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Abstract. In this article behavior of measures on r0,8q is studied by considering their
Laplace transforms. We present a unified approach that covers many cases when Kara-
mata’s and de Haan’s Tauberian theorems apply. If the Laplace transform can be ex-
tended to a complex half-plane containing the imaginary axis, we prove that the tail
of the representing measure has exponential decay and establish the precise rate of the
decay. We translate this result to the language of Bernstein functions and give two
applications in the theory of non-local equations.

1. Introduction and main result

The Laplace transform represents a powerful integral transform in analysis. Besides
transforming operations which appear naturally in analysis (e.g. convolution or differen-
tiation) to simple algebraic operations, the real power of this integral transform can be
seen through Tauberian theorems. Theorems belonging to this class determine asymptotic
behavior of a function (or a measure) from asymptotic properties of its Laplace transform.

A classical example is Karamata’s Tauberian theorem, which says that regular varia-
tion of the Laplace transform implies regular variation of the distribution function of the
measure (cf. [Fel71, Section XIII.5] or [BGT87, Section 1.7]). In this article we formulate
and prove a Tauberian type theorem that also treats measures with density that is not
necessary of regular variation (e.g. densities with exponential or logarithmic behavior).
In particular, we will see that exponential decay of density occurs when it is possible to
extend its Laplace transform to a complex half-plane containing the imaginary axis.

Although the article is written analytically, our motivation comes from probability the-
ory. When considering jump processes, it is often important to know the behavior of
measures that govern jumps. Typical examples are rotationally invariant symmetric sta-
ble process and variance gamma process. The density of the jump measure of the former
process does not have exponential decay, while the one of the latter process has. By us-
ing our approach one can obtain behavior of the jump measure of a large class of jump
processes which includes previously mentioned examples.
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Let us be more precise now. Recall that the Laplace transform of a measure ν on r0,8q
is a function Lν : p0,8q Ñ r0,8s defined by

pLνqpλq :“

ż

r0,8q

e´λtνpdtq for λ ą 0 .

If the integral converges for all λ ą 0, the Laplace transform belongs to the class of
completely monotone functions, which is a class of functions defined by

CM :“ tf : p0,8q Ñ R : f is a C8 function and

p´1qnf pnqpλq ě 0 for all n P NY t0u, λ ą 0u .

The converse is also true; for any f P CM there exists a unique measure ν on r0,8q so that
Lν “ f . These two statements are known as Bernstein’s theorem (cf. [Fel71, Theorem
XIII.4.1] or [SSV12, Theorem 1.4]). The measure ν will be called the representing measure
of f .

Before stating our conditions and the main result, we introduce a notion of extension
of a completely monotone function.

Let f P CM. Since all derivatives of f are monotone, we can set f pnqp0`q :“ lim
λÑ0`

f pnqpλq P

r´8,8s for all n P NY t0u. Let

ω0 :“ ωf0 :“

$

’

’

&

’

’

%

inftλ P R :
8
ř

n“0

f pnqp0`q
n! p´λqn converges u if |f pnqp0`q| ă 8

for all n P NY t0u
0 otherwise

where we have used the convention that the infimum of the empty set is infinite. Now we
can define an extension fe : pω0,8q Ñ p0,8q of the function f by setting

fepλq “

$

&

%

8
ř

n“0

f pnqp0`q
n! p´λqn ω0 ă λ ď 0

fpλq λ ą 0 .
(1.1)

Remark 1.1. It may happen that all right derivatives f pnqp0`q exist, but ω0 “ 0. E.g.
for α P p0, 1q, νpdtq :“ e´t

α
dt and fpλq :“ pLνqpλq “

ş8

0 e´λt´t
α
dt it follows that

p´1qnf pnqp0`q “
ş8

0 tne´t
α
dt is finite for any n P N, but ωf0 “ 0, since

8
ÿ

n“0

f pnqp0`q

n!
p´λqn “

8
ż

0

e´λt´t
α
dt “ 8 for all λ ă 0 .

Remark 1.2. In general theory of Laplace transform, ω0 is also known as the abscissa of
convergence of the integral

ż

r0,8q

e´ztνpdtq for z P C. (1.2)

More precisely, the region of convergence of the integral (1.2) in C is the half-plane M “

tz P C : <z ą ω0u and the integral in (1.2) defines an analytic function on M with
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singularity at z “ ω0 (cf. [Wid46, Corollary II.1 and Theorems II.5a, II.5b]). This implies
that the extension fe defined by (1.1) is the restriction of the analytic function

F : M Ñ C, F pzq :“

ż

r0,8q

e´ztνpdtq, z PM

to the real interval pω0,8q. We show in Lemma 2.1 that fepλq “
ş

r0,8q e
´λtνpdtq for all

λ ą ω0 without using this general theory of Laplace transform.

Throughout the paper the following conditions concerning f P CM will be used:

(A-1) the representing measure ν of f has a density with respect to the Lebesgue measure,
i.e. there exists a function

ν : p0,8q Ñ p0,8q such that νpdtq “ νptq dt ;

(A-2) ω0 ą ´8 and t ÞÑ e´ω0tt´1νptq is non-increasing;
(A-3) there exist constants θ ą 0, 0 ď Λ1 ă Λ2 ď 8 and γ ą 0 such that

f 1epλx` ω0q

f 1epλ` ω0q
ď θ x´γ for all x ě 1 and λ P pΛ1,Λ2q .

Let us comment condition (A-3) (in Sections 3 and 4 we will see how to treat conditions
(A-1) and (A-2)). A function ψ : p0,8q Ñ p0,8q is said to vary regularly at infinity (at
the origin) with index ρ P R if

lim
λÑ8
pλÑ0`q

ψpλxq

ψpλq
“ xρ for all x ą 0 .

A function that varies regularly with index 0 is also said to vary slowly. By Potter’s
Theorem (cf. [BGT87, Theorem 1.5.6 (iii)]) it will follow that f P CM satisfies (A-3) if
f 1 varies regularly with index ρ ă 0 at the origin (take Λ1 “ 0 and Λ2 ă 8) or at infinity
(take Λ1 ą 0 and Λ2 “ 8).

Now we can state the main theorem.

Theorem 1.3. Let f P CM and assume that it satisfies (A-1).

(i) If (A-2) holds, then there is a constant c1 ą 0 such that

νptq ď ´c1t
´2f 1ept

´1 ` ω0qe
ω0t for all t ą 0 .

(ii) If (A-2) and (A-3) hold, then there exist constants c2 ą 0 and δ P p0, 1q such that

νptq ě ´c2t
´2f 1ept

´1 ` ω0qe
ω0t for all t P pδΛ´1

2 , δΛ´1
1 q .

(iii) For any ω ă ω0

lim sup
tÑ8

νptq

eωt
“ `8 .

Remark 1.4. (a) Theorem 1.3 (i)-(ii) says that exponential decay of the density of
ν is connected to the fact that the Laplace transform of ν can be analytically
extended to a half-plane in C that contains the imaginary axis tz P C : <z “ 0u.

(b) Theorem 1.3 (iii) implies that in case ω0 “ 0 there is no exponential decay of ν.
Nevertheless, subexponential decay is possible, as Remark 1.1 shows.
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(c) If ω0 “ ´8, superexponential behavior can occur (e.g. νpdtq “ e´t
2
dt).

(d) In case ω0 “ 0, Theorem 1.3 represents a unified approach that covers many cases
when classical Tauberian theorems apply (cf. Corollary 1.6 and the discussion
following it) .

In the following examples our Theorem 1.3 is useful, since no closed expression of the
density of the representing measure is known.

Example 1.5. It can be checked that (A-1)–(A-3) hold in this example with Λ1 “ 0 and
Λ2 “ 8 and thus Theorem 1.3 can be applied (cf. Remark 4.4).

(a) fpλq “
1

1` λα
p0 ă α ă 1q νptq —

#

t´1`α 0 ă t ă 1

t´1´α t ě 1

(b) fpλq “
1

1` logp1` λq
νptq —

#

t´1

logp1`t´1q2
0 ă t ă 1

e´p1´e
´1qt t ě 1

(c) fpλq “
1

1` logp1` λαq
p0 ă α ă 1q νptq —

#

t´1

logp1`t´1q2
0 ă t ă 1

t´1´α t ě 1

As mentioned earlier, Theorem 1.3 covers some cases where classical Tauberian theorems
also apply. Before discussing this, we record the following

Corollary 1.6. Let f P CM be such that f 1 varies regularly at infinity (at the origin) with
index ´ρ´ 1, where 0 ď ρ ď 1.

If the representing measure of f has a non-increasing density νptq, then

νptq — ´t´2f 1pt´1q for all t P p0, 1q p for all t ą 1q .

Let f P CM and assume that it satisfies the assumptions of Corollary 1.6. By [BGT87,
Theorems 1.4.1 and 1.5.11 (and Proposition 1.5.9a if ρ “ 0)],

fpλq “

#

λ´ρ`pλq ρ ą 0

`pλq ρ “ 0

where ` : p0,8q Ñ p0,8q varies slowly at infinity (at the origin).

(a) For 0 ă ρ ď 1 we obtain the same behavior of the density as in Karamata’s
Tauberian theorem, since Corollary 1.6 implies

νptq — ρtρ´1`pt´1q for all t P p0, 1q p for all t ą 1q

(cf. [BGT87, Theorems 1.7.1 and 1.7.2]).
(b) Karamata’s theory does not apply to the case ρ “ 0. Since f 1 varies regularly with

index ´1, by the uniform convergence theorem for regularly varying functions (cf.
[BGT87, Theorem 1.5.2]) we get

lim
λÑ0`
pλÑ8q

fp 1
λxq ´ fp

1
λq

´ 1
λf
1p 1
λq

“ ´ lim
λÑ0`
pλÑ8q

1
x
ż

1

f 1p tλq

f 1p 1
λq
dt “ ´

1
x
ż

1

dt

t
“ log x
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for any x ą 0 . Now de Haan’s Tauberian theorem (cf. [BGT87, Theorems 3.6.8
and 3.9.1]) can be applied to obtain

lim
tÑ0`
ptÑ8q

νptq

´t´2f 1pt´1q
“ 1 .

Note that these estimates are the same (up to constants) as in Corollary 1.6.

The following result can be considered as a converse to Theorem 1.3 .

Theorem 1.7. Let f P CM and assume that it satisfies (A-1).
(i) If there exist c ą 0, α P p0, 1s and β ą 0 such that

νptq ď c e´βt
α

for all t ě 1 ,

then f pnqp0`q is finite for any n P N. Moreover, in case α “ 1, it follows that ω0 ď ´β
and

fepλq “

$

&

%

8
ř

k“0

f pkqp0`q
k! p´λqk λ P p´β, 0s

fpλq λ ą 0

defines a C8-extension of f to p´β,8q .
(ii) If there exists m P N such that

lim inf
tÑ8

tmνptq ą 0 .

then f pnqp0`q is infinite for any n ě m´ 1 .

Note that in case of subexponential behavior in Theorem 1.7, i.e. α P p0, 1q, we can

have ωf0 “ 0 (cf. Remark 1.1). If the density of the representing measure has a polynomial

decay, then it cannot happen that all right derivatives f pnqp0`q are finite, as the following
example shows.

Example 1.8. Let fpλq “ λ
1`λ ´ 2λ logp1` λ´1q. In this case it follows that (cf. [SSV12,

p. 312, No. 46] and Section 4):

νptq “
2´ e´tpt2 ` 2t` 2q

t2
„ 2t´2 as tÑ8 .

A simple computation shows that fp0`q “ 0 and f 1p0`q “ ´8 .

Theorem 1.3 has several applications. As a first application, we show that our result
can be translated directly to the setting of Bernstein functions.

Another application is analysis of decay of solutions of some integro-differential equa-
tions in Rd. To be more precise, let f be a continuous function with a compact support.
For a local equation

´∆u` u “ f in Rd

it is known that the solution has exponential decay (cf. [Eva98, pp. 187-188]).

Considering non-local equations, different behavior of solutions appears. For example,
the solution to

p´∆qα{2u` u “ f in Rd p0 ă α ă 2q (1.3)
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will not have exponential decay; we will see that |upxq| ď c|x|´d´α for all x P Rd and in
the case of a non-negative f it will follow that

lim sup
|x|Ñ8

upxq

e´σ|x|
“ 8 for every σ ą 0 .

(cf. Example 5.4). On the other hand, the solution to

logp1´∆qu` u “ f in Rd

will have exponential decay (cf. Example 5.5).

The last application of our results is the representation of the operators of the form
´φp´∆q as integral operators. Our approach covers many examples; among others, frac-
tional Laplacian and relativistic Schrödinger operator. Essentially, the idea is to use sub-
ordination (of semigroups) to estimate the kernel of these integral operators. Although we
use this idea in the setting of the Brownian semigroup, one can treat even more general
semigroups and obtain relations between the domains of the infinitesimal generators of
the semigroup and subordinate semigroup (cf. [Phi52, Hir72, Sch96]).

New examples in applications will be the ones with kernels that have exponential decay.
In the representation of the operator ´ logp1 ´ ∆q precise asymptotic analysis of decay
was first obtained in [ŠSV06] by using the probabilistic counterpart of subordination. This
was a motivating example for investigation of a broader class of non-local operators having
similar properties. In order to treat more examples, methods for obtaining behavior of
the kernel of such non-local operators around the origin are also generalized in this paper
(cf. [SV09, KSV12, KM12]) .

The paper is organized as follows. The main results are proved in Section 2. Sufficient
conditions that guarantee existence of monotone density of the representing measure are
main topic of Section 3. The main result of this section (cf. Proposition 3.1) may be
also of independent interest. Another important class of functions, namely the class of
Bernstein functions, is treated within this framework in Section 4. Applications to non-
local potential equations are given in Section 5. In Section 6 we obtain asymptotical
behavior of kernels of a class of non-local operators.
Notation. The Fourier transform of f P L1pRdq is defined by

pfpξq :“

ż

Rd

eiξ¨xfpxq dx, ξ P Rd .

We use the same notation for the extension of the Fourier transform from L1pRdqXL2pRdq
to a unitary operator on L2pRdq (cf. [Fol99, Theorem 8.29]). The inverse Fourier transform
is denoted by q .

We write fpxq — gpxq for x P I if fpxq
gpxq stays between two positive constants for every

x P I .

2. Completely monotone functions

The main goal of this section is to prove Theorem 1.3. We start with an auxiliary lemma
that helps us to avoid general theory of Laplace transform (cf. Remark 1.2).



LAPLACE TRANSFORMS AND EXPONENTIAL BEHAVIOR 7

Lemma 2.1. Let f P CM with the representing measure ν and let fe be its extension
defined by (1.1). Then

(i) fe P C
8pω0,8q

and for all m P NY t0u and λ ą ω0

(ii) p´1qmf
pmq
e pλq ě 0

(iii) f pmqe pλq “ p´1qm
ż

r0,8q
tme´λtνpdtq .

Proof. If ω0 “ 0 there is nothing to prove, so we can assume that ω0 ă 0.

(i) To check smoothness it is enough to check it at λ “ 0; this holds, since f
pmq
e p0´q “

f pmqp0`q for all m P NY t0u .
(ii), (iii) Let m P N Y t0u, n P N and λ P p´ω0, 0s. Since ω0 ă 0, it follows that

p´1qkf pkqp0`q “
ş

r0,8q t
kνpdtq for every k P NY t0u and so

p´1qmf pmqe pλq “
8
ÿ

k“0

p´1qm`kf pm`kqp0`q

k!
p´λqk

“

8
ÿ

k“0

ż

r0,8q

tm`kp´λqk

k!
νpdtq “

ż

r0,8q

tme´λtνpdtq ě 0,

where in the last equality we have used Beppo-Levi theorem. �

Remark 2.2. Note that Lemma 2.1 (iii) shows, in particular, that

fepλq “

ż

r0,8q

e´λtνpdtq for all λ ą ω0 .

Proof of Theorem 1.3. (i) Let λ ą 0. Then

´f 1epλ` ω0q ě

λ´1
ż

0

e´ω0te´λttνptq dt rby Lemma 2.1 (iii) with m “ 1s

ě λνpλ´1qe´ω0λ´1

λ´1
ż

0

e´λtt2 dt rby (A-2)s

ě p3eq´1e´ω0tλ´2νpλ´1q .

This gives the upper bound; take t ą 0 and set λ “ t´1 to deduce from the previous
display that

νptq ď ´3et´2eω0tf 1ept
´1 ` ω0q . (2.1)
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(ii) Let δ P p0, 1q and λ P pΛ1,Λ2q. Then

8
ż

δλ´1

e´ω0te´λttνptq dt “

“ ´f 1epλ` ω0q ´

δλ´1
ż

0

e´ω0te´λttνptq dt rby Lemma 2.1 (iii) with m “ 1s

ě ´f 1epλ` ω0q ´ 3e

δλ´1
ż

0

e´λtt´1p´f 1ept
´1 ` ω0qq dt rby (2.1)s

ě ´f 1epλ` ω0q ´ 3eθp´f 1epλ` ω0qqλ
γ

δλ´1
ż

0

e´λttγ´1 dt rby (A-3)s

ě ´f 1epλ` ω0q ´ 3eθγ´1δγp´f 1epλ` ω0qq .

Choosing δ P p0, 1q small enough so that 1´ 3eθγ´1δγ ě 1
2 one obtains

1
2p´f

1
epλ` ω0qq ď

8
ż

δλ´1

e´ω0te´λttνptq dt

ď pδλ´1q´1νpδλ´1qe´ω0λ´1

8
ż

δλ´1

e´λtt2 dt rby (A-2)s

ď 5δ´3pδλ´1q2νpδλ´1qe´ω0δλ´1
.

Let t P pδΛ´1
2 , δΛ´1

1 q. Then λ “ δt´1 P pΛ1,Λ2q and thus the last display implies

νptq ě
δ3

10
t´2p´f 1epδt

´1 ` ω0qqe
ω0t

ě
δγ`3

10θ
t´2p´f 1ept

´1 ` ω0qqe
ω0t rby (A-3)s .

(iii) Assume that the claim is not true. Then there exist ω ă ω0, c1 ą 0 and t0 ą 0 so
that

νptq ď c1e
ωt for all t ą t0 .

By the dominated convergence theorem one concludes that f pkqp0`q is finite and f pkqp0`q “
ş8

0 tkνptq dt for all k P NY t0u. Using Beppo-Levi theorem it follows that

8
ÿ

k“0

f pkqp0`q

k!
p´λqk “

8
ż

0

e´λtνptq dt
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ď νpp0, t0sq ` c1

8
ż

t0

eωte´λt dt ă 8 for all λ ą ω .

This is a contradiction with the definition of ω0 . �

Proof of Corollary 1.6. In this case (A-1) and (A-2) hold, since ω0 “ 0. If f 1 varies regu-
larly at infinity with index ´ρ ´ 1, Potter’s Theorem (cf. [BGT87, Theorem 1.5.6 (iii)])
implies condition (A-3) with any γ P p0, 1q, Λ1 “ 1 and Λ2 “ 8. Now we can apply The-
orem 1.3 . In case of regular variation at the origin the result can be obtained similarly
(with Λ1 “ 0 and Λ2 “ 1). �

Now the converse result will be proved.

Proof of Theorem 1.7. (i) By the assumption and dominated convergence theorem, f pkqp0`q
is finite for any k P N and

p´1qkf pkqp0`q “

8
ż

0

tkνptq dt .

If α “ 1, it follows that

8
ÿ

k“0

λk

k!
f pkqp0`q “

8
ż

0

e´λtνptq dt

is finite for any λ P p´β, 0s and thus ω0 ď ´β. Lemma 2.1 (i) implies that the extension
fe is a C8-function.
(ii) Let n ě m´1. By the assumption there exist t0 ě 1 and c1 ą 0 such that νptq ě c1t

m

for all t ě t0. Then by Fatou’s lemma

p´1qnf pnqp0`q ě

t1
ż

0

lim inf
λÑ0`

e´λttnνptq dt ě c1

t1
ż

t0

dt

t
Ñ8 as t1 Ñ8 .

�

3. Existence of monotone densities

The purpose of this section is to investigate whether a measure on r0,8q has a non-
increasing density by just considering its Laplace transform. This will be useful in checking
condition (A-2).

Similar results already exist in literature. For example, in [Fel71, Corollary to Theorem
2 in XIII.4] sufficient and necessary conditions for existence of bounded densities are given.

On the other hand, in many cases of interest densities are unbounded. Here we give
sufficient conditions for existence of non-increasing densities and discuss some particular
cases when (A-2) holds.
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Proposition 3.1. Let f P CM satisfying (A-1) and assume that, for some λ0 ą 0, the
following holds:

(i)
p´λqnf pnqpλq

n!
ě
p´λqn`1f pn`1qpλq

pn` 1q!
for all n P NY t0u and λ ą λ0 ;

(ii) lim
λÑ8

fpλq “ 0 .

Then the density of the representing measure of f is a non-increasing function.

Proof. Let ν be the representing measure of f . The proof relies on the inversion formula
for the Laplace transform (cf. [Fel71, Theorem 2 in XIII.2] or [SSV12, equation (1.3)]):

νpp0, xsq “ lim
λÑ8

ÿ

nďλx

p´λqnf pnqpλq

n!
for x ą 0 . (3.1)

Here we have used that every x ą 0 is a point of continuity of ν, i.e. µptxuq “ 0, since ν
has a density.

Let F : p0,8q Ñ R be defined by F pxq :“ νpp0, xsq for x ą 0. The idea is to prove that
F is concave. Assume, for the moment, that this is done.

Since F is non-decreasing, it is almost everywhere differentiable and its derivative F 1

satisfies

F pxq “

x
ż

0

F 1ptq dt for x ą 0

(cf. [Fol99, Theorem 3.23, Corollary 3.33]). On the other hand, concavity of F implies
that

µptq :“ lim
hÑ0`

F pt` hq ´ F ptq

h
, t ą 0

is a well defined non-increasing function. Since F 1ptq “ µptq almost everywhere, it follows
that µ is the density of the representing measure:

νpp0, xsq “ F pxq “

x
ż

0

µptq dt .

It is left to prove that F is concave. Take x, y ą 0 such that x ă y. By the inversion
formula (3.1),

F pxq ` F pyq

2
“ lim

λÑ`8

»

–

ÿ

nďλx`y
2

p´λqnf pnqpλq

n!
` Ipx, y, λq

fi

fl (3.2)

with

Ipx, y, λq “
1

2

ÿ

λx`y
2
ănďλy

p´λqnf pnqpλq

n!
´

1

2

ÿ

λxănďλx`y
2

p´λqnf pnqpλq

n!
.
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The number of summands in the sums in Ipx, y, λq differs by at most one. This and
condition (i) give

Ipx, y, λq ď
p´λqn`f pn`qpλq

2n`!
or Ipx, y, λq ď ´

p´λqn´f pn´qpλq

2n´!

with n` :“ tλyu and n´ :“ tλx`y2 u . In both cases, (i) implies Ipx, y, λq ď fpλq
2 , which

together with (ii) and (3.2) yields mid-point concavity:

F pxq ` F pyq

2
ď lim

λÑ8

»

–

ÿ

nďλx`y
2

p´λqnf pnqpλq

n!
`

1

2
fpλq

fi

fl “ F

ˆ

x` y

2

˙

.

Therefore

F pp1´ ϑqx` ϑyq ě p1´ ϑqF pxq ` ϑF pyq (3.3)

for all dyadic rational numbers ϑ P D :“ t j
2m : m P N, j P t0, 1, . . . , 2muu and x, y ą 0 .

Let ϑ P r0, 1s and x, y ą 0, x ă y . Choose a non-increasing sequence pϑnqn in D so
that lim

n
ϑn “ ϑ. Then (3.3) and right-continuity of F yield concavity:

F pp1´ ϑqx` ϑyq “ F px` ϑpy ´ xqq “ lim
n
F px` ϑnpy ´ xqq

ě lim
n
pp1´ ϑnqF pxq ` ϑnF pyqq “ p1´ ϑqF pxq ` ϑF pyq .

�

Remark 3.2. (a) Condition (i) implies that p´λqnf pnqpλq ě λ´1 for all λ ą λ0 and
n P NYt0u. In particular, fpλq “ e´λ “

ş

r0,8q e
´λtδt1updtq does not satisfy this condition.

(b) Condition (i) is equivalent to

1`
λ

n` 1

f pn`1qpλq

f pnqpλq
ě 0 .

Noting that

pn` 1qf pnqpλq ` λf pn`1qpλq “ pλfpλqqpn`1q,

it follows that pλfpλqqpn`1q must have the same sign as f pnqpλq. Thus (i) is equivalent to

p´1qnpλfpλqqpn`1q ě 0 for all n P NY t0u and λ ą λ0 .

In particular, (i) holds if λfpλq is a Bernstein function (cf. Section 4 for a definition) .

Corollary 3.3. Let f P CM. Define a function g : p0,8q Ñ R by

gpλq :“ fepλ` ω0q, λ ą 0 .

Assume that g satisfies the assumptions of Proposition 3.1. Then the representing measure
of f has a density νptq such that

t ÞÑ e´ω0tνptq is non-increasing.
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Proof. It follows from the assumption and Proposition 3.1 that the representing measure
of g has a non-increasing density. Then by Lemma 2.1 (iii) we obtain

8
ż

0

e´λtηptq dt “ gpλq “ fepλ` ω0q “

ż

r0,8q

e´λte´ω0tνpdtq for all λ ą 0 .

The uniqueness of Laplace transform (cf. [SSV12, Proposition 1.2]) implies that e´ω0tνpdtq “
ηptq dt, which implies that the representing measure of f has density νptq and

t ÞÑ e´ω0tνptq “ ηptq is non-increasing.

�

4. Bernstein functions

In some situations it is more convenient to state Theorem 1.3 for Bernstein functions,
that is, the following class of functions

BF :“ tφ : p0,8q Ñ r0,8q : φ is a C8 function and

p´1qn´1φpnqpλq ě 0 for all n P N, λ ą 0u .

Every φ P BF can be uniquely represented by a triple pa, b, µq, where a, b ě 0 and µ is
a measure on p0,8q satisfying

ş

p0,8qp1 ^ tqµpdtq ă 8, in the following way (cf. [SSV12,

Theorem 3.2]):

φpλq “ a` bλ`

ż

p0,8q

p1´ e´λtqµpdtq for λ ą 0 . (4.1)

The measure µ will be called the Lévy measure of φ . It follows from the definition that
φ P BF implies φ1 P CM. Taking derivative in (4.1) one gets

φ1pλq “ b`

ż

p0,8q

e´λttµpdtq for λ ą 0 , (4.2)

which shows that the representing measure of φ1 is given by bδt0u ` tµpdtq .

Let φ P BF . Since derivatives of φ are monotone, we can define an extension φe similarly

as in (1.1). Then φe P C
8p´β,8q with β :“ ´ωφ

1

0 . Using similar ideas as in the proof of
Lemma 2.1 it can be proved that fpλq :“ φepλ ` ω0q is an extended Bernstein function
in the sense of [SSV12, Remark 5.9], that is, f : p0,8q Ñ R is a C8 function satisfying

p´1qn´1f pnqpλq ě 0 for all n P N and λ ą 0 .

These observations yield the following corollary to Theorem 1.3 .

Corollary 4.1. Let φ P BF and set β :“ ´ωφ
1

0 . Assume that its Lévy measure has a
density µptq such that t ÞÑ eβtµptq is a non-increasing function. Let φe be an extension of
φ defined by (1.1) .
(i) There is a constant c1 ą 0 such that

µptq ď ´c1t
´3φ2ept

´1 ´ βqe´βt for all t ą 0 .
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(ii) If there exist constants θ ą 0, 0 ď Λ1 ă Λ2 ď 8 and γ ą 0 such that

φ2epλx´ βq

φ2epλ´ βq
ď θ x´γ for all x ě 1 and λ P pΛ1,Λ2q ,

then there exist constants c2 ą 0 and δ P p0, 1q such that

µptq ě ´c2t
´3φ2ept

´1 ´ βqe´βt for all t P pδΛ´1
2 , δΛ´1

1 q .

In order to use this result, the class of complete Bernstein functions will be useful:

CBF :“ tφ P BF : the Lévy measure µ in the representation (4.1)

has a completely monotone densityu .

The class CBF is closed under composition, pointwise convergence of functions and the
following property holds:

φ P CBF , φ ı 0 if and only if φ‹pλq :“
λ

φpλq
is in CBF (4.3)

(cf. [SSV12, Proposition 7.1, Corollary 7.6]) .

Before giving some examples, we will prove a lemma that can be useful in checking the
assumptions of Corollary 4.1.

Lemma 4.2. Let φ P BF be such that a “ b “ 0 in the representation (4.1) and set

β :“ ´ωφ
1

0 ě 0 . If hapλq :“ φepλ ` aq ´ φepaq is in CBF for any a ą ´β then the Lévy
measure of φ has a density µptq such that

t ÞÑ eβtµptq is in CM . (4.4)

Proof. Denote the density of the Lévy measure of ha by ρa P CM. By the uniqueness of
the Laplace transform (cf. [SSV12, Proposition 1.2]) and

8
ż

0

e´λttρaptq dt “ h1apλq “ φ1epλ` aq “

8
ż

0

e´λte´attµpdtq for t ą 0 ,

it follows that e´atµpdtq “ ρaptq dt . Therefore, µ has a density µptq and e´atµptq “ ρaptq
is in CM. Since CM is closed under pontwise convergence of functions,

eβtµptq “ lim
aÑp´βq`

ρaptq is in CM .

�

Example 4.3. Let us consider some functions belonging to the class CBF . In parts (b)
and (c) closed expressions of Lévy densities are not known.

(a) φpλq “ logp1` aλq is in CBF for any a ą 0, since

logp1` aλq “

8
ż

0

p1´ e´λtq
e´a

´1t

t
dt .
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(b) φpλq “ logp1` logp1` λqq is in CBF , since this class is closed under the operation
of composition of functions.
In this case β “ 1´ e´1. Using the part (a) it follows that

φepλ` aq ´ φepaq “ log

¨

˝1`
log

´

1` λ
1`a

¯

1` logp1` aq

˛

‚ is in CBF

for all a ą ´β and so we can apply Lemma 4.2 . Furthermore,

´φ2epλ´ βq “
1` rlogp1` eλqs´1

pe´1 ` λq2 logp1` eλq
—

#

λ´2 0 ă λ ď 1

λ´2rlogp1` λqs´1 λ ą 1 .

Thus Corollary 4.1 can be applied (with Λ1 “ 0, Λ2 “ 8 and any γ P p0, 2q) to
obtain

µptq —

$

&

%

1
t log 1

t

0 ă t ă 1

e´p1´e
´1qt

t t ě 1 .

(c) Example (b) can be generalized in the folowing way: define

φ1pλq :“ logp1` λq and φn`1 :“ φn ˝ φ1 for n P N .

Using the approach from (b) it follows that the Lévy density µnptq of φn satisfies

µnptq —

$

’

&

’

%

1
t

n´1
ś

i“1

1
φkpt´1q

0 ă t ă 1

eφ
´1
n p´1qt

t t ě 1 .

Note that lim
n
φ´1
n p´1q “ 0 .

Remark 4.4. Now we can explain why the functions in Example 1.5 belong to the class
CM. Since λα, logp1`λq are in CBF and 1

1`λ is in CM, by using the fact that CM˝BF Ă
CM (cf. [SSV12, Theorem 3.7]) it follows that f P CM in all examples. Noting that λ

1`φpλq

is in CBF , it follows that for some a, b ě 0 and η P CM

1

1` φpλq
“
a

λ
` b`

8
ż

0

1´ e´λt

λ
ηptqdt “

a

λ
` b`

8
ż

0

e´λtνpt,8q dt,

where ν is the measure with density η. Since fp0q “ 1, we conclude that a “ 0. Also,
from lim

λÑ8
fpλq “ 0 we get b “ 0. Thus, (A-1) holds for f .

To check (A-2), it is enough to note that λfepλ` aq is in CBF for every a ą ω0. Since
CBF is closed under pointwise convergence of functions, λfepλ` ω0q is in CBF . Now we
can use Remark 3.2 (b) and Corollary 3.3.
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5. Applications to non-local equations

As a first application of the main result we consider decay of solutions of the equation

φp´∆qu` u “ f in Rd , (5.1)

where ∆ is the Laplacian in Rd and φ P BF .

The operator φp´∆q should be understood in terms of the Fourier transform (as a
pseudo-differential operator):

{φp´∆qu pξq “ φp|ξ|2qpupξq, ξ P Rd , (5.2)

for u P Dpφp´∆qq :“ tu P L2pRdq : φp|ξ|2qpupξq is in L2pRdqu . Similarly as in Remark 4.4
one concludes that Φpλq :“ 1

1`φpλq is in CM. Let ν be its representing measure.

Assume in the rest of this section that a “ b “ 0 in the representation (4.1) of φ. Then
νpt0uq “ lim

λÑ8
Φpλq “ 0 .

The fundamental solution of the equation (5.1) is a function K : Rdzt0u Ñ R defined by

Kpxq “

ż

p0,8q

ppt, xqνpdtq, x P Rdzt0u ,

where p : p0,8q ˆ Rd Ñ R is the Gauss-Weierstrass kernel given by

ppt, xq :“ p4πtq´d{2e´
|x|2

4t .

Remark 5.1. (a) For every t ą 0
ż

Rd
ppt, xq dx “ 1 and {ppt, ¨qpξq “ e´t|ξ|

2
.

(b) The fundamental solution belongs to L1pRdq, since
ş

Rd Kpxq dx “ νp0,8q “ lim
λÑ0`

Φpλq “

1 . Therefore, pKpξq “
ş

p0,8q e
´t|ξ|2νpdtq “ Φpξq .

If f P L1pRdq X L2pRdq, then

upxq :“ pK ‹ fqpxq :“

ż

Rd

Kpx´ yqfpyq dy for x P Rd (5.3)

defines the unique solution of (5.1). Indeed, by Remark 5.1 (b) and (5.2),

rφp´∆qus ppξq ` pupξq “ pφp|ξ|2q ` 1q pKpξq pfpξq “ pfpξq .

The main result of this section gives some estimates of the fundamental solution.

Proposition 5.2. Let φ P BF such that a “ b “ 0 in its representation (4.1). Assume

that Φpλq :“ 1
1`φpλq satisfies (A-1) and (A-2) and let κ :“

b

´ωΦ
0 .

(i) If κ ą 0, then there is a constant c1 ą 0 such that

Kpxq ď c1|x|
´ d`3

2 Φ1ep2κ|x|
´1 ´ κ2qe´κ|x| for all |x| ě 1 .
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(ii) In the case κ “ 0, there exists a constant c2 ą 0 such that

Kpxq ď c2r
´d´2Φ1pr´2q for all x P Rd, xzt0u .

Moreover, for any σ ą 0

lim sup
|x|Ñ`8

Kpxq

e´σ|x|
“ `8 .

Remark 5.3. If λ ÞÑ φepλ´ κ
2q is in CBF , then so is λΦepλ´ κ

2q “ λ
1`φepλ´κ2q

by (4.3) .

Remark 3.2 (b) implies that the assumptions (A-1) and (A-2) hold.

Proof of Proposition 5.2. (i) Applying Proposition 1.3 (i) to Φ it follows that the density
of the representing measure satisfies

νptq ď ´c1t
´2Φ1ept

´1 ´ κ2qe´κ
2t for t ą 0 .

We aim to apply Lemma A.1 with fptq :“ ´t´2Φ1ept
´1 ´ κ2q, a :“ d

2 , b :“ κ and c :“ 2 .

By Lemma 2.1 (ii) it follows that ´Φ1e is non-increasing, which implies that t ÞÑ t2fptq is
non-decreasing.

It is left to check that f is non-increasing. Here we use some ideas from the proof

of [SSV12, Theorem 11.3]. Assumptions (A-1) and (A-2) imply that t ÞÑ eκ
2tνptq is a

non-increasing function. Let q :“ lim
tÑ8

eκ
2tνptq and let µ be a measure on p0,8q defined

by

µpt,8q :“ eκ
2tνptq ´ q, t ą 0 .

By Lemma 2.1 (iii),

Φepλ´ κ
2q “

8
ż

0

e´λteκ
2tνptq dt

“
q

λ
`

8
ż

0

e´λtµpt,8q dt “
q

λ
`

ż

p0,8q

1´ e´λt

λ
µpdtq

and so

´λ2Φ1epλ´ κ
2q “ q `

ż

p0,8q

p1´ p1` λtqe´λtqµpdtq .

Since λ ÞÑ 1 ´ p1 ` λtqe´λt is non-decreasing for every t ą 0, it follows that f is non-
increasing.
(ii) By Theorem 1.3 (i),

νptq ď ´c1t
´2Φ1pt´1q “ c1

t´2φ1pt´1q

p1` φpt´1qq2
for t ą 0 .

The idea is to apply Lemma A.2 with fptq :“ t´2φ1pt´1q

p1`φpt´1qq2
, a :“ d

2 and c :“ 2. The

assumptions that f is non-increasing and t ÞÑ t2fptq is non-decreasing can be checked
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similarly as in part (i). If d “ 1, 2, then for all t ą 0 and x ě 1,

fptxq

fptq
“ x´2φ

1pt´1xq

φ1pt´1q

ˆ

1` φpt´1q

1` φpt´1xq

˙2

ď x´2 ,

since φ is non-decreasing and φ1 is non-increasing. Therefore, γ1 “ 2 ą 1´ d
2 and we can

apply the lemma with R “ 0.

Let σ ą 0. Since νptq is non-increasing,

Kpxq

e´σ|x|
ě eσ|x|νp2σ´1|x|q

2σ´1|x|
ż

σ´1|x|

t´d{2e´
|x|2

4t dt ě c3|x|
´ d

2
`1νp2σ´1|x|qe

σ|x|
2 .

Now we can use Theorem 1.3 (iii) to conclude that lim sup
|x|Ñ8

eσ|x|Kpxq “ 8 .

�

Proposition 5.2 can be used to investigate decay of the solution to (5.1). Two examples
of non-local equations with different behavior of solutions will be given.

Example 5.4. Let 0 ă α ă 2 and consider

p´∆qα{2u` u “ f

with f P CcpRdq.
Here Φpλq “ 1

1`λα{2
and κ “ 0. Proposition 5.2 (ii) implies that Kpxq ď |x|´d´α for

x P Rdzt0u and thus, by (5.3),

|upxq| ď c|x|´d´α for x P Rd .

Moreover, if f is non-negative, then for any σ ą 0

lim sup
|x|Ñ8

upxq

e´σ|x|
“ 8 ;

in other words, the solution does not have exponential decay.

Example 5.5. For the equation

logp1´∆qu` u “ f in Rd

with f P C8c pRdq we have

Φepλq “
1

1` logp1` λq
for λ ą ωΦ

0 “ e´1 ´ 1 .

Proposition 5.2 (i) implies that the solution has an exponential decay; for every a ă?
1´ e´1 there exists a constant c “ cpaq ą 0 so that

Kpxq ď ce´a|x| for |x| ě 1 .

This implies

|upxq| ď ce´a|x| for x P Rd .
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6. Kernels and non-local operators

A second application of the main result is a representation of the operator ´φp´∆q on
C8c pRdq. Since we have assumed a “ b “ 0 in the representation (4.1), ´φp´∆q will be a
non-local operator (cf. (6.2)).

Define an operator A on C8c pRdq by

Aupxq :“ lim
εÑ0`

ż

|y|ąε

pupx` yq ´ upxqq Jpyq dy

with J : Rdzt0u Ñ p0,8q defined by

Jpyq :“

8
ż

0

ppt, yqµpdtq, (6.1)

where µ is the Lévy measure of φ and p is the Gauss-Weierstrass kernel. Using symmetry
of the kernel J , operator A can be rewritten as

Aupxq “

ż

Rdzt0u

pupx` yq ´ upxq ´∇upxq ¨ y1t|y|ă1uq Jpyq dy .

By Fubini theorem, symmetry and Remark 5.1 (a),

xAupξq “ pupξq

ż

p0,8q

ż

Rdzt0u

pe´iy¨ξ ´ 1´ ξ ¨ y1t|y|ă1uqppt, yqdy µpdtq

“ pupξq

ż

p0,8q

p{ppt, ¨qp´ξq ´ 1qµpdtq “ pupξq

ż

p0,8q

pe´t|ξ|
2
´ 1qµpdtq

“ ´pupξqφp|ξ|2q .

In the last equality we have used representation (4.1) of φ together with the assumption
a “ b “ 0 . Therefore, for any u P C8c pRdq

´ φp´∆qupxq “ lim
εÑ0`

ż

|y|ąε

pupx` yq ´ upxqq Jpyq dy . (6.2)

Using (6.1) one can analyze behavior of the kernel J of the operator ´φp´∆q.

Proposition 6.1. Let φ P BF and let β :“ ´ωφ
1

0 . Assume that all assumptions in
Corollary 4.1 hold with Λ1 “ 0 and Λ2 “ 8 . Furthermore, assume that

λ ÞÑ ´λφ2epλ´ βq is non-increasing (6.3)

and, in the case d ď 2 and β “ 0, there are constants θ1 ą 0 and γ1 ă 2` d
2 so that

φ2pλxq

φ2pλq
ě θ1x´γ

1

for all λ ą 0 and x ě 1 .

Then the following holds:
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(i) Jpyq — ´|y|´d´4φ2p|y|´2q for all 0 ă |y| ď 1 ;
(ii) if β ą 0, then

Jpyq — ´|y|´
d
2
´ 5

2φ2ep|y|
´1 ´ βqe´

?
β|y| for all |y| ě 1 ;

(iii) if β “ 0, then

Jpyq — ´|y|´d´4φ2p|y|´2q for all |y| ě 1 .

Proof. By Corollary 4.1 it follows that the Lévy density of µ satisfies

µptq — fptqe´βt, t ą 0 ,

with fptq :“ ´t´3φ2ept
´1 ´ βq . We want to apply results from Appendix A with a :“ d

2 ,

b :“
?
β and c :“ 2.

Similarly as in the proof of Proposition 5.2, from (A-1) and (A-2) we deduce that
t ÞÑ eβtµptq is a non-increasing function and so there exists q :“ lim

tÑ`8
eβtµptq and it is

possible to define a measure ν on p0,8q by νpt,8q :“ eβtµptq ´ q . Then Lemma 2.1 (iii)
implies that, for any λ ą 0,

φ1epλ´ βq “ q

8
ż

0

te´λt dt`

8
ż

0

te´λtνpt,8q dt

“
q

λ2
`

ż

p0,8q

1´ e´λtp1` λtq

λ2
νpdtq .

Therefore,

´λ3φ2epλ´ βq “ 2q `

ż

p0,8q

p2´ ppλtq2 ` 2λt` 2qe´λtq νpdtq .

Noting that λ ÞÑ 2´ppλtq2` 2λt` 2qe´λt is non-decreasing for every t ą 0, it follows that
λ ÞÑ ´λ3φ2epλ´ βq is also non-decreasing, and so f is non-increasing. By the assumption
(6.3) we see that t ÞÑ t2fptq is non-decreasing. Now Lemma A.1 and Lemma A.2 imply
all claims of the proposition. �

Example 6.2. Let φpλq “ λα{2 logp1 ` λ1´α{2q (0 ă α ă 2). Then β “ 0 and φ P CBF
(cf. [SSV12, Corollary 7.15 (iii)]). Since

´φ2pλq —

#

λ´α{2 0 ă λ ď 1

λ´2`α{2 logp1` λq λ ą 1,

from Proposition 6.1 we get

Jpyq —

#

|y|´d´α logp1` |y|´2q 0 ă |y| ă 1

|y|´d´4`α |y| ě 1 .

Example 6.3. Let φpλq “ logp1` logp1` λqq. By Example 4.3 (b) and Proposition 6.1,

Jpyq —

#

|y|´d logp1` |y|´2q´1 0 ă |y| ă 1

|y|´
d`1
2 e´

?
1´e´1|y| |y| ě 1 .
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Example 6.4 (Generalized relativistic Schrödinger operator). Let α P p0, 2q and m ą 0

and let φpλq “ pλ`m2{αqα{2´m. Here β “ m2{α and both conditions in Lemma 4.2 hold.
Therefore, one can use Proposition 6.1 to deduce

Jpyq —

#

|y|´d´α 0 ă |y| ă 1

|y|´
d`α`1

2 e´m
1{α|y| |y| ě 1 .

The relativistic Schrödinger operator corresponds to α “ 1 and d “ 3 .

Appendix A. Two technical lemmas

Let f : p0,8q Ñ p0,8q be a non-increasing function. Define F : p0,8q Ñ p0,8q by

F prq :“

8
ż

0

t´ae´b
2te´

r2

c2t fptq dt , r ą 0 ,

where a, b ě 0 and c ą 0.

Lemma A.1. Assume that b ą 0 and that t ÞÑ t2fptq is a non-decreasing function. Then

F prq — r´a`
1
2 f

`

r
bc

˘

e´2bc´1r for all r ě 1 .

Proof. First we note that

F prq “ e´2bc´1r

8
ż

0

t´ae
´

´

r
c
?
t
´b
?
t
¯2

fptq dt .

Using change of variables s “ r
c
?
t
´ b
?
t we get t “

´

´s`
?
s2`4bc´1r
2b

¯2
and

F prq “ 2e´bc
´1r

8
ż

´8

´

´s`
?
s2`4bc´1r
2b

¯´2a`2
f

ˆ

´

´s`
?
s2`4bc´1r
2b

¯2
˙

e´s
2
ds?

s2`4bc´1r
. (A.1)

Since

s ÞÑ ´s`
a

s2 ` 4bc´1r is non-increasing (A.2)

it follows that

f

ˆ

´

´s`
?
s2`4bc´1r
2b

¯2
˙

ď f
`

r
bc

˘

for s ď 0

and
´

´s`
?
s2`4bc´1r
2b

¯4
f

ˆ

´

´s`
?
s2`4bc´1r
2b

¯2
˙

ď
`

r
bc

˘2
f
`

r
bc

˘

for s ě 0 .
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The last two observations and (A.1) yield

F prq ď2e´2bc´1rf
`

r
bc

˘

»

–

0
ż

´8

´

´s`
?
s2`4bc´1r
2b

¯´2a`2
e´s

2
ds?

s2`4bc´1r

`
`

r
bc

˘2

8
ż

0

´

´s`
?
s2`4bc´1r
2b

¯´2a´2
e´s

2
ds?

s2`4bc´1r

fi

fl .

For the first integral we note that, by dominated convergence theorem,

lim
rÑ`8

ra´
1
2

0
ż

´8

´

´s`
?
s2`4bc´1r
2b

¯´2a`2
e´s

2
ds?

s2`4bc´1r

“ lim
rÑ`8

0
ż

´8

¨

˝

´ s?
r
`

c

s2

r `4bc´1

2b

˛

‚

´2a`2

e´s
2
ds

b

s2

r
`4bc´1

“
ba´

3
2 ca´

1
2
?
π

4 .

This together with a similar computation in the second integral yield a constant c2 “

c2pa, b, cq ą 0 so that the following holds

F prq ď c2r
´a` 1

2 f
`

r
bc

˘

e´2bc´1r for all r ě 1 .

To obtain the lower bound, we use (A.1) and (A.2) to get

F prq ě 2e´2bc´1r

8
ż

0

´

´s`
?
s2`4bc´1r
2b

¯´2a`2
f

ˆ

´

´s`
?
s2`4bc´1r
2b

¯2
˙

e´s
2
ds?

s2`4bc´1r

ě 2e´2bc´1r fp
r
bcq?

bc´1r

8
ż

0

´

´s`
?
s2`4bc´1r
2b

¯´2a`2
e´s

2
ds .

Similarly as before, the dominated convergence theorem yields

lim
rÑ`8

ra´1

8
ż

0

´

´s`
?
s2`4bc´1r
2b

¯´2a`2
e´s

2
ds “ pbcqa´1?π

2 .

and thus there is a constant c1 “ c1pa, b, cq ą 0 such that

F prq ě c1r
´a` 1

2 f
`

r
bc

˘

e´2bc´1r for all r ě 1 .

�

Lemma A.2. Assume that b “ 0 and that that t ÞÑ t2fptq is a non-decreasing function.
If a ď 1 we additionally assume that there exist constants c1 ą 0, γ1 ą 1´ a and R ě 0 so
that

fptxq

fptq
ď c1x´γ

1

for all t ą R and x ě 1 . (A.3)

Then
F prq — r´2a`2fpr2q for all r ą R0 ,
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where R0 :“

#?
R d “ 1, 2

0 d ě 3
.

Proof. Since t ÞÑ t2fptq is non-decreasing,

r2
ż

0

t´ae´
r2

c2t fptq dt ď r4fpr2q

r2
ż

0

t´a´2e´
r2

c2t dt

“ c2a`2r´2a`2fpr2q

8
ż

c´2

sae´s ds .

Since f is decreasing, for a ą 1 we deduce
8
ş

r2
t´afptq dt ď fpr2qpa ´ 1q´1r´2a`2 . In the

case a ď 1 we use (A.3) to get

8
ż

r2

t´afptq dt “ fpr2q

8
ż

r2

t´a
fptq

fpr2q
dt

ď c1fpr2qr2γ1
8
ż

r2

t´a´γ
1

dt ď c1

a`1´γ1 r
´2a`2fpr2q ,

for any r ą
?
R. This proves the upper bound.

Since f is decreasing, the lower bound follows from

F prq ě

r2
ż

0

t´ae´
r2

c2t fptq dt ě fpr2q

r2
ż

0

t´ae´
r2

t dt

“ c2a´2r´2a`2fpr2q

8
ż

c´2

sa´2e´s ds .

�
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[Hir72] F. Hirsch, Intégrales de résolvantes et calcul symbolique, Ann. Inst. Fourier(Grenoble) 22 (1972),

239–264.
[KM12] P. Kim and A. Mimica, Harnack inequalities for subordinate Brownian motions, Electron. J.

Probab. 17 (2012), no. 37, 1–23.



LAPLACE TRANSFORMS AND EXPONENTIAL BEHAVIOR 23
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