \dots, k + 1$, independent of z_0 ; $H^f(z_0) \in \mathbb{C}$.

Sketch of the proof ...

Asymptotic expansion of the directed area of the ε -neighborhood of an orbit

Here,

$$\begin{split} K_{1} &= \frac{k+1}{k} \cdot \sqrt{\pi} \cdot \frac{\Gamma(1+\frac{1}{2k+2})}{\Gamma(\frac{3}{2}+\frac{1}{2k+2})} \left(\frac{2}{|a_{1}|}\right)^{1/(k+1)} \cdot \nu_{A}, \\ K_{k+1} &= \nu_{A} \cdot \left[\frac{1}{2(k+1)} Im(\lambda) + \left(\frac{k-1}{\pi(k+1)} \left(\frac{|a_{1}|}{2}\right)^{\frac{1}{k+1}} \frac{\frac{\Gamma(\frac{1}{2}+\frac{1}{2k+2})}{\Gamma(2+\frac{1}{2k+2})} - \sqrt{\pi}}{\frac{\Gamma(\frac{1}{k+1})}{\Gamma(\frac{3}{2}+\frac{1}{k+1})} + \sqrt{\pi}}\right) \cdot i \cdot Re(\lambda) \right]. \end{split}$$

Theorem (R, 2013)

Formal type (k, λ) explicitly from $(k; K_1, K_k)$ in finite expansion of ANY orbit!

Formal and analytic conjugacy

1 f and g formally conjugated

$$\exists \widehat{\varphi} \in z + z^2 \mathbb{C}[[z]], \ g = \widehat{\varphi}^{-1} \circ f \circ \widehat{\varphi}$$

2 f and g analytically conjugated

$$\exists \varphi \in z + z^2 \mathbb{C}\{z\}, \ g = \varphi^{-1} \circ f \circ \varphi.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Toward analytic classification

Proposition (R)

The mapping

$$f\longmapsto \left(\varepsilon\mapsto A^{\mathbb{C}}(\varepsilon,z_0),\ \varepsilon\in(0,\varepsilon_0)\right)$$

is injective on the set of germs with z_0 in their attracting basin.

BUT

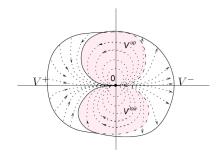
Proposition (R)

No asymptotic expansion of $R(z_0, \varepsilon)$, as $\varepsilon \to 0$, in power-log scale!

The reason. The critical index n_{ε} a jump function.

The simplest formal class

- * model formal class $(k = 1, \lambda = 0)$; $f_0 = Exp(z^2 \frac{d}{dz}) = \frac{z}{1-z}$
- * prenormalized ($a_1 = 1$)
- $\star \ f(z) = z + z^2 + z^3 + o(z^3)$



* *Ecalle, Voronin*: a **sectorially analytic** vector field s.t. f embeds on sectors in its flow, as time-one map (in general, not global)

\$

* Equation of the trivialisation of the flow (Abel equation):

$$\Psi(f(z)) - \Psi(z) = 1.$$

unique (to a constant) formal solution \$\hat{\Psi}(z) ∈ -1/z + zC[[z]]\$,
 analytic solutions \$\Psi_±(z)\$ on \$V_±\$; asymptotic expansion \$\hat{\Psi}(z)\$ → Fatou coordinates, sectorial trivialisations

Ecalle-Voronin moduli of analytic classification

On V^{up}, V^{low} :

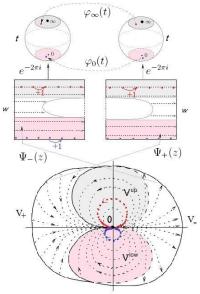
$$\Psi_+(f(z)) - \Psi_-(f(z)) = \Psi_+(z) - \Psi_-(z)$$

 $\Rightarrow \Psi_{+} - \Psi_{-}$ well-defined on *space of (closed) orbits* of V^{up}, V^{low}

 \rightarrow lifts to poles of spaces of orbits of V_+ (spheres, $t=e^{2\pi i\Psi_+},$ orbits \leftrightarrow points):

$$\begin{cases} \Psi_{+}(z) - \Psi_{-}(z) &= g_{\infty}(e^{2\pi i \Psi_{+}(z)}), \ z \in V^{up}, \\ \Psi_{-}(z) - \Psi_{+}(z) &= g_{0}(e^{-2\pi i \Psi_{+}(z)}), \ z \in V^{low}. \end{cases}$$

ightarrow a pair of analytic germs extended to 0, $t
ightarrow(g_{\infty}(t),g_{0}(t)),$ ightarrow property $g_{0}(0)+g_{\infty}(0)=0.$



▲山▶▲□▶▲≧▶▲≧▶ ≧ のQ@

Ecalle-Voronin moduli of analytic classification

Ecalle-Voronin modulus of f: (g_{∞}, g_0) , up to identifications:

$$(\star) \begin{cases} (g_1(t), g_2(t)) &\equiv (g_3(t), g_4(t)) \Leftrightarrow \\ & g_3(t) = g_1(t) + a, \ g_4(t) = g_2(t) - a, \\ & g_3(t) = g_1(bt), \ g_4(t) = g_2(t/b), \ a \in \mathbb{C}, \ b \in \mathbb{C}^*. \end{cases}$$

Theorem (Ecalle-Voronin)

analytic classes of germs of the model formal type \updownarrow all pairs of analytic germs at t = 0,

 $(g_1(t), g_2(t)), g_1(0) + g_2(0) = 0,$

up to identifications (\star) .

 \star analytic class of f_0 trivial: (0,0)

・ロト・西ト・ヨト・ヨー シック

Definition (R)

$$\begin{aligned} A^{\mathbb{C}}(\varepsilon,z) &= A^{\mathbb{C}}(\varepsilon,f(z)) + z \cdot \varepsilon^2 \pi, \ \varepsilon \text{ small}, \\ &\stackrel{expansion}{\Longrightarrow} H^f(z) = H^f(f(z)) + z\pi \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

* a *cohomological equation* similar to the Abel equation for f* *Stokes phenomenon*: sectorially analytic solutions?

Cohomological equations

• A cohomological equation for *f*:

$$H(f(z)) - H(z) = g(z), \ g(z) \in \mathbb{C}\{z\}, \ g \not\equiv 0.$$

 $\frac{\text{Sectorial solutions of cohomological equations (Fatou, Loray)}}{g(z) = \alpha_0 + \alpha_1 z + O(z^2)}$

• a unique formal solution $\widehat{H}(z) \in -\frac{\alpha_0}{z} + \alpha_1 Log(z) + z\mathbb{C}[[z]]$ (without the constant term),

- unique sectorially analytic solutions $H_{\pm}(z)$ on $V_{\pm},$ with expansion $\widehat{H}(z),\ z\to 0$

Proof constructive!!!

1-Abel equation for f: H(f(z)) - H(z) = -z \rightarrow the sectorial solutions H_+, H_-

Theorem (R)

- the principal parts $H^{f}(z)$ i $H^{f^{-1}}(z)$ analytic on V_{\pm}
- explicitly related to solutions $H_{\pm}(z)$ of 1-Abel equation:

$$\pi H_+(z) - \frac{\pi}{4} + i\pi^2 = H^f(z), \quad z \in V_+,$$

$$\pi H_-(z) - \frac{\pi}{4} = z - H^{f^{-1}}(z), \quad z \in V_-.$$

Existence of global analytic solution H of cohomological equation $\leftrightarrow H_{+} - H_{-} \equiv 0 \ (2\pi i) \text{ on } V^{up,low}$

1 global analytic solution of Abel equation

$$\Leftrightarrow f = \varphi^{-1} \circ f_0 \circ \varphi, \ \varphi \in z + z^2 \mathbb{C}\{z\}.$$

2 Theorem (R)

The 1-Abel equation has a global analytic solution H(z) $\Leftrightarrow f(z) = \varphi^{-1}(e^z \cdot \varphi(z)), \ \varphi(z) \in z + z^2 \mathbb{C}\{z\}.$

Germs with global solution to Abel and to 1-Abel equation

$$\mathcal{S} = \{ f \mid f = \varphi^{-1}(e^z \cdot \varphi(z)), \ \varphi \in z + z^2 \mathbb{C}\{z\} \}$$
$$\mathcal{C}_0 = \{ f \mid f = \varphi^{-1} \circ f_0 \circ \varphi, \ \varphi \in z + z^2 \mathbb{C}\{z\} \}$$

Example

2
$$f(z) = ze^z \in S \setminus C_0$$
,
3 $f(z) = -Log(2 - e^z) \in S \cap C_0$

The sets S and C_0 in general position \Rightarrow the differences of sectorial solutions on petal intersections insufficient for determining the analytic class

Classifications of germs with respect to 1-Abel equation

$$H(f(z)) - H(z) = -z$$

$$\Rightarrow (H_{+} - H_{-})(z) = (H_{+} - H_{-})(f(z)), \ z \in V^{up} \cup V^{low}$$
$$\Rightarrow H_{+} - H_{-} \ constant \ along \ orbits$$

$$H_{+} - H_{-} = g_{\infty}(e^{2\pi i\Psi_{+}(z)}), \ z \in V^{up},$$

$$H_{-} - H_{+} = -2\pi i + g_{0}(e^{-2\pi i\Psi_{+}(z)}), \ z \in V^{low}.$$

 \Rightarrow $(g_{\infty}(t),g_{0}(t))\text{, }g_{\infty}(0)+g_{0}(0)=0$ a pair of analytic germs

Definition (R)

- The 1-moment of f: the pair (g_{∞}, g_0) , up to identifications
- 1-conjugacy class of $f: [f]_1$

Theorem (Realization of 1-moments. Transversality, (R))

 (g_0,g_∞) a pair of analytic germs s.t. $g_0(0) + g_\infty(0) = 0$. Then:

• There exists a germ in the model formal class such that the given pair is its 1-moment.

• Moreover, such germ exists inside ANY analytic class.

The results published in papers:

- M. Resman, ε-neighborhoods of orbits and formal classification of parabolic diffeomorphisms, Discrete Contin. Dyn. Syst. 33, 8 (2013), 3767–3790
- M. Resman, ε-neighborhoods of orbits of parabolic diffeomorphisms and cohomological equations. Nonlinearity 27 (2014), 3005–3029

Thank you for the attention!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>