LAPLACE TRANSFORMS AND EXPONENTIAL BEHAVIOR OF
REPRESENTING MEASURES

ANTE MIMICA

ABSTRACT. In this article behavior of measures on [0, 00) is studied by considering their
Laplace transforms. We present a unified approach that covers many cases when Kara-
mata’s and de Haan’s Tauberian theorems apply. If the Laplace transform can be ex-
tended to a complex half-plane containing the imaginary axis, we prove that the tail
of the representing measure has exponential decay and establish the precise rate of the
decay. We translate this result to the language of Bernstein functions and give two
applications in the theory of non-local equations.

1. INTRODUCTION AND MAIN RESULT

The Laplace transform represents a powerful integral transform in analysis. Besides
transforming operations which appear naturally in analysis (e.g. convolution or differen-
tiation) to simple algebraic operations, the real power of this integral transform can be
seen through Tauberian theorems. Theorems belonging to this class determine asymptotic
behavior of a function (or a measure) from asymptotic properties of its Laplace transform.

A classical example is Karamata’s Tauberian theorem, which says that regular varia-
tion of the Laplace transform implies regular variation of the distribution function of the
measure (cf. [Fel71, Section XIII.5] or [BGT87, Section 1.7]). In this article we formulate
and prove a Tauberian type theorem that also treats measures with density that is not
necessary of regular variation (e.g. densities with exponential or logarithmic behavior).
In particular, we will see that exponential decay of density occurs when it is possible to
extend its Laplace transform to a complex half-plane containing the imaginary axis.

Although the article is written analytically, our motivation comes from probability the-
ory. When considering jump processes, it is often important to know the behavior of
measures that govern jumps. Typical examples are rotationally invariant symmetric sta-
ble process and variance gamma process. The density of the jump measure of the former
process does not have exponential decay, while the one of the latter process has. By us-
ing our approach one can obtain behavior of the jump measure of a large class of jump
processes which includes previously mentioned examples.
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Let us be more precise now. Recall that the Laplace transform of a measure v on [0, 00)

is a function Lv: (0,0) — [0, o] defined by
(Lv)(A) = J e My(dt) for A>0.
[0,00)
If the integral converges for all A > 0, the Laplace transform belongs to the class of
completely monotone functions, which is a class of functions defined by
CM:={f:(0,0) > R: f isa C% function and
(=1)"f™(X) =0 for all neNuU{0}, A>0}.

The converse is also true; for any f € CM there exists a unique measure v on [0, o) so that
Lv = f. These two statements are known as Bernstein’s theorem (cf. [Fel71, Theorem
XIIT.4.1] or [SSV12, Theorem 1.4]). The measure v will be called the representing measure
of f.

Before stating our conditions and the main result, we introduce a notion of extension
of a completely monotone function.

Let f € CM. Since all derivatives of f are monotone, we can set f(™ (0+) := /\lir(r)l F(N)
—0+
[—00,00] for all n e N U {0}. Let
: .0 SO0 gy if | ()
inf{Axe R: >} ~=—/—(=A)" converges } if [f")(0+)| <0
n=0
Wo = wWp = for all n e N u {0}
0 otherwise

where we have used the convention that the infimum of the empty set is infinite. Now we

can define an extension f.: (wg,0) — (0,00) of the function f by setting

o0
M_)\n “)\<0
,Eo At (A" wo <A< (1.1)

fN) A>0.

fe(/\) =

Remark 1.1. It may happen that all right derivatives £ (0+) exist, but wy = 0. E.g.
for a € (0,1), v(dt) := e ¥ dt and f()\) := (Lv)(\) = Sgo e~ M= dt it follows that
(=) f™(04) = Sgo t"e~t" dt is finite for any n € N, but wg = 0, since

0 f(n) (OJr) < o

Y ()" = fe’\tt dt = oo forall A<0.
n.

n=0 0

Remark 1.2. In general theory of Laplace transform, wy is also known as the abscissa of
convergence of the integral
e “'v(dt) for zeC. (1.2)
[0,00)

More precisely, the region of convergence of the integral (1.2) in C is the half-plane M =
{z € C: Rz > wp} and the integral in (1.2) defines an analytic function on M with
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singularity at z = wp (cf. [Wid46, Corollary I1.1 and Theorems II.5a, I1.5b]). This implies
that the extension f. defined by (1.1) is the restriction of the analytic function

F:M—C, F(z):= f e Fy(dt), ze M
[0,%0)

to the real interval (wp,00). We show in Lemma 2.1 that fe(\) = S[o ) e My (dt) for all
A > wp without using this general theory of Laplace transform.

Throughout the paper the following conditions concerning f € CM will be used:

(A-1) the representing measure v of f has a density with respect to the Lebesgue measure,
i.e. there exists a function
v: (0,00) — (0,00) such that v(dt) =wv(t)dt;
(A-2) wo > —o0 and t +— e~ 1y(t) is non-increasing;
(A-3) there exist constants § > 0, 0 < A; < Ay < 00 and 7 > 0 such that
fé()\:L‘ + W())
fe(A + wo)
Let us comment condition (A-3) (in Sections 3 and 4 we will see how to treat conditions

(A-1) and (A-2)). A function 9: (0,00) — (0,00) is said to vary regularly at infinity (at
the origin) with index p € R if

<Oz forall z>1 and Ae (A, Az).

)\lim w(()\)\)) =z forall z>0.
o5 Y

A function that varies regularly with index 0 is also said to wvary slowly. By Potter’s
Theorem (cf. [BGT87, Theorem 1.5.6 (iii)]) it will follow that f € CM satisfies (A-3) if
/! varies regularly with index p < 0 at the origin (take A; = 0 and Ay < ) or at infinity
(take A; > 0 and Ay = ).

Now we can state the main theorem.

Theorem 1.3. Let f € CM and assume that it satisfies (A-1).
(i) If (A-2) holds, then there is a constant ¢y > 0 such that

v(t) < —ct 2Lt + wo)e ot forall t>0.
(i) If (A-2) and (A-3) hold, then there exist constants ca > 0 and 6 € (0,1) such that
v(t) = —cot 2fL (1 + wo)et for all te (JAFY,0ATY).

(iii) For any w < wp
lim su @ = +00
t—»oop ewt )

Remark 1.4. (a) Theorem 1.3 (i)-(ii) says that exponential decay of the density of
v is connected to the fact that the Laplace transform of v can be analytically
extended to a half-plane in C that contains the imaginary axis {z € C: Rz = 0}.

(b) Theorem 1.3 (iii) implies that in case wy = 0 there is no exponential decay of v.
Nevertheless, subexponential decay is possible, as Remark 1.1 shows.
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(¢c) If wy = —o0, superexponential behavior can occur (e.g. v(dt) = et dt).

(d) In case wy = 0, Theorem 1.3 represents a unified approach that covers many cases
when classical Tauberian theorems apply (cf. Corollary 1.6 and the discussion
following it) .

In the following examples our Theorem 1.3 is useful, since no closed expression of the

density of the representing measure is known.

Example 1.5. It can be checked that (A-1)—(A-3) hold in this example with A; = 0 and
Ay = oo and thus Theorem 1.3 can be applied (cf. Remark 4.4).

1 e 0<t<1
(a) f(\) = T 0<a<1l) V(t)"{t—l—a 1
-1
- 1 _ m O0<t<l1
(b) f()\) - 1+ log(l + )\) V(t) - {6_(1_el)t " > 1
-1
(c) f(N) = 1+ log(l + A) 0<a<l) v(t) = {t—l—a t>1

As mentioned earlier, Theorem 1.3 covers some cases where classical Tauberian theorems
also apply. Before discussing this, we record the following

Corollary 1.6. Let f € CM be such that [’ varies reqularly at infinity (at the origin) with
index —p — 1, where 0 < p < 1.
If the representing measure of f has a non-increasing density v(t), then

v(t) = -t 2f'(t71) forall te(0,1) (forall t>1).

Let f € CM and assume that it satisfies the assumptions of Corollary 1.6. By [BGT87,
Theorems 1.4.1 and 1.5.11 (and Proposition 1.5.9a if p = 0)],

ATPL(A >0
FO) = A »p
L(N) p=20
where £: (0,00) — (0,00) varies slowly at infinity (at the origin).
(a) For 0 < p < 1 we obtain the same behavior of the density as in Karamata’s
Tauberian theorem, since Corollary 1.6 implies
v(t) = ptP~1e(t™1) forall te (0,1)  (forall t>1)
(cf. [BGT87, Theorems 1.7.1 and 1.7.2]).
(b) Karamata’s theory does not apply to the case p = 0. Since f’ varies regularly with

index —1, by the uniform convergence theorem for regularly varying functions (cf.
[BGT87, Theorem 1.5.2]) we get

1y _ prl i
)\lirg —f(’\xl) - ch(’\) =—)\lir(1)1 f,(i‘) dtz—fcit=10gx
YR e TR
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for any x > 0. Now de Haan’s Tauberian theorem (cf. [BGT87, Theorems 3.6.8
and 3.9.1]) can be applied to obtain
) v(t)
T )

(t—c0)

=1.

Note that these estimates are the same (up to constants) as in Corollary 1.6.

The following result can be considered as a converse to Theorem 1.3 .

Theorem 1.7. Let f € CM and assume that it satisfies (A-1).
(1) If there exist ¢ > 0, a € (0,1] and 8 > 0 such that

v(t) <ce P forall t>1,

then f(")(0+) s finite for any n € N. Moreover, in case a = 1, it follows that wg < —f
and

SO

Loy - | BN A (-A,0]
fN) A>0

defines a C™-extension of f to (—f,0).

(i1) If there exists m € N such that

liminf¢"v(t) > 0.
t—00

then () (0+) is infinite for anyn =>m — 1.

Note that in case of subexponential behavior in Theorem 1.7, i.e. a € (0,1), we can
have wg =0 (cf. Remark 1.1). If the density of the representing measure has a polynomial
decay, then it cannot happen that all right derivatives (") (0+) are finite, as the following
example shows.

Example 1.8. Let f(\) = 1%\ —2Xlog(1+ A71). In this case it follows that (cf. [SSV12,
p. 312, No. 46] and Section 4):
2 — e H(t? 4+ 2t + 2)
V(t) = 2
A simple computation shows that f(0+) = 0 and f'(0+) = —c0.

~2t72 as t — .

Theorem 1.3 has several applications. As a first application, we show that our result
can be translated directly to the setting of Bernstein functions.

Another application is analysis of decay of solutions of some integro-differential equa-
tions in R?. To be more precise, let f be a continuous function with a compact support.
For a local equation

—Au+u=f in R?
it is known that the solution has exponential decay (cf. [Eva98, pp. 187-188]).
Considering non-local equations, different behavior of solutions appears. For example,

the solution to
(=A)2u+u=f in R? (0<a<?2) (1.3)
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will not have exponential decay; we will see that |u(z)| < c|z|~4" for all z € R? and in
the case of a non-negative f it will follow that

olz|

lim sup —
|z|>00 €

(cf. Example 5.4). On the other hand, the solution to
log(1—A)u+u=f in R?

will have exponential decay (cf. Example 5.5).

= oo for every o > 0.

The last application of our results is the representation of the operators of the form
—¢(—A) as integral operators. Our approach covers many examples; among others, frac-
tional Laplacian and relativistic Schrodinger operator. Essentially, the idea is to use sub-
ordination (of semigroups) to estimate the kernel of these integral operators. Although we
use this idea in the setting of the Brownian semigroup, one can treat even more general
semigroups and obtain relations between the domains of the infinitesimal generators of
the semigroup and subordinate semigroup (cf. [Phi52, Hir72, Sch96]).

New examples in applications will be the ones with kernels that have exponential decay.
In the representation of the operator —log(l — A) precise asymptotic analysis of decay
was first obtained in [SSV06] by using the probabilistic counterpart of subordination. This
was a motivating example for investigation of a broader class of non-local operators having
similar properties. In order to treat more examples, methods for obtaining behavior of
the kernel of such non-local operators around the origin are also generalized in this paper
(cf. [SV09, KSV12, KM12]).

The paper is organized as follows. The main results are proved in Section 2. Sufficient
conditions that guarantee existence of monotone density of the representing measure are
main topic of Section 3. The main result of this section (cf. Proposition 3.1) may be
also of independent interest. Another important class of functions, namely the class of
Bernstein functions, is treated within this framework in Section 4. Applications to non-
local potential equations are given in Section 5. In Section 6 we obtain asymptotical
behavior of kernels of a class of non-local operators.

Notation. The Fourier transform of f € L'(R%) is defined by

fie) = | s o, ceme.
R4
We use the same notation for the extension of the Fourier transform from L!(R%) n L?(RY)

to a unitary operator on L?(R%) (cf. [Fol99, Theorem 8.29]). The inverse Fourier transform
is denoted by 7.
f(z)

We write f(z) = g(x) for x € I if St stays between two positive constants for every
xel.

2. COMPLETELY MONOTONE FUNCTIONS

The main goal of this section is to prove Theorem 1.3. We start with an auxiliary lemma
that helps us to avoid general theory of Laplace transform (cf. Remark 1.2).
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Lemma 2.1. Let f € CM with the representing measure v and let f. be its extension
defined by (1.1). Then

(i) fe € C*(wo, )
and for all m € N U {0} and \ > wy

(i) (=)™ ™) =0

(i) £ () = (—1)™ f[o } ey (dt)

Proof. If wy = 0 there is nothing to prove, so we can assume that wy < 0.

(i) To check smoothness it is enough to check it at A = 0; this holds, since fe(m) (0—) =
™) (0+) for all m e N U {0}.

(i), (iii) Let m € Nu {0}, n € N and A\ € (—wp,0]. Since wy < 0, it follows that
(=1)Ff®(04) = S[O,oo) tku(dt) for every ke N U {0} and so

O 1\ym+k p(m+k)
(_1)m ém)()\): Z( 1) * L;;' * (0+)(—A)k

0 tm—i—k
Z J (dt) = J e Mu(dt) = 0
k=0 Q’) [0,00)
where in the last equality we have used Beppo-Levi theorem. O

Remark 2.2. Note that Lemma 2.1 (iii) shows, in particular, that

fe(N) = J e My(dt) forall X > wy.
[0,00)

Proof of Theorem 1.5. (i) Let A > 0. Then

T\ + wo) J e Mty(t) dt [by Lemma 2.1 (iii) with m = 1]
0
)\—1
> Av(A e @ f e M2 dt [by (A-2)]
0

> (3e) le 0N T2p(ATY).

This gives the upper bound; take ¢ > 0 and set A = ¢t~ to deduce from the previous
display that

v(t) < —36t_26w0tfé(t_1 +wp) . (2.1)
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Let 0 € (0,1) and A € (A1, A2). Then

i)
e¢]

oa~1
—fi(N + wo) — f e~ @0t Ay (1) dt [by Lemma 2.1 (iii) with m = 1]
0
SAL
—J'(\ + wo) — 3e J M (Y + w)) db by (2.1)]
0
st
> /(N + wo) — 3eB(—FL (A + wo))\ J M gy [by (A-3)]
0

— LN+ wp) — 3eBy 187 (— LN + wo)) -

Choosing 6 € (0, 1) small enough so that 1 — 3efy~ 167 > % one obtains

o0
L—fL\ + ) < j e~ote My (1) dt
J

F) 1
0
< (BAH LA e wor f e N2 dt [by (A-2)]
o1

< 563 (A2 (SN e
Let t € (6A5,0A7"). Then A = 6t~! € (A, Ag) and thus the last display implies
53

p(t) = 15t 2 (—fe(0t7" + wp))e!
574_3 —92 1 ra—1 wot
> 105 (—fL(t7" + wp))er® [by (A-3)].

(iii) Assume that the claim is not true. Then there exist w < wp, ¢; > 0 and ty > 0 so

that
v(t) < cre®t forall t > tg.

By the dominated convergence theorem one concludes that f*) (0+) is finite and f (k) (0+) =
§o t"v(t)dt for all k e N U {0}. Using Beppo-Levi theorem it follows that

k=0

L0 T
> L0 e Je’\tu(t) dt
0
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o0
v((0,%0]) + c1 feme_)‘t dt <oo forall A>w.
to

This is a contradiction with the definition of wy . U

Proof of Corollary 1.6. In this case (A-1) and (A-2) hold, since wg = 0. If f" varies regu-
larly at infinity with index —p — 1, Potter’s Theorem (cf. [BGT87, Theorem 1.5.6 (iii)])
implies condition (A-3) with any v € (0,1), A; =1 and Ay = 0. Now we can apply The-
orem 1.3. In case of regular variation at the origin the result can be obtained similarly
(with Ay =0 and Ay = 1). O

Now the converse result will be proved.

Proof of Theorem 1.7. (i) By the assumption and dominated convergence theorem, f (k) (0+)
is finite for any k£ € N and

(~1)Ff®04) = | t*u(t) dt .

If o =1, it follows that

0

0

Z % Je”y(t) dt

= 0
is finite for any A € (—f3,0] and thus wy < —f3. Lemma 2.1 (i) implies that the extension
fe is a C%- function
(ii) Let n = m — 1. By the assumption there exist tp > 1 and ¢; > 0 such that v(t) = ¢1t™
for all ¢t > . Then by Fatou’s lemma

t1 t1

dt
(=)™ (0+) = fhm(l)nfe Any(t) dt = ¢ f — — o as t; — 0.
A—0+
0 to

3. EXISTENCE OF MONOTONE DENSITIES

The purpose of this section is to investigate whether a measure on [0,00) has a non-
increasing density by just considering its Laplace transform. This will be useful in checking
condition (A-2).

Similar results already exist in literature. For example, in [Fel71, Corollary to Theorem
2 in XIII.4] sufficient and necessary conditions for existence of bounded densities are given.

On the other hand, in many cases of interest densities are unbounded. Here we give
sufficient conditions for existence of non-increasing densities and discuss some particular

cases when (A-2) holds.
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Proposition 3.1. Let f € CM satisfying (A-1) and assume that, for some Ao > 0, the
following holds:

)" f£(n) _\\n+1 g(n+l)
(0 ( /\)T{! W ( A)(;fl; (A)
(i) Jim f(3) =0.

Then the density of the representing measure of f is a non-increasing function.

for allmne N U {0} and A > Ao ;

Proof. Let v be the representing measure of f. The proof relies on the inversion formula
for the Laplace transform (cf. [Fel71, Theorem 2 in XIII.2] or [SSV12, equation (1.3)]):

) )
v((0,]) = Jim > (A)nf'(A) for > 0. (3.1)
n<z ’

Here we have used that every x > 0 is a point of continuity of v, i.e. p({z}) = 0, since v
has a density.

Let F': (0,00) — R be defined by F(z) := v((0,z]) for z > 0. The idea is to prove that
I is concave. Assume, for the moment, that this is done.

Since F' is non-decreasing, it is almost everywhere differentiable and its derivative F’
satisfies

F(z) —JF'(t)dt for >0
0

(cf. [Fol99, Theorem 3.23, Corollary 3.33]). On the other hand, concavity of F' implies
that
. Fit+h)—F@)
t):= 1
i) hi%lJr h

, t>0

is a well defined non-increasing function. Since F'(t) = u(t) almost everywhere, it follows
that p is the density of the representing measure:

A(0,2)) = Fla) = [ ute)dt.
0

It is left to prove that F' is concave. Take z,y > 0 such that x < y. By the inversion
formula (3.1),

(="M ()
2 Ao — o tizyA) (3.2)
with
_\)" £(n) _\\n £(n)
Megn -1 3 WA 1 e CVOR)

n! 2 n!

)\% <n<\y /\x<n<)\%
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The number of summands in the sums in I(x,y,\) differs by at most one. This and
condition (i) give
(=A™ f ()

2n+!

(=N 1)

2n_!

I(x,y,/\)< or I(x7y7)‘)<_

with ny := [Ay| and n_ = [A%Y]. In both cases, (i) implies I(z,y,A) < @, which
together with (ii) and (3.2) yields mid-point concavity:

Fa)+Fw) g, |5 GO0 1 —r(22).

2 A—00 n! 2 2
ns)\%’y

Therefore
F(1—=®%z+9y) = (1 —9)F(x) + VF(y) (3.3)

for all dyadic rational numbers ¥ € D := {2%1 meN, j€{0,1,...,2™}} and z,y > 0.

Let ¢ € [0,1] and z,y > 0, < y. Choose a non-increasing sequence (9,), in D so
that lim¢,, = 9. Then (3.3) and right-continuity of F' yield concavity:
n

F(1-9x+9y)=F(z+9dy—1x)) = li;LnF(ac + O (y — )
> lim((1 = 9,) F(@) + 0. F(3) = (1= 0)F(z) + 0F(y).
(]
Remark 3.2. (a) Condition (i) implies that (=X\)"f™(X) = A~! for all A > X\ and
n € Nu {0}. In particular, f(A) = e = S[o ) e 51y (dt) does not satisfy this condition.
(b) Condition (i) is equivalent to

A f(n+1)()\)

1
MEESEOIEY

=

Noting that
(n+ DSV N) + AFTED) = (A () 0D,
it follows that (Af(\))™+1) must have the same sign as f(™()). Thus (i) is equivalent to
(=D)"AfA)™* ) =0 forall neNuU{0} and A > \g.
In particular, (i) holds if Af(\) is a Bernstein function (cf. Section 4 for a definition) .
Corollary 3.3. Let f € CM. Define a function g: (0,00) —> R by
9(A) := fe(A +wp), A >0.

Assume that g satisfies the assumptions of Proposition 3.1. Then the representing measure
of f has a density v(t) such that

t > ey (L) is non-increasing.
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Proof. It follows from the assumption and Proposition 3.1 that the representing measure
of g has a non-increasing density. Then by Lemma 2.1 (iii) we obtain

f”n(t) dt = g(\) = fe(A+wp) = J e*)‘tefwotz/(dt) forall A>0.

[0,0)

The uniqueness of Laplace transform (cf. [SSV12, Proposition 1.2]) implies that e “0y(dt) =
n(t) dt, which implies that the representing measure of f has density v(t) and

i efwot,/(t) = n(t) is non-increasing.

4. BERNSTEIN FUNCTIONS

In some situations it is more convenient to state Theorem 1.3 for Bernstein functions,
that is, the following class of functions
BF :={¢: (0,0) - [0,00): ¢ isa C® function and
(=) 1™ (X) =0 forall neN, A>0}.

Every ¢ € BF can be uniquely represented by a triple (a, b, 1), where a,b > 0 and pu is
a measure on (0,00) satisfying S( 1 A t)u(dt) < oo, in the following way (cf. [SSV12,

Theorem 3.2)):

0,00)(

d(\) = a+ b + f (1— e M)u(dt) for A>0. (4.1)
(020)

The measure p will be called the Lévy measure of ¢. It follows from the definition that
¢ € BF implies ¢' € CM. Taking derivative in (4.1) one gets

d'(N\)=0b+ f e Mtu(dt) for A >0, (4.2)
(0,0)

which shows that the representing measure of ¢’ is given by bdgo, + tu(dt) .

Let ¢ € BF. Since derivatives of ¢ are monotone, we can define an extension ¢, similarly
as in (1.1). Then ¢, € C*(—p,00) with g := —wg/. Using similar ideas as in the proof of
Lemma 2.1 it can be proved that f(\) := ¢e(A + wp) is an extended Bernstein function
in the sense of [SSV12, Remark 5.9], that is, f: (0,00) — R is a C* function satisfying
(=) 1™ (\) =0 forall ne Nand X > 0.

These observations yield the following corollary to Theorem 1.3.

Corollary 4.1. Let ¢ € BF and set § := —w? . Assume that its Lévy measure has a
density pu(t) such that t — etu(t) is a non-increasing function. Let ¢, be an extension of

¢ defined by (1.1).
(i) There is a constant ¢y > 0 such that

p(t) < —cit 2@t — B)e™ Pt for all t>0.
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(ii) If there exist constants > 0, 0 < A; < Ay < 0 and v > 0 such that

(ﬁ”(A.’E _ 6) _
<Oz Il x>1 and Xe (A1, A2),
SO F) x~ 7 forall x an € (A1, A9)
then there exist constants ca > 0 and 6 € (0,1) such that
p(t) = —cot 3oLt — B)e Pt for all te (6A;Y,0A7Y).
In order to use this result, the class of complete Bernstein functions will be useful:

CBF := {¢ € BF: the Lévy measure u in the representation (4.1)

has a completely monotone density} .

The class CBF is closed under composition, pointwise convergence of functions and the
following property holds:

¢peCBF, ¢ #0 if and only if ¢*()) := gb()\)\) isin CBF (4.3)

(cf. [SSV12, Proposition 7.1, Corollary 7.6]) .

Before giving some examples, we will prove a lemma that can be useful in checking the
assumptions of Corollary 4.1.

Lemma 4.2. Let ¢ € BF be such that a = b = 0 in the representation (4.1) and set
B = —wg) > 0. If ha(N\) :== ¢e(A + a) — ¢e(a) is in CBF for any a > —f then the Lévy
measure of ¢ has a density u(t) such that

t i Ptu(t) isin CM. (4.4)

Proof. Denote the density of the Lévy measure of h, by p, € CM. By the uniqueness of
the Laplace transform (cf. [SSV12, Proposition 1.2]) and

e ¢] a0
fe_’\ttpa(t) dt = hl,(\) = ¢.(A+a) = Je_’\te_“tt,u(dt) for t>0,
0 0

it follows that e~ % u(dt) = pa(t) dt. Therefore, u1 has a density u(t) and e=*u(t) = pq(t)
is in CM. Since CM is closed under pontwise convergence of functions,

Alut) = lim  pu(t) isin CM.
a—(—B)+
O

Example 4.3. Let us consider some functions belonging to the class CBF. In parts (b)
and (c) closed expressions of Lévy densities are not known.

(a) &(\) =log(1+ aX) is in CBF for any a > 0, since

< efa_lt
log(1 + a)\) — fu —e M,
0
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(b) ¢(A) =log(1+1log(1l+ N)) is in CBF, since this class is closed under the operation
of composition of functions.
In this case f = 1 — e~ 1. Using the part (a) it follows that

log (1 + 1%)

Be(A+a) — ¢e(a) =log [ 1+ m

isin CBF

for all a > —f0 and so we can apply Lemma 4.2 . Furthermore,

1+ [log(1 + eX)] ™ {)\—2 0<i<l

—p (A=) = (e=1 + X)2log(1 + e)) = A log(1+N)]™t A>1.

Thus Corollary 4.1 can be applied (with Ay = 0, Ag = o0 and any 7 € (0,2)) to
obtain

1
T 0<txl
MOER S

e—(1—e7 1yt

. t>1.

(c) Example (b) can be generalized in the folowing way: define
d1(A\) :=log(l + A) and ¢py1:=dn0¢1 for neN.

Using the approach from (b) it follows that the Lévy density u,(t) of ¢,, satisfies

e
Mn(t) - T i ¢k(t71) 0 < t < 1
ebn (—D)t

Note that lim ¢, 1(—1) = 0.
n

Remark 4.4. Now we can explain why the functions in Example 1.5 belong to the class
CM. Since A%, log(1+ \) are in CBF and 1%\ is in CM, by using the fact that CMoBF

CM (cf. [SSV12, Theorem 3.7)) it follows that f € CM in all examples. Noting that —2 -~

1+¢(N)
is in CB.F, it follows that for some a,b > 0 and n € CM
1 (1o e i
a —e a
——=—+b ———n(t)dt = - +b “My(t,00) dt
T+ 00 T +J 3 n(t) 3t +Je v(t,00)dt,
0 0

where v is the measure with density 7. Since f(0) = 1, we conclude that a = 0. Also,
from )\lim f(A) =0 we get b =0. Thus, (A-1) holds for f.
—00

To check (A-2), it is enough to note that Afe(\ + a) is in CBF for every a > wp. Since
CBF is closed under pointwise convergence of functions, Afe(A + wp) is in CBF. Now we
can use Remark 3.2 (b) and Corollary 3.3.
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5. APPLICATIONS TO NON-LOCAL EQUATIONS

As a first application of the main result we consider decay of solutions of the equation
p(—A)u+u=f in R?, (5.1)
where A is the Laplacian in R and ¢ € BF.

The operator ¢(—A) should be understood in terms of the Fourier transform (as a
pseudo-differential operator):

¢(—=A)u(€) = o(I€)a(e), ¢ e RY, (5.2)
for u e D(¢(—A)) := {ue L2(RY): ¢(|¢]>)a(¢) isin L*(R?)}. Similarly as in Remark 4.4
one concludes that ®(\) := #ﬂ/\) is in CM. Let v be its representing measure.

Assume in the rest of this section that @ = b = 0 in the representation (4.1) of ¢. Then
v({0}) = /\1im ®(\) =0.
—00

The fundamental solution of the equation (5.1) is a function K : R\ {0} — R defined by
K@) = | pt.owidn, 2e R0},
(0,00)
where p: (0,0) x R? — R is the Gauss-Weierstrass kernel given by
|2
plt, @) = (dmt)~ Y25
Remark 5.1. (a) For every ¢ > 0
f p(t,z)dr =1 and m(f) = et
R4

(b) The fundamental solution belongs to L' (RY), since {3, K (z) dz = v(0,0) = lim ®(\) =

N A—0+
1. Therefore, K(§) = S(O,oo) e (dt) = ®(¢).
If fe LY(RY) n L?(RY), then
u(z) == (K * f)(z) := JK(QE —y)f(y)dy for xeR? (5.3)
Rd

defines the unique solution of (5.1). Indeed, by Remark 5.1 (b) and (5.2),
[B(=A)u] (€) + () = (#(1€*) + DEE)F(©) = f(©)

The main result of this section gives some estimates of the fundamental solution.

Proposition 5.2. Let ¢ € BF such that a = b = 0 in its representation (4.1). Assume

that ®(\) := #@\) satisfies (A-1) and (A-2) and let K 1= 1/ —w.

(i) If k > 0, then there is a constant ¢; > 0 such that

K(z) < cﬂxf%@’e@ﬁ\xrl —k2e T for all |z =1.
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(ii) In the case k = 0, there exists a constant ca > 0 such that
K(z) < cor 4720 (r=2) for all x € RY, 2\{0}.

Moreover, for any o > 0

K
lim sup (z) = +00.
|x|—>+00 e~alal
Remark 5.3. If A > ¢.(\ — k?) is in CBF, then so is A®.(\ — K2) = m by (4.3).

Remark 3.2 (b) implies that the assumptions (A-1) and (A-2) hold.

Proof of Proposition 5.2. (i) Applying Proposition 1.3 (i) to @ it follows that the density
of the representing measure satisfies
v(t) < —et 2oLt — /iZ)e*”Qt for t>0.

We aim to apply Lemma A.1 with f(t) := —t20.(t71 — k2), a:= 4, b:= x and c := 2.
By Lemma 2.1 (ii) it follows that —®’, is non-increasing, which implies that ¢ — t2f(t) is
non-decreasing.

It is left to check that f is non-increasing. Here we use some ideas from the proof
of [SSV12, Theorem 11.3]. Assumptions (A-1) and (A-2) imply that ¢ — e*tu(t) is a
non-increasing function. Let ¢ := tli_)rroé e“tu(t) and let 1 be a measure on (0, 00) defined
by

p(t,00) := e“Qtu(t) —q, t>0.
By Lemma 2.1 (iii),

o0
D (N — %) = Je)‘te”ztu(t) dt
0

and so

NP (N -k =q+ f (1 — (14 M)e M)u(dt).
(0,00)
Since A — 1 — (1 4+ M)e™™ is non-decreasing for every ¢ > 0, it follows that f is non-
increasing.
(ii) By Theorem 1.3 (i),
2 ()
(1+o(t71))?

The idea is to apply Lemma A.2 with f(¢) := %, a = g and ¢ := 2. The

assumptions that f is non-increasing and ¢ ~ #2f(t) is non-decreasing can be checked

v(t) < —et 20/t = ¢ for t>0.
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similarly as in part (i). If d = 1,2, then for all t > 0 and = > 1,
fwﬂ_fmw*m<1ww4>2<52
ft) ¢'(t=1) \1+o(ttz)) ~° 7

since ¢ is non-decreasing and ¢’ is non-increasing. Therefore, v = 2 > 1 — g and we can
apply the lemma with R = 0.

Let o > 0. Since v(t) is non-increasing,
207 x|

|z|2 olz|
> (2o al) [ e de > cafolEH (20 al)e

ol

Now we can use Theorem 1.3 (iii) to conclude that lim sup e’/ K (z) = o0
|z|—00

O

Proposition 5.2 can be used to investigate decay of the solution to (5.1). Two examples
of non-local equations with different behavior of solutions will be given.

Example 5.4. Let 0 < a < 2 and consider
(=AY 2y +u=f
with f € C.(R?).
Here ®(\) = H)\%/Q and x = 0. Proposition 5.2 (ii) implies that K (z) < |2z|~%® for
r € RN{0} and thus, by (5.3),
lu(z)| < clz|~4* for zeR?.

Moreover, if f is non-negative, then for any o > 0

o]

lim sup —
2|00 €

03

in other words, the solution does not have exponential decay.
Example 5.5. For the equation
log(l —A)u+u=f in R?
with f € C*(R?) we have
1

Pe(X) = 1+ log(l+A)

Proposition 5.2 (i) implies that the solution has an exponential decay; for every a <
v/1 — e~ there exists a constant ¢ = ¢(a) > 0 so that

for A>wd=e1-1.

K(z) < ce” ™ for |z|>1.

This implies
lu(z)| < ce™ ™ for 2 eR?.
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6. KERNELS AND NON-LOCAL OPERATORS

A second application of the main result is a representation of the operator —¢(—A) on
C*(R?). Since we have assumed a = b = 0 in the representation (4.1), —¢(—A) will be a
non-local operator (cf. (6.2)).

Define an operator A on C*(RY) by

Au(z) := lim (u(z +y) —u(z)) J(y) dy

e—0+
ly|>e

with J: R\ {0} — (0,0) defined by

J(y) = j p(t, y)u(dt), (6.1)
0

where p is the Lévy measure of ¢ and p is the Gauss-Weierstrass kernel. Using symmetry
of the kernel J, operator A can be rewritten as

Au(z) = j (ule + y) — ule) — V() - yLgyeny) J@) dy
R4\{0}

By Fubini theorem, symmetry and Remark 5.1 (a),

Tu(e) = a(¢) f J (€ 1~ € ylyyye)plts y)dy ulde)
(0,00) R4\{0}

a(e) f (p(6, ) (—€) — Duldt) = () f (e~ — 1)p(dt)
(0,00) (0,00)

— —a©)6(eP).

In the last equality we have used representation (4.1) of ¢ together with the assumption
a =b=0. Therefore, for any u e C*(R?)

—¢(=Aul(e) = lim | (u(z+y) —u(@)) J(y)dy. (6.2)

ly|>e

Using (6.1) one can analyze behavior of the kernel J of the operator —¢(—A).
Proposition 6.1. Let ¢ € BF and let § := —w?. Assume that all assumptions in
Corollary 4.1 hold with Ay =0 and Ay = oo . Furthermore, assume that
A= —A¢r (A — B) is non-increasing (6.3)
and, in the case d < 2 and 3 = 0, there are constants 6 > 0 and 7' < 2 + g so that
¢"(Az)
¢"(A)
Then the following holds:

>0z forall A>0 and x>=1.
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(1) J(y) = —ly[=*¢"(ly| ™) for all 0 < |y| < 1
(ii) o B > 0, then
J(y) ==l 36y = B)e VW for ail [y] > 1;
(iii) of B =0, then
J(y) = —lyl™ """ (ly| ) for all |y| > 1.
Proof. By Corollary 4.1 it follows that the Lévy density of u satisfies
ul(t) = f()e ", t >0,

with f(t) := —t3¢"(t71 — 8). We want to apply results from Appendix A with a := %,
b:=+/B and c:= 2.

Similarly as in the proof of Proposition 5.2, from (A-1) and (A-2) we deduce that
t — ePtyu(t) is a non-increasing function and so there exists ¢ := tlirf ePu(t) and it is
——+00

possible to define a measure v on (0,0) by v(t,0) := e u(t) — ¢. Then Lemma 2.1 (iii)
implies that, for any A > 0,

e} o0
oA —B) = qjte—” dt + fte—”u(t, o) dt
0 0

q 1—e M1+ Mt

(0,0)
Therefore,
—NI(A—B) =2q+ f (2 — (\)? + 2Xt + 2)e M) v(dt) .
(0,0)
Noting that X — 2 — ((A\t)% + 2\t 4+ 2)e~ is non-decreasing for every t > 0, it follows that
A —A3¢" (X — B) is also non-decreasing, and so f is non-increasing. By the assumption

(6.3) we see that t — t2f(t) is non-decreasing. Now Lemma A.1 and Lemma A.2 imply
all claims of the proposition. O

Example 6.2. Let ¢(\) = X*?log(1 + \=%?) (0 < a < 2). Then 8 = 0 and ¢ € CBF
(cf. [SSV12, Corollary 7.15 (iii)]). Since

—a/2
_(z)//()\)z{)\ 0<A<l1

A2 2 Jog(1+A) A > 1,
from Proposition 6.1 we get

Tlu) = ly[ = *log(1 + |y]™2) 0<|y[ <1
(y) = —d—A+a
|yl ly| = 1.

Example 6.3. Let ¢(\) = log(1 + log(1 + A)). By Example 4.3 (b) and Proposition 6.1,

ly| " log(1 + |y|73)~' 0< |yl <1
) = { | | |

=T e VT >
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Example 6.4 (Generalized relativistic Schrodinger operator). Let av € (0,2) and m > 0
and let () = (A\+m?*)2 —m . Here § = m?* and both conditions in Lemma 4.2 hold.
Therefore, one can use Proposition 6.1 to deduce

i 0<yl<1
J = o o
(v) {‘y|_d+2+1€_m1/ ly| ‘y| > 1.

The relativistic Schrodinger operator corresponds to v =1 and d = 3.

APPENDIX A. TWO TECHNICAL LEMMAS

Let f: (0,00) — (0,00) be a non-increasing function. Define F': (0,00) — (0,00) by
« 2
F(r):= Jt“eb%e_cgtf(t) dt, r>0,
0

where a,b > 0 and ¢ > 0.

Lemma A.1. Assume that b > 0 and that t — t>f(t) is a non-decreasing function. Then
F(r)= 7“_“+%f (&) e 2ber forall m>1.

Proof. First we note that

t’“e_<crt_b\/z)2f(t) dt.

F(T) _ 672bc_1r

N2
Using change of variables s = c%ﬁ — b/t we get t = (%ﬁl’cl’) and

©
pet B 1\ —2a+2 3 s\ 2 .2
F(’I“) = Qe b7 J ( s+\/s2gr4bc r) f ( S+\/52;r4bc r) S§+4bcés_1r ) (Al)
Since
s+ —s+ /82 + 4bc~!r is non-increasing (A.2)

it follows that
2
f((—sﬂr vs;;r‘lw> ) gf(ﬁ) for s <0

and

(memspmte)” s ((=fe)’) < (1) £ () for 50,
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The last two observations and (A.1) yield

0
Cop -1 w1 e —2a+2 g2
F(T) <% 2bc 'rf (&) J( s+ 52;4bc r) \/53#1%

—00

0
+ (l;)zj (—s+x/s§;—4ﬁ) —2a—2 S*SQdil
Vs2+4bc1r

0

For the first integral we note that, by dominated convergence theorem,

0
—2a+2
lim Ta—% —s5+4/52+4bc— 11 at e~ ds
Jim S E— VaT+dbe Tt
—o0
p - £+4b6_1 e 2 a—3 a—1
— lim NG r e~ %"ds b2 247
- 2b 2 - 4 '
r—+00 \/37+4bc_1

—Q0
This together with a similar computation in the second integral yield a constant co =
c2(a, b, c) > 0 so that the following holds

F(r) < 027“_‘”%]" (&) e 2 forall r>1.

To obtain the lower bound, we use (A.1) and (A.2) to get

o0
1 — —2a+2 — 2 _2
F(T) > 9p—2bc rf (—s+\/s;;-4bc 17“) f (—s+\/s;;-4bc 1r) e~ "ds

Vs2+4be1r

0
“obetr S(ge) [ (—sev/aTrabe 1) 20T g2
= 2e \/bc—clr =% e ds.
0
Similarly as before, the dominated convergence theorem yields
e}
lim 7“&_1 f (75+\/s;gr4bc—1r)72a+2 6—52 ds = (bc)aglﬁ .

r—+00

0
and thus there is a constant ¢; = ¢1(a, b, ¢) > 0 such that

F(r)= clr*‘”%f (%) e 27 forall r>1.
(]

Lemma A.2. Assume that b = 0 and that that t — t>f(t) is a non-decreasing function.
If a < 1 we additionally assume that there exist constants ¢ >0, >1—a and R > 0 so
that

<dz™ forall t>R and z>1. (A.3)

Then
F(r) =r722%2 (%) for all > Ry,
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VR d=1,2

where Ry :=
0 d=3

Proof. Since t — t2f(t) is non-decreasing,

7’2 7‘2

-2 2
ft_“e_cztf(t) dt < rtf(r?) ft_“_Qe_cQt dt
0 0

8

_ 02a+27“_2a+2f(7“2) s% 5 ds.

c—2

Q0
Since f is decreasing, for a > 1 we deduce §t~2f(t)dt < f(r*)(a —1)"1r=29%2 In the
r2
case a < 1 we use (A.3) to get
I [0t
t
t7Of(t) dt = f(r? ft“ dt

0

<Pt [0 < ),

r2

7.2
for any r > v/R. This proves the upper bound.
Since f is decreasing, the lower bound follows from

r2 r2

F(r) = Jt“e_cftf(t) dt = f(r?) Jt“eﬁz dt
0

0

0
— 62a72r72a+2f(r2) j Sa72€fs ds .
—2

c
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