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Abstract

A set of m positive integers is called a Diophantine m-tuple if the product of its
any two distinct elements increased by 1 is a perfect square. Diophantus found a set
of four positive rationals with the above property. The first Diophantine quadruple
was found by Fermat (the set {1,3,8,120}). Baker and Davenport proved that this
particular quadruple cannot be extended to a Diophantine quintuple.

In this paper, we prove that there does not exist a Diophantine sextuple and that
there are only finitely many Diophantine quintuples.

1 Introduction

A set of m positive integers {a1,as,...,an} is called a Diophantine m-tuple if a; - a; + 1
is a perfect square for all 1 <i < j < m.

Diophantus first studied the problem of finding four numbers such that the product of
any two of them increased by unity is a square. He found a set of four positive rationals
with the above property: {1/16,33/16,17/4,105/16}. However, the first Diophantine
quadruple, {1,3,8,120}, was found by Fermat. Euler was able to add the fifth positive
rational, 777480/8288641, to the Fermat’s set (see [6], pp. 513-520). Recently, Gibbs [13]
found examples of sets of six positive rationals with the property of Diophantus.

A folklore conjecture is that there does not exist a Diophantine quintuple. The first
important result concerning this conjecture was proved in 1969 by Baker and Davenport
[3]. They proved that if d is a positive integer such that {1,3,8,d} forms a Diophantine
quadruple, then d = 120. This problem was stated in 1967 by Gardner [12] (see also [17]).

In 1979 Arkin, Hoggatt and Strauss [1] proved that every Diophantine triple can be
extended to a Diophantine quadruple. More precisely, let {a, b, ¢} be a Diophantine triple
and ab+1 =172, ac+ 1 = s, bc + 1 = t?, where r, s,t are positive integers. Define

dy =a+ b+ c+ 2abc+ 2rst.

"Mathematics Subject Classification (2000): Primary 11D09, 11D25, 11D48; Secondary 11B37,
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Then {a,b,c,d;} is a Diophantine quadruple. Indeed,
ady +1 = (at +7s)%, bdy +1= (bs+rt)?, cdy + 1= (cr+ st)?
There is a stronger version of the ”Diophantine quintuple conjecture”.

Conjecture 1 If {a,b,c,d} is a Diophantine quadruple and d > max{a,b,c}, then d =
d..

Conjecture 1 was proved for certain Diophantine triples [16, 20] and for some para-
metric families of Diophantine triples [7, 8, 10]. In particular, in [10] it was proved that
the pair {1,3} cannot be extended to a Diophantine quintuple.

A Diophantine quadruple D = {a,b,c,d}, where a < b < ¢ < d, is called regular if
d = d4. Equivalently, D is regular iff

(1) (a4+b—c—d)?=4(ab+1)(cd + 1)

(see [14]). The equation (1) is a quadratic equation in d. One root of this equation is d,
and other root is
d_ =a+b+c+ 2abc—2rst.

It is easy to check that all ”small” Diophantine quadruples are regular; e.g. there are
exactly 207 quadruples with max{a, b, c,d} < 10 and all of them are regular.
Since the number of integer points on an elliptic curve

(2) y* = (ax + 1)(br + 1)(cx + 1)

is finite, it follows that, for fixed a, b and ¢, there does not exist an infinite set of positive
integers d such that a,b, ¢, d is a Diophantine quadruple. However, bounds for the size [2]
and for the number [19] of solutions of (2) depend on a,b, ¢ and accordingly they do not
immediately yield an absolute bound for the size of such set.

The main result of the present paper is the following theorem.

Theorem 1 There are only finitely many Diophantine quintuples.

Moreover, this result is effective. We will prove that all Diophantine quintuples @)
satisfy max Q) < 10'0*°. Hence we almost completely solve the problem of the existence of
Diophantine quintuples. Furthermore, we prove

Theorem 2 There does not exist a Diophantine sextuple.

Theorems 1 and 2 improve results from [9] where we proved that there does not exist
a Diophantine 9-tuple and that there are only finitely many Diophantine 8-tuples.

As in [9], we prove Conjecture 1 for a large class of Diophantine triples satisfying
some gap conditions. However, in the present paper these gap conditions are much weaker
than in [9]. Accordingly, the class of Diophantine triples for which we are able to prove
Conjecture 1 is much larger. In fact, in an arbitrary Diophantine quadruple, we may find
a triple for which we are able to prove Conjecture 1.
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In the proof of Conjecture 1 for a triple {a,b, c} we first transform the problem into
solving systems of simultaneous Pellian equations. This reduces to finding intersections of
binary recurrence sequences. In Section 5 we almost completely determine initial terms of
these sequences, under assumption that they have nonempty intersection which induces
a solution of our problem. This part is a considerable improvement of the corresponding
part of [9]. This improvement is due to new ”gap principles” developed in Section 4. These
”gap principles” follow from the careful analysis of the elements of the binary recurrence
sequences with small indices. Let us mention that in a joint paper with A. Pethé [10] we
were able to determine initial terms, in a special case of triples {1, 3, ¢}, using an inductive
argument.

Applying some congruence relations we get lower bounds for solutions. In obtaining
these bounds we need to assume that our triple satisfies some gap conditions like b > 4a
and ¢ > b%®. Let us note that these conditions are much weaker then conditions used in
[9], and this is due to more precise determination of the initial terms. Comparing these
lower bounds with upper bounds obtained from the Baker’s theory on linear forms in
logarithms of algebraic numbers (a theorem of Matveev [18]) we prove Theorem 1, and
comparing them with upper bounds obtained from a theorem of Bennett [5] on simulta-
neous approximations of algebraic numbers we prove Theorem 2. In the final steps of the
proofs, we use again the above mentioned ”gap principles”.

2 Systems of Pellian equations

Let us fix some notation. Let {a,b, ¢} be a Diophantine triple and a < b < ¢. Furthermore,
let positive integers r, s,t be defined by

ab+1=72 ac+1=5% be+1=1t%

In order to extend {a, b, ¢} to a Diophantine quadruple {a, b, ¢, d}, we have to solve the
system
(3) ad+1=2% bd+1=v> cd+1=2
with positive integers x, y, z. Eliminating d from (3) we get the following system of Pellian

equations

(4) az? —cx’ = a—c,

(5) b2 —cy? = b—c.

In [9], Lemma 1, we proved the following lemma which describes the sets of solutions of
the equations (4) and (5).

Lemma 1 There exist positive integers ig, jo and integers z(()i), xéi), z](Lj), ygj), i=1,...,1,

ji=1,...,j0, with the following properties:
(i) (z(()i),x(()i)) and (zgj),ygj)) are solutions of (4) and (5), respectively.
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(ii) zéi), xg), z%j), y%j) satisfy the following inequalities

(6) 1<l < \/ﬁ< ﬁ<0.841%,
(7) 1< 2] < \/(S_lgéc_a) <\/%<0.421c,
(8) 1<y < \/ﬁ< \/T< 0.783Vbe,
(9) 1gyz§j)|g,/@_1§(bc_m<\/;7£<o.32c.

(i5i) If (z,x) and (z,y) are positive integer solutions of (4) and (5) respectively, then
there exist i € {1,...,i0}, 7 € {1,...,j0} and integers m,n > 0 such that

(10) svatave = (2)Va+ay)Ve)(s + Vao)™,
(11) Vbtyve = (Vb + Vo)t + Vi)™

Let (z,y, z) be a solution of the system (4) & (5). From (10) it follows that z = o
for some index 4 and integer m > 0, where

(12) v(()i) = z(()i), vgi) = sz(()i) + c:cg), ”7(7?+2 = 23”7(7?+1 — v,(ﬁ? ,

and from (11) we conclude that z = w,(lj ) for some index 7 and integer n > 0, where

T L N ]

Let us consider the sequences (v,,) and (w,) modulo 2¢c. From (12) and (13) it is easily
seen that

(14) vé?n = z(()i) (mod 2c¢), véi?ﬂl = sz(()i) + cxgi) (mod 2¢),
(15) wéjn) = zgj) (mod 2¢), wgl)ﬂ = tz%j) + cygj) (mod 2¢).

We are searching for solutions of the system (4) & (5) such that d = (22 — 1)/c is an
integer. Using (14) and (15), from z = v, = w, we obtain
)]2

=2°=1 (mod c), [z%j)]2 =wl=22=1 (mod c).

2 =%,

Therefore we are interested only in equations v,, = w, satisfying

[z(()i)]2 = [zij)]2 =1 (mod ¢).
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We will deduce later more precise information on the initial terms z(()i) and z%j ) (see
Section 5). Let us mention now a result of Jones [15], Theorem 8, which says that if ¢ < 4b
then |z§j)\ =1
As a consequence of Lemma 1 and the relations (14) and (15), we obtain the following

lemma. From now on, we will omit the superscripts (i) and (7).

Lemma 2
1) If the equation vay,, = way, has a solution, then zo = z1.

2) If the equation vopy,+1 = way has a solution, then zy -z < 0 and cxo — s|zo| = |21].
In particular, if b > 4a and ¢ > 100a, then this equation has no solution.

3) If the equation vay, = want1 has a solution, then zo-z1 < 0 and cy; — t|z1| = |z0].

4) If the equation vam4+1 = Want1 has a solution, then zy - z1 > 0 and cxg — s|zp| =
cyr — tlz].

Proof. See [9], Lemma 3. ]

3 Relationships between m and n

In [9], Section 4, we proved that v, = w, implies m > n if b > 4a, ¢ > 100b and n > 3. We
also proved that m < %n, provided {a, b, c} satisfies some rather strong gap conditions.

In this section we will first prove an unconditional relationship between m and n, and
then we will improve that result under various gap assumptions.

Lemma 3 If v, = wy, thenn—1<m <2n+1.

Proof. We have the following estimates for vy:

2 2 ce
—ac—22 T 34 c

c
> > > —
cxo + $|zo] 2cxg dzg = 3.364Yac

v] = $20 + cxo > cxo — S|zo| =

v < 2cxy < 1.682cv/ac.

Hence

(16) (2s — )™ < vy, < 1.682¢¢/ac(2s)™ 1 for m > 1.

C
3.364/ac

If ¢ > 4b, then

2 —be— 23 c

c
— s s
cyr +blz1] 4y T 3.132vbe
If ¢ < 4b then, by [15], Theorem 8, z; = £1, y; = 1 and

w1 =

c
wy>c—t=a+r=s>\ac>——.
! 3.132/be

Furthermore, w; < 2cy; < 1.566¢v/be and therefore

(17) (2t —1)" ! < w, < 1.566cVbe(2t)"" for n > 1.

C
3.132vbe
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We thus get
(18) (25 —1)™"! < 5.269Vabe? (2t)" .
Since

(19) 2s—1=2Vac+1—1>1767\/ac and 2t =2vbc+ 1 < 2.042V/bc,
it follows that (2s — 1)? > 3.12ac > 2t. It implies
(25 — 1)™ 1 < 2,635 - (2t)" < (2t)" 7043 < (25 — 1)2 086
and m < 2n + 1.
On the other hand, we have
(2t — 1)" ! < 5.269Vabe? (25)™ ' < 5.269Vabc? (2t — 1) < (2t — 1)™ 0489

and n > m + 1.
Thus we proved the lemma for m,n # 0. It remains to check that vy < ws and wg < vs.
Indeed,

wo = 2tw; — wg >

2¢¢ ey/e - c( Ve 1
3.132v/be 2v/b 1.566 2v/be

- 2¢s ey/e - vac 1
_ c _
0~ 3.364/ac 2./a 1.682 2y/ac

> > 1.093¢ > g,

Vg = 25U1 — V)

) > 0.579¢ > wy .

Lemma 4 Assume that ¢ > 10'°. If v, = w, and m,n > 2, then
1) ¢c>bt" = m<n+ 1,

2) c>b* = m<In+ 3,
3) c>b = mggn—l—%,
4) c> 3 — mﬁ%rw—%.
Proof. As in the proof of Lemma 3, assuming ¢ > max{b®3,10'°}, we have

0.999c¢ c
26 — 1 m—1 -
2x0 (25 ) = 1.416ac

w, < 1.415Vbe(2t)" 71,
for m,n > 1. Hence (25 — 1)1 < 2.004Vabc? (2t)"~! and

(25 — 1)™ 1,

Um

If m > 2 and ¢ > b°, then (20) shows that at least one of the following two inequalities
holds:

m—1 n 1.1 n
21 _— - — =)=+ =
(22) m —1 < 1.004n .

The inequality (22) implies all statements of the lemma. For ¢ = 4.5, (21) implies m <

lsﬁln + % and m < %n + g. Similar arguments apply to all other statements of the lemma.
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4 Gap principles

In [9], Lemma 14, we proved that if {a,b,c,d} is a Diophantine quadruple and a < b <
¢ < d, then d > 4bc. The proof was based on the fact, proved by Jones [15], Lemma 4,
that c=a+b-+2r or ¢ > 4ab+a + b.

In this section we will develop a stronger and more precise gap principle by examining
the equality v,,, = w,, for small values of m and n.

Let us note that since

c(dab+1) < dy < 4e(ab+1),
we may expect an essential improvement only if we assume that d # d..

Lemma 5 Let v, = wy, and define d = (v2, — 1)/c. If {0,1,2} N {m,n} # 0, then d < ¢
ord=d;.

Proof. From the proof of Lemma 3 we have:
Vo < w2, wy <V, UVI<ws W<V, UV2<W, w2 <Vg.
Therefore, the condition {0, 1,2} N {m,n} # () implies

(m’ n) € {(07 0)7 (07 1)7 (170)7 (17 1)7 (17 2)7 (27 1)7 (27 2)’ (37 1)’ (27 3)7 (37 2)7 (4’ 2)7 (57 2)}

If 0 € {m,n}, then d < c.

If (m,n) = (1,1), then d < ¢ for zp < 0, and d = d4 for zp > 0 (see [9], proof of
Theorem 3).

Assume that (m,n) = (1,2). We have v; = sz + cxg, wa = 21 + 2¢(bz1 + ty1). By
Lemma 2, if 21 > 0 then zy < 0 and czg + szg = z1. Hence we > v1 = wy. If 21 < 0 then
zp > 0 and
(23) cro — Sz = —21-

Inserting (23) into the relation v; = ws we obtain
(24) bz1 + ty1 = xo.
From (23), (24) and the system (4) & (5), we obtain (b — a)t = 23(b — a). Therefore,

zo=1t,xg =1, 21 = st —cr, y; =rt — bs. It implies v1 = st + cr and
v —1

C

d=

1
=~ (abc® + ac+bc+ 1+ 2crst +abc® +c2 —1) =d,. .
c

Assume now that (m,n) = (2,1). In the same manner as in the case (m,n) = (1, 2),
we obtain zy = s, y1 =7, 20 =st —cr, xg =rs —at and d = d..

Let (m,n) = (2,2). We have va = 29 + 2¢(azo + szo), w2 = 21 + 2¢(bz1 + ty1), and
since zg = z1, we obtain azg + sxg = bzg + ty; and

(b—a)(cy; — cxg +b—a) = acx? + x2 — bey? + y3 — 2staoy; -
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Therefore (b — a)? = (sy1 — tzo)? and since sy; = txg, we have
(25) txg — sy =b—a.
Furthermore,
(ac+ 1) (bx? 4+ a —b) = a(bexd + 2 + (b — a)* — 2t(b — a)x)

and
(b — a)(x3 + 2atzo + a*t?) = (b —a)(ab + 1)(ac + 1) = (b — a)r?s>.

Finally, zg = rs — at, y1 = rt — bs, zg = st — cr. Now we obtain
vy = st — cr + 2c(ast — acr +rs* — ast) = st + cr

and d =d;.

Let (m,n) = (3,1). We may assume that {a,b,c} # {1,3,8}. Then ac > 15 and
be > 48. Tt implies 2s — 1 > 1.807+/ac and 2t < 2.021v/be. From (18) we obtain

(1.807v/ac)? < 5.269Vabc? < 5.269Vac3

which implies ¢ < 6, a contradiction.

Let (m,n) = (3,2). Assume that zg > 0, 21 < 0. We have v; > 2szp, v2 > (4s% — 1)z,

vy > (452 — 1)(2s — 1)zp > T(ac)322p, and wy < 55—, wy < 2wy < 1or. We have also

2t[z1]
21| > 75~ and therefore wy < 4exg. Since g < /¢, we obtain

el
|21]

wy < 43? < T(ac)*?z < vs.

Assume now that zp < 0, 21 > 0. Then z; = szg + crg and the condition vg = wy
implies xg 4+ 2az1 = bz1 + ty; > 2bz; and xg > 4z1 > %, a contradiction.

Let (m,n) = (2,3). If zp > 0, 21 < 0, then vy = w3 implies y1 + 2bzp = azy + sz <
2azy + % . Therefore zg < %- On the other hand, zg =1 (mod c¢). Hence, zg = 1. But, if
c > 4b then zg > ﬁ > 1. If ¢ < 4b then z; = —1, y; = 1, and Lemma 2 implies ¢ = b+ 2,
which contradicts the fact that ¢ = a + b + 2r.

Assume that z9 < 0, z; > 0. As in the case (m,n) = (3,2), we have vy < ﬁ and

C
20
w3 > 7.3(bc)?/ 221 . If ¢ > 4b then |zp| > 1, and since y1 < Ve, we obtain

vy < 4¢¥? < 7.3(be)* %21 < ws.

If ¢ < 4b then
wg > 7.308°¢15 > 0.9¢3 > 2 > vy

Let (m,n) = (4,2). We have vy = zy + 4c(2az0 + sxg) + 8ac?(azy + sxg), and the
relation v4 = wy implies

(26) bzo + ty1 = 4azp + 25z + 4ac(azy + szp).
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It holds ty1 — b|zo| < Tz] - Hence, if 29 > 0 then the left hand side of (26) is < 2bz0 + £ <

3czp, while the right hand side is > 4a’czg > 3czg. If 29 < 0, then the left hand side of
(26) is < % < ¢, while the right hand side is > 4ac — 4a|zp| > ac > c.

|zo]

Let (m,n) = (5,2). It follows from (18) that
(1.807v/ac)* < 5.269vVbe - 2.021vbe
and 10.66a%c?> < 10.65bc, a contradiction. [

We now can prove the following gap principal, which we will improve again in Propo-
sition 1 below.

Lemma 6 If {a,b,c,d} is a Diophantine quadruple and a < b < ¢ < d, then d = dy or
d>1.16c*5p12.

Proof. By Lemma 5, if d # dy then m > 3 and n > 3. From (17) it follows that

c 81 4
3.132Vbe 243132 ¢

w3 > (2t— 1)2-

and )
1.16161%¢35 — 1
d >

> 1.16¢>°p15 .

c
Using the gap principle from Lemma 6 we can prove the following lemma.
Lemma 7 Under the notation from above, we have vy # ws.

Proof. If zp,z1 > 0 then define 2’ := cxg — s29 = cy; — tz1, and if 29,21 < 0 then

define 2’ := cxg + s20 = cy1 + tz1. Define also dy = (2> — 1)/c. Then dp is an integer.

Furthermore, cdy + 1 = 2’2,

1
adg+1 = f(ac2x(2) F 2acszozo + CL2CZ§ + azg —a+c)
c
= (acx% T 2asx9z0 + a22(2) + azg) = (sxg F az)?,
1
bdo + 1 = = (bc*y? F 2betyr 21 + bPczi — b+ ¢) = (tyr F bz1)*
c
We have ) )
;¢ —ac— 2z c ,
= d .
1] czo + $|z0] ~ 3.364/ac and || <<
Therefore Ve
0.088¥5 —
do> VT " g0a3YC S,
c Va



There are only finitely many Diophantine quintuples 10

and thus the set {a,b,c,dy} forms a Diophantine quadruple. Since dy < ¢, by Lemma 6,
we have two possibilities: the quadruple {a,b, c,dy} is regular or

(27) ¢ > 1.16d35p15 .

Assume that {a,b,c,dp} is regular, i.e. dy =d_. Then 2/ = ¢r — st. From ¢(xg —r) =
s(|zo] — t) and ged(c, s) = 1 it follows that |z9| =¢ (mod ¢), and since |29| < ¢, t < ¢, we
conclude that |z9| = ¢t and zg = r. We can proceed analogously to prove that |z1| = s and
Yy =r.

The condition vs = w3 implies

sz + 3cxo + dac(cxg + sz0) = tz1 + 3eyr + 4be(cyr + tz1)

and we obtain a = b, a contradiction.
Hence we may assume that the quadruple {a, b, c,dp} is not regular. But it means that
¢ > 109, which implies

2 2
;¢ —ac—z5 _ 0.749¢ 0.749¢ &
= > > > 0.529——
2 cxo + $|z0] 210 1.415ac YVac
and Y
0.27985%° —
do> — VT 997 VE

c Va
Thus from (27) we obtain ¢ > 0.0479c!25a= 125515 > 0.0479¢12°a%2° and ac < 189958,
which contradicts the assumption that ¢ > 106. [ |

Now we can prove the following strong gap principle, which is the main improvement
to [9] and which we will use several times later. Observe that especially the dependence
on ¢ is much better than in the gap principle in [9].

Proposition 1 If {a,b,c,d} is a Diophantine quadruple and a < b < ¢ < d, then d = d+
or d > 2.695c>%a%.

Proof. From Lemmas 5 and 7 it follows that m >4 or n > 4. By (16), we have

12
(25 — 1)3 > Vaded - c.

C
> >
Y = 3364 Yac = 8v3-3.36

Therefore, if m > 4 then

2.696a25¢45 — 1
d> a ¢ > 2.695¢35425 .
C

Similarly, from (17) it follows

S

2%—1)% > — = c,
( = 24v/24 - 3.132

C
wy>—S
* = 3.1329be

and for n > 4 we obtain

3.91925645 — 1
>
C

d > 3.918¢3°0%° > 2.695¢3°a25 .
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Corollary 1 If {a,b,c,d,e} is a Diophantine quintuple and a < b < ¢ < d < e, then
e > 2.695 d35b?5.

Proof. Assume that {b,c,d, e} is a regular Diophantine quadruple. Then e < 4d(bc +
1) < d®. The quadruple {a,c,d,e} is not regular and, by Proposition 1, we have e >
2.695d3%a?® > d3.

Therefore the quadruple {b,¢,d, e} is not regular and hence e > 2.695d3°b*5. [ |

5 Determination of the initial terms

Using the gap principles developed in the previous section we will improve Lemma 2 and
obtain more specific information on the initial terms of the sequences (v,,) and (wy,).

Lemma 8
1) If the equation vay, = way, has a solution, then zg = z1. Furthermore, |29| =1 or
|20 = cr — st or |zp| < min{0.869 a~d/MA/M (.972 b0-3c0.7Y,

2) If the equation voy,y+1 = wa, has a solution, then |zo| = t, |z1| = cr — st and
2021 < 0.

3) If the equation vy, = want+1 has a solution, then |zg| = cr — st, |z1| = s and
2021 < 0.

4) If the equation vam+1 = Want1 has a solution, then |zg| =t, |z1| = s and zpz1 > 0.

Proof.
1) From Lemma 2 we have 29 = 21. Define dy = (22 —1)/c. Then dp is an integer and

1 1
cdo+1=22, ado+1=~(azi —a+c)=a3, bdg+1==(bz} —b+c)=uys
c c

Hence, we have three possibilities: dy = 0 or {a, b, ¢, d} is a regular Diophantine quadruple
or {a,b,c,d} is an irregular Diophantine quadruple. If dy = 0 then |z9] = 1. If the
quadruple {a, b, c,d} is regular, then (since dy < ¢) we have dyp = d_ and |zp| = cr — st.
Otherwise we may apply Proposition 1 to obtain ¢ > 2.695d3°a*5. Since |z| # 1, we have
zg > ¢+ 1. We may assume that ¢ > 10% and therefore

2 2
Z 1 Z
0 < 20

1 2
do = (1 _ —) > 0.999°0
c+1 c

c c
Hence we obtain ¢*° > 2.685|2]|a%® and |zo| < 0.869a°/14c%/14,
Analogously, from Lemma 6, we obtain |z| < 0.972b7%-3c0-7.
2) Let 2/ = 21 = cxg+ sz if z1 > 0, and 2/ = —2z; = cxg — s2¢ if 21 < 0. Define
do = (2”2 — 1)/c. Then dy is an integer and

cdy+1=22 ady+1=(szgtaz)? bdy+1=uyl

In the proof of Lemma 7 it is shown that dy > 0 and dy < c¢. Therefore {a,b,c,d} is a
Diophantine quadruple, and by the proof of Lemma 7, it must be regular. It means that
do = d_ and |2/| = er — st. It implies |z1| = c¢r — st and |zo| = t.
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3) Let 2/ = 29 = cy1 +t2z1 if 29 > 0, and 2/ = —z9 = cy1 — tz1 if 29 < 0, and define
do = (2”2 —1)/c. Then

edo+1=2" ady+1= x%, bdy + 1 = (tyy & bz)?
and 0 < dy < c. If the quadruple {a, b, dy, ¢} is not regular, then from Lemma 6 we have

(28) ¢ > 1.16d3°b" .

We can assume that ¢ > 106. If ¢ > 4b then

2 2
,  c¢“—bc—2z7 _ 0.749c 0.749¢ c
= > > > 0.529——=,
< cy1 + tlz| 21 1.415Vbe Vbe

and if ¢ < 4b then c

2| > Vae > 0.529
] > Vae > 05205

Therefore,

eVe
do> VB T g7
c Vb
Now (28) implies ¢ > 5i5-¢%/4b1/4 and be < 193372, a contradiction.

It follows that the quadruple {a, b, ¢, d} is regular, i.e. dy = d_ and |2’| = er—st. Hence
|z0| = cr — st and ¢(y1 — r) = t(|z1] — s). Since ged(t,¢) = 1 we have |z;| = s (mod ¢),
which implies |z1| = s.

4) Let 2/ = cxg — 8|20| = cy1 — t|z1] and do = (2 — 1) /e. In the proof of Lemma 7 we
have shown that {a,b,dy, c} is a regular Diophantine quadruple, and that this fact implies
|z0| =t and |z1]| = s. ]

6 Standard Diophantine triples

In [9] we proved Conjecture 1 for triples satisfying some gap conditions like b > 4a and ¢ >
max{b'3 102°}. In Section 7 we will prove Conjecture 1 under certain weaker assumptions.
This results will suffice for proving Theorem 1 since we will show that every Diophantine
quadruple contains a triple which satisfies some of our gap assumptions.

Definition 1 Let {a,b,c} be a Diophantine triple and a < b < c¢. We call {a,b,c} a
Diophantine triple of

e the first kind if ¢ > b*9,

e the second kind if b > 4a and ¢ > b>5,

e the third kind if b > 12a and b*/3 < ¢ < b2,
e the fourth kind if b > 4a and b2 < ¢ < 6ab?.

A triple {a,b,c} is called standard if it is a Diophantine triple of the first, second, third
or fourth kind.
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The Diophantine triples of the first and the second kind appear naturally when we
try to modify results from [9] using Lemma 8. They correspond to triples with properties
b > 4a, c > b and b > 4a, ¢ > b°, considered in [9]. On the other hand, triples of the third
and the fourth kind come from the analysis what kind of triples a regular Diophantine
quadruple may contain. Note also that these four cases are not mutually exclusive.

We now use the improved gap principle (Proposition 1) again to show that the set of
all standard Diophantine triples is large.

Proposition 2 Fvery Diophantine quadruple contains a standard triple.

Proof. Let {a,b,c,d} be a Diophantine quadruple. If it is not regular, then by Propo-
sition 1 and [9], Lemma 14, we have d > ¢*® and ¢ > 4a. Hence {a, c,d} is a triple of the
second kind.

Assume that {a,b,c,d} is a regular quadruple. Then

c(4ab+1) < d < 4e(ab+1).

If b > 4a and ¢ > b5, then d > b*5 and we see that {a, b, d} is a triple of the second kind.
If b > 4a and ¢ < b'®, then we have two possibilities: if ¢ = a + b+ 2r then ¢ < 4b,
c? < d < 4bc? and therefore {b, c,d} is a triple of the fourth kind; if ¢ > 4ab + a + b then
d<c? d>be>c®3 and it follows that {a,c,d} is a triple of the third kind.
We may now assume that b < 4a. By [15], Theorem 8, we have ¢ = ¢, (kK > 1) or
¢ =7¢ (k> 2), where the sequences (ci) and (¢) are defined by

=0, cg=a+b+2r, cx=(4ab+2)cp_1 —cx—2+2(a+0b),

c=0, ci=a+b—2r, ¢ = (4dab+2)¢x_1 —Cx_2+ 2(a+b).

If ¢ > b?® then d > 4abc > b*® and we see that {a,b,d} is a triple of the first kind.
Since cg = 4r(a+7)(b+7) > 4ab® > b3, the condition ¢ < b*® implies ¢ = ¢; or ¢ = ¢s.
If ¢ = ¢; then

4 a b 4 4
c§a+b+\/§\/%=\/%(\/;+\/;+\/§> 3\/@(0.5+2+%)<4.81\/%

and ¢ > 4r. Hence d > 4abe > 0.172¢® > ¢ and d < 4er? < ¢2r < 2ac?. Therefore the
triple {a, ¢, d} is of the fourth kind.
If ¢ < b>® and ¢ = ¢ > 4ab + 2a + 2b (we may assume b > a + 2, since otherwise

Ga = c1), then d < ¢® and d > 4abc > b?c > ¢'® > /3. Therefore the triple {a,c,d} is of
the third kind. [ |

7 Lower bounds for solutions

The main tool in obtaining lower bounds for m and n satisfying v,, = w, (m,n > 2) is
the congruence method introduced in the joint paper of the author with A. Pethé [10].
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Lemma 9
1) vo = 20 + 2c(azom? + szom) (mod 8c?)

2) vomi1 = sz0 + c[2aszom(m + 1) + 2¢(2m 4+ 1)] (mod 4c?)
3) wa, = 21 + 2¢(bzin? + ty1n) (mod 8c?)
4) wony1 =tz + c[2btzin(n + 1) +y1(2n +1)] (mod 4c?)

Proof. See [9], Lemma 4. |

If v,, = wy, then, of course, v, = w, (mod 4c?) and we can use Lemma 9 to obtain
some congruences modulo ¢. However, if a,b,m and n are small compared with ¢, then
these congruences are actually equations. It should be possible to prove that these new
equations are in contradiction with the starting equations v,, = w,,. This will imply that
m and n cannot be too small. We will prove a lower bound for n (and therefore also for
m by Lemma 3) depending on ¢ and we will do this separately for Diophantine triples of
the first, second, third and fourth kind in the following four lemmas.

Lemma 10 Let {a,b,c} be a Diophantine triple of the first kind and ¢ > 10190, Ifv,, = w,
and n > 2, then n > OO,

Proof.

Assume that n < ¢"0l. By Lemma 17, we have max{|m/2| +1, |n/2]+1} < n < 0L
According to Lemma 8, we will consider six cases.

1.1) Vom = Wan, |Zo‘ =1

From Lemma 9 we have

(29) +am? 4+ sm = +bn? +tn (mod 4c).

Since ¢ > b*?, we have am? < 9243 < ¢, sm < "% < ¢, bn? < 213 < ¢, tn < 623 < ¢
Therefore we may replace = by = in (29):

(30) +am? + sm = +bn® + tn.
From (30), squaring twice, we obtain
[((am?® — bn?)? — m? — n?? = 4m?n® (mod c).

Since 4m?n? < 97 < ¢ and [(am? — bn?)? — m? — n?)2 < 99 < ¢, we therefore have

[(am? — bn?)? — m? — n?]? = 4m?n?, and

(31) am? —bn? = tm £ n.
From (30) and (31) we obtain

(32) m(s£1)=n(t£1).
Inserting (32) into (30) we obtain

(33) C(sED)t(sE1) - (t£1)s] (st 1)(£tFs)
T T At £ 12 —b(s£1)7] | £(£2at + 2a £ 2bs — 20)
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Since

(s—=1)c(b—a) _ 2¢(s—1) Vva
t+s 2/be " 2vb

and | & 2at + 2a F 2bs — 2b| < 4bs + 4b < 6by/ac, (33) implies that n > T\/\% > 0377 4

(s £ 1) (&t F ) > (s— 1)(t— ) =

contradiction.
1.2) vy = wap, 20| =cr —st
We may assume that b > 4. Then we have

2 64 2
cc—ac—bc—1 63C c

> > ,
cr + st 2rc ~ 2.155vab

|z0] = |21| =

and from |z1| < 1/;—‘\/[% it follows ¢ < 5.4a%b < 5.4b% < b*5, a contradiction.

1.3)  wva = wap, |20l # 1, or — st
From Lemma 9 we obtain

(34) azom? + szom = bzon® + tyin (mod 4c).

By Lemma 8, we have

c
lazgm?| < "8 < ¢ |szom| < (alzo| + W)m < <,
0
lbzon?| < *876 < ¢, |tyin| < (b]z1| + ﬁ)n < ¥ <
21
Therefore,
(35) azom? + szom = bzon® + tyin.

Assume now that b > 4a. Since |2g| # 1, we have 22 > max{c + 1,3c/a}. This implies

2 2
0< SxQ 1= Tg+ac—a Sl.O(;l(;c<O.1669’
alzo| alzo|(sxo + alzo|) 2a%2§
t i+ be — b? 1.001b
0 YL g YT < =0 < 0.0418,
b|z1] blz1|(tyr + blz1]) 20223

If zp > 1 then, by (35), we have azom(m + 1.1669) > bzon(n + 1), and since m,n > 2,
we obtain a - 1.5835m? > bn? and ™ > 1.589. But now Lemma 4 implies n < 1, a
contradiction.

If zp < —1 then (35) implies a|zg|m(m — 1)) > b|zp|n(n — 1.0418). Hence, by Lemma
4, we conclude that
11 7 ) (11 11

PR JR— PR —_— — 2 —_— —
o+ n ) < 1.4939n2 — 0.2716n — 0.2376,

4n(n —1.0418) < ( on— 1o

which implies 2.5061n% — 3.8956n + 0.2376 < 0 and n < 1, a contradiction.
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Assume now that b < 4a. Squaring twice the relation (35) we obtain
(36) [(am? — bn?)? — 22m?® — yin?)? = 422y?m?n® (mod c).
By Proposition 1, we have
b 4
P <221 < 2 g 0.754 + 1 < 3.018(ac)¥T < 0364,
c c

This implies that the both sides of the congruence (36) are less than c. Indeed, the left
hand side is bounded above by

8 8
maX{C9+0'087C9+0'08,00'728+0'006+0'04} < 00.969 <e,

0.006+0.728+0.04

while 4z2y?m?n? < ¢ = 7™ < ¢. Therefore we have an equality in (36),

and this implies
(37) am? — bn? = £xgm £ yin.

From (35) and (37) we obtain zgm(s + 1) = yyn(t £ 1) and n = A/B, where
A=adyi (s 1)(+tF5), B=zlabe(yi —x3) +2(a —b) + 2aty? F 2bsxd].
We have the following estimates
|A| < 221 (s + 1)(t + ) < 2.005z2y1cVab,

|B| > |z0|[abe(2y; — 1) — 2b — 4aty? — 2s(b — a)]

12 4ty 2
> |aolpabe|2 — — — —=— — ZIL =2 | 5 569|50|y abe.

y1 acyr b acy
These estimates yield
2 2 2
20050510V g ore I g 0% qgglol g
1.569|z0|y1abc |20V ab 0.999|zp|cVab c

a contradiction.
2)  Vami1 = wop
The impossibility of this case is proven in 1.2).
3)  vom = wang1
By Lemma 8 and 1.2), |zo| >
5.4b% < b*?, a contradiction.

4)  Uomy1 = Wopt1
From Lemmas 8 and 9 we obtain

and from |zp| < ;\/\fg it follows ¢ < 5.4ab* <

_c
2.155v/ab’

(38) +astm(m + 1) +rm’ = £bstn(n + 1) +rn’ (mod 2¢),

where m' =m, n’ =nif zo <0, and m' =m+ 1, n’ =n+ 1 if 29 > 0. Multiplying (38)
by s and t, respectively, we obtain

(39) +atm(m + 1) +rsm’ = Lbtn(n+ 1) +rsn’ (mod 2c¢),

(40) +asm(m + 1) +rtm’ = Lbsn(n + 1) +rtn’ (mod 2c).

We have [btn(n +1)| < %% < ¢, rtn’ < ¥5 < ¢. Therefore we have equalities in (39)
and (40). This implies rm’ = rn’ and am(m + 1) = bn(n+ 1), and finally m=n=0. =
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Lemma 11 Let {a,b,c} be a Diophantine triple of the second kind and ¢ > 10190, [f
0.04

Uy, = Wy, and n > 2, thenn > ¢
Proof. Assume that n < %%, Then max{|m/2| + 1, [n/2] + 1} <n < 204
1.1) Vom — Wan, |Zo‘ =1
Since am? < %498 sm < P01 pn? < O4% and tn < 701 (29) implies (30).
Furthermore
am® _mya oo _ 0.001, bn? _nvh

sm Ve tn Ve

m 0999 t 0.999\/3>199
n —1.001 s  1.0012Va 77
contrary to Lemma 4.

1.2) vy = way, |20| =cr —st
We have

< 7906 ~0.001.

Hence

o

20| = |21 2 —ac—be—1 62—201‘4 S c—%co'4
Z = |Z = s
0 ! cr + st 2rc 2.13vab

and from |z;1| < \/giﬁ it follows ¢ < 5.25a%b < 1.32ab?. Hence {a,b,c} is a Diophantine
triple of the fourth kind, and this case will be treated in Lemma 13.

1.3) vy = wap, 20| #1, cr — st

By Proposition 1, we have ¢ > b3, and Lemma 8 implies

0.907 0.871 0.944

lazom?| < ¢ <e¢,  |szom| <c <e,  |bzon?| < B <, Jtyin| < ¢ <ec.

Therefore, equation (35) holds again. As in Lemma 10, we obtain a contradiction with
Lemma 4.

2)  Vomgl = Won

This case is impossible by Lemma 2. Namely, if ¢ < 100a then a > 10%® and ¢ < a3,
a contradiction.

3)  vam =Wt
As in 1.2), we obtain ¢ < 5.25ab? and again {a, b, c} is a triple of the fourth kind.

4) Va1 = Wantl
Relation (38) implies

[am(m +1) —bn(n+ 1)]* = r*(n —m)? (mod 2¢).
Since a?m?(m +1)? < "%, p2n%(n + 1)? < % and r2m? < "8 we obtain
(41) bn(n+1) —am(m +1) = £r(m — n),

which implies

2n +1 a tdr(m—n)+b—a
(42) om+1 \/;_ [(2n 4+ Vb + (2m + 1)a]vb(2m + 1)
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By Lemma 4, the right hand side of (42) is

4r(m —n) b 4.5 ants 1 3 1 14
< + < o<t o=
b2n+1)2m+1) b2n+1)2m+1) b2n+1)2m+1) 15 25 15 75
Therefore,
2n+1 103
43 — < 0.687.
(43) 2m +1 < 150 <

If n =1 then m =1 (by Lemma 4), contrary to (43). If n = 2 then m = 2 or m = 3,
which both contradict the relation (43).

Hence we may assume that n > 3, m > 3, and now (42) implies 227:5_;11 < 0.59. On the

other hand, from Lemma 4 we see that 22;111 > % — % > 0.653, a contradiction. m

Lemma 12 Let {a,b,c} be a Diophantine triple of the third kind and ¢ > 10'°°. If
V= Wy, and n > 2, then n > V13,

Proof. Assume that n < 1%, Then max{|m/2| + 1, |[n/2] +1} < n < 15,

1.1) Vom = Wan, |Zo‘ =1

Since am? < %9, sm < %1 bn? < 9 and tn < O < ¢, the proof is identical to
that of Lemma 11.

1.2) vy = wap, 20| =cr — st

From (34) we have

(44) tastm(m F 1) +rm = £bstn(n F1) + rn (mod c).
Multiplying (44) by 2st we obtain
(45) +2[am(m F 1) —bn(n F1)] = 2rst(n —m) (mod 2c¢).

Let a be the absolutely least residue of 2rst modulo 2¢, and let A = (2rst—2cr?+c)(st+cr).
Then |af - (st 4+ cr) < |A| and

A = 2acr + 2ber + 2r + cst — ¢r < 2acr + 2ber + 2r.

Since cr—st = €=bezae=l & b\ /h < by, we obtain |A| < 2r(ac+be+1) < Bber and

cr+st 2¢vab
la| < éi% < 1.15b. We have 2am(mF1) < %% 2bn(nF1) < 9%, ja(m—n)| < 2651,
Therefore

2[am(m F1) —bn(n £ 1)] = a(n —m),

and it implies

2nF 1 a +2a(m—n)+b—a
(46) —y /== .
2m¥1 Vb [2nF DVh+ (2m F 1)/a]Vb(2m F 1)
By Lemma 4, the right hand side of (46) is

1.15p - 83 1
< +
b(2n—1)2m—1) (2n—1)(2m —1)

< 0.495,
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and therefore

2 1
(47) nF

2m F 1

If n = 2 then Lemma 4 implies m = 2 or 3. The case m = 2 contradicts the inequality
(47), while for m = 3 relation (46) implies 2L7 < 0.586. But for n = 2, m = 3 we have
% € {2, 2}, a contradiction.

Hence n > 3, and since n = m = 3 contradicts (47), we have also m > 4. Now, from
(46) we obtain ey < 0.456. But for m > 4 we have §75 > 2125 > 3 — o8 > 0.517,
a contradiction.

1.3)  wvam = wap, |20l # 1, or — st

Proposition 1 implies ¢ > b3 and therefore this case is impossible.

2)  Vomgl = Won

The impossibility of this case is shown in Lemma 11.

3)  vom = want1

From Lemmas 8 and 9 it follows that

< 0.784.

+2astm(m F 1)+ r(2m £ 1) = £2bstn(n + 1) +r(2n+ 1) (mod 4c)

and
(48) +2[am(m F 1) —bn(n+1)] = 2rst(n —m+6) (mod 2¢),

where § € {0,1}.
Let a be defined as in 1.2). As in 1.2), we obtain

+2[am(m F 1) —bn(n+ 1)] = a(n —m +0)

and

(19) 2n+1 a +2a(m—n—-9)+b—a

omF1 Vb [2n+D)Vh+ @mF 1)ValvhemF 1)
The right hand side of (49) is

1.15p - 92l 1
< + ,
b(2n—1)2m=F1) (2n—1)(2mF1)

and therefore o4 1 om 4 1
(50) n £ 0.861, n

2m —1 m—+1

< 0.617,

respectively.
If n =1, then by Lemmas 4 and 7 we have m = 2. This is clearly impossible if we have

22::11 on the left hand side of (49), while for 227’:;11 we obtain % < 0.509, a contradiction.

If n = 2 then, by Lemma 17, we have m = 2, 3 or 4, and (50) implies m = 4.
Since m = n = 3 is also impossible by (50), we conclude that n > 2 and m > 4.

This implies 22;‘7:11 < 0.469, 22;111 < 0.429, respectively. On the other hand, we have

2n+1 o2n+1 5 1 —
Sl > ol 2 8 — il > 0.513, a contradiction.

4)  vomyl = Woni1
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Let « be defined as in 1.2). From (38) we obtain
£2[am(m + 1) —bn(n + 1)] = a(n —m),

which yields

2n +1 a +2a(m —n)+b—a
(51) — — == .

2m + 1 b [(2n+ DvVb+ (2m + 1)/a]vVb(2m + 1)
From (51) it follows that 22;1‘:11 < 0.494 . But Lemma, 4 implies 22::1‘:11 > g— m > 0.55,
a contradiction. []

Lemma 13 Let {a,b,c} be a Diophantine triple of the fourth kind and ¢ > 10'0°. If
U = wy, and n > 2, then n > 2.

Proof. Assume that n < 2. Then max{|m/2] +1, [n/2| +1} <n < 2

1.1) Vo9m — Wn, |Zo‘ =1

The proof is identical to that of Lemma 11.

1.2) vy = wop, 20| =cr —st

The first part of the proof is identical to that of Lemma 12. In particular, the relation
(45) is valid. Estimating cr — st, we get

t< — <6ab2<3b b < 3b
cr—s Va T
2vVab  2vab
Therefore |A| < 2r(ac+be+ 1) < 2.5ber and || < 235 < 1.33p. Note that

2¢vab
o? = 4r?s*? = 4r?  (mod 2¢),

4r? < 4.5ab < 1.125b% < 2¢ and o? < 1.77b% < 2¢. Hence, o = 472 and o = +2r.
Since am(m + 1) < 9, bn(n + 1) < c®?, r(m —n) < "7, we have

(52) bn(n+1) —am(m+ 1) = £r(m —n).

Inserting & = 27 in (46) and using Lemma 4 and the estimate |o| = 2r < Vb2 +4 <
1.001b, we obtain
2nF1 1 1.001n +1
53 — <
(53) omTl 2 @n—DEm—1)

If (m,n) = (3,2), then (52) implies 6b — 12a = +r and (4b — 9a)(9b — 16a) = 1, which
is clearly impossible for b > 4a.
2n_I;Ienc§ n > i’), m > 4 and (53) yie.ldé 22%;1 < 0.615. On the other hand, 22:;11 >
1 25— 3@y > 0.619, a contradiction.

1.3)  wvop = wap, 20| # 1, or — st

Proposition 1 implies ¢ > b3?, and we have ¢ < 6ab> < 1.5b3. Therefore, this case is
impossible.

< 0.834.

2) Vo1 = wop
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The impossibility of this case is shown in Lemma 11.

3)  vom = want1
The first part of the proof is the same as in Lemma 12. As in 1.2), we conclude that
o = +r. We have

(54) am(mF1) —bn(n+1)] = £r(m —n —9)
and
2n +1 a t4r(m—n—90)+b—a
(55) —/ = .
2mF 1 b [(2n+1)Vb+ (2m F 1)\/a]vb(2m F 1)
The relation (55) implies
2n+1 - l—i- 2r(n + 2 — 26) N 1
2m +1 2 b2n+1)(2mF1)+1.001r2mF1)2  (2n+1)2mF1)
1 1.001(n+2—26)+1
- 945
(56) <57 nt+ D@EmT D) < 0.945

If n = 1, then m = 2 and we must have the sign + in (56). But then (54) implies
6a — 2b = +r and (9a — 4b)(4a — b) = %1, a contradiction.

If (m,n) = (3,2), then we obtain 12a — 6b = £r, which has no solution by 1.2). If
(m,n) = (4,2), we have two possibilities: 12a — 6b = £r or 20a — 6b = £2r. We have to
consider only the second possibility, and it implies (25a — 9b)(4a — b) = 1, which has no
integer solution.

Hence n > 3, m > 4 and 22:’1‘;11 < 0.623. We see that (m,n) # (4,3), which implies

72n > 51and 22771111 < 0.55, 227’;:11 < 0.545 , respectively. On the other hand, 22::11 > 227’%111 >

3 9maT > 0.576, a contradiction.

4) Vi1 = Woptl
As in the proof of Lemmas 11 and 12, using o = £2r, we obtain (42). It implies

m+1 1 1.001(n+1)+1
st 2 <0.834.
om+1 -2 @ntDEmt)

(57)

If (m,n) = (2,1), then (41) implies 2b — 6a = =£r, which is impossible (see 2)).

Hence we have n > 2, m > 3, and (57) actually gives 221 < 0.615. On the other hand

+1
2ntl < 2 1 e
2,211 > 5 - 3@mET) 0.619, a contradiction. n

8 Linear forms in three logarithms

Solving recurrences (12) and (13) we obtain

58 v = g lavat rovE) (s vae)™ + (v — a0ve)(s — V)],
59w = 5V A+ ViR + (V- yiE) (e — Vi),

Using standard techniques (see e.g. [3, 11]) we may transform the equation v, = w,
into an inequality for a linear form in three logarithms of algebraic numbers. In [9], Lemma



There are only finitely many Diophantine quintuples 22

5, we proved that (assuming ¢ > 4b, but this assumption can be replaced by ¢ > b+ +/c,
which is satisfied for any triple {a,b,c}) if m,n # 0, then

Vb(zov/e+ 20v/a) 8 —om
(60) 0 < mlog(s+ vac) — nlog(t + Vbe) + log Valm et b < gac(s + Vac) "2,

Thus, we have everything ready for the applications of the Baker’s theory of linear
forms in logarithms of algebraic numbers. We will use Matveev’s result ([18], Theorem
2.1), which is quoted below with some restrictions and simplifications.

Lemma 14 ([18]) Let A be a linear form in logarithms of | multiplicatively independent
totally real algebraic numbers av, . . ., aq with rational integer coefficients by, ..., by (by #0).
Let h(cj) denotes the absolute logarithmic height of aj, 1 < j < . Define the numbers
D, Aj, 1 <j <1l and B by D = [Qaq,...,qp) : Q, Aj = max{D h(c;), |logc;l|},
B = max{1, max{‘bﬂ‘% 11 <j<I}}. Then

(61) log A > —C(1)CoW,yD?Q,

where C(l) = lfl)!(l +2)(21 4 3)(4e(l + 1))!FL, Cy = log(er* 7155 D% log(eD)), Wy =

log(1.5eBDlog(eD)), Q= Ay --- A;.

—~

Proposition 3 Assume that ¢ > max{b®/3,10'0}. If v,, = w,, then

m

(62) log(31.3(m + 1))

< 3.826-10"21log?c.

Proof. We apply Lemma 14 to the form (60). We have | = 3, D = 4, a1 = s + +/ac,
Qg = t+ \/%7

o = Vb(zove + 20\/a) .
Va(yive + z21vb)
Furthermore, A1 = 2loga; < 1.608logc, As = 2logas < 1.608logc. The conjugates of
Qg are
Vb(z0/a £ 9\/0)
Va(zivb +yive)

and the leading coefficient of the minimal polynomial of a3 is ag = a?(c—b)2. We proceed
with the following estimates:

Vb(zov/e + |z0[v/a) _ Vb -2xv/c 4/ b%c
Va(yive + |21 |vb) = Va-yi/c = 1'415\/7’

Vb(xzo\/€ + |20|v/a) - Vb - 2x0v/c - 2y11/c - 2.001cv/bVabc? ~2004i/0%¢
Va(yiye — |z1|Vb) va(c—b) 0.999/a - ¢ ' a ’
Vb(zov/e — || Va) Vb(e —a) b

Valp /et Ve~ Va-zove yive Va’
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VB@ov/e— |olv/a) _ VBle—a) - 21/ [P

< < 14154/ — .
Valyve — |z [VB)  Vale—b)-wove a

Therefore, A3 = 4h(az) < log(4.013a'/2b%/2¢3) < 4.804logc. We also have Az >

log(a?(c — b)?) > 1.99991ogc. Since max{m,n} € {m,m + 1} (by Lemma 3), we con-

clude that B < 0.8041(m + 1).

We may assume that m > 102

. Therefore we have
log gac(s +Vac) ™ < —0.9999 mlog c.

It is clear that a1, as and a3 are multiplicatively independent and totally real. Hence, we
may apply Lemma 14. Putting all the above estimates in (61), we obtain

0.9999 mlog ¢ < 3.8255 - 10'% - log® ¢ - log(31.3(m + 1))

and
< 3.826-102%1log?c.

log(31.3(m + 1))
|

Note that the assumption ¢ > max{b®/3,10'9} is not essential. It has an effect only
on the constant on the right hand side of (62) (see [9], Section 10). Baker’s method can
be applied without any gap assumption. However, gap assumptions are necessary for
obtaining lower bounds for solutions using the ”congruence method” of Section 7.

We now compare the lower bounds from Section 7 with the upper bound from Propo-
sition 3 to prove Conjecture 1 for all standard triples with ¢ large enough.

Proposition 4 Let {a,b,c} be a standard Diophantine triple and ¢ > 10*'™. If {a, b, c,d}
is a Diophantine quadruple and d > ¢, then d = d..

Proof. Let ad+ 1 = 22, bd +1 = y?, cd + 1 = 2. Then there exist integers m,n > 0
such that
2 = Um = Wp,

where the sequences (vy,) and (wy,) are defined by (12) and (13).

Assume that d # di. Then from Lemma 5 it follows that m > 3 and n > 3. Hence
we may apply Lemmas 10 — 13. We get that in all cases n > %%, Now, by Lemma 3,
m+1>n> "0 If we put this in (62), we obtain

log(31.3(m + 1)) log?(m + 1)

< 3.826 - 10,

which implies m < 5.108 - 102!, and finally ¢ < (m + 1)190 < 102171, ]

Corollary 2 Let {a,b,c} be a standard Diophantine triple such that ¢ < 2.695b%° and
c> 10271, If {a,b,c,d} is a Diophantine quadruple, then d =d_ ord = d.
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Proof. By Proposition 4, we may assume that d < c¢. Since ¢ < 2.695b%°, Proposition

1 implies that {a,b,d,c} is a regular quadruple. From the proof of Lemma 5 it follows
that (m,n) € {(0,0),(0,1),(1,0),(1,1)}.

Assume that (m,n) = (0,0). By Lemma 8 and the regularity of {a, b, d, ¢}, we conclude
that 29| = 1 or |29| = cr — st. Since d > 0, we have |29| = cr —st and d = (23 —1)/c=d_.

If (m,n) = (0,1) then Lemma 8 implies |z9| = ¢r — st and d = d_. Analogously, if
(m,n) = (1,0) then |z1| = cr — st and d = d_.

Assume finally that (m,n) = (1,1). Then 29,21 < 0 and Lemma 8 implies 2y = —t,
21 =—s. Wehave vy =cr — st and d = (v —1)/c=d_. |

Corollary 3 Let {a,b,c} be a Diophantine triple of the third or fourth kind and ¢ > 10271,
If {a,b,c,d} is a Diophantine quadruple, then d =d_ or d = d.

Proof. The statement follows directly from Corollary 2 since 6ab® < 2.695b%° for any
Diophantine pair {a, b}. |

9 Proof of Theorem 1

Let {a,b,c,d,e} be a Diophantine quintuple and a < b < ¢ < d < e. Consider the
quadruple {a,b,c,d}. By Proposition 2, it contains a standard triple, say {A, B,C},
A<B<C.

If d > 10?'7! then we may apply Proposition 4 on the triple {A, B,C'}. We conclude
that

e=A+B+C+2ABC +2\/(AB +1)(AC + 1)(BC + 1) < 4d(bc + 1) < d>.
On the other hand, by Corollary 1, we have
e > 2.695d%°b%° > d°,

a contradiction. Hence d < 102171,

Consider now the quadruple {4, B, C,e}. We have C' < d < 102!, Let (V;,,) and (W,,)

be the sequences defined in the same manner as (v,,) and (w,), using A, B, C instead of

a,b,c. Let e-C + 1= V2. By Proposition 3,
m

< 9.561- 10"
log(31.3(m + 1))

and m < 5.109 - 1021,
From (16) we obtain

Vi < 170\‘1/@(2\/1@)7”71 < om . qmt0.5.

Therefore
logyo Vin < mlog;o2 4 (m +0.5) - 2171 < 1.1094 - 10%°

and
logyge < 21ogig Vin < 2.2188 - 10%°.

Hence e < 101026. []
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Corollary 4 If {a,b,c,d,e} is a Diophantine quintuple and a < b < ¢ < d < e, then
d <1027 gnd e < 1010%°

Remark 1 We can use the theorem of Baker and Wiistholz [4] instead of the theorem of
Matveev [18] in the proof of Theorem 1. In that way we obtain slightly larger constants
in Corollary 4, namely, d < 10?4 and e < 1010%%,

10 There does not exist a Diophantine sextuple

Since the bound for the size of elements of a Diophantine quintuple from Corollary 4
is huge, it is computationally infeasible to check whether there exist any Diophantine
quintuple. However, using a theorem of Bennett [5], Theorem 3.2, on simultaneous ap-
proximations of algebraic numbers, instead of the theorem of Matveev (or Baker and
Wiistholz), we are able to prove that there is no Diophantine sextuple.

Lemma 15 ([5]) If a;, pi, ¢ and N are integers for 0 < i < 2, with ap < a1 < az, aj =0
for some 0 < j <2, q nonzero and N > M?, where M = maxo<;<2{|a;|}, then we have

az 1 -\
(130N
e {1 30N7) g
where lox(33N
A1+ 0g(33N7)
log (1.7]\72 H0§i<j§2(ai - aj)*2)
and

2a2—ag—a1
(ag—ap)?(a1—ap)?
a1+as—2ag0

—an)2(ao—a1)2 .
{ (aa=a0)™(az—al)” yr 40 g1 > ay — ag,
fy:

ifag —a1 < ap — ap.

We will apply Lemma 15 to the numbers 6; = g\/g and 0y = %\/E . We have

abe
O = \/1+ — 1
2 +bc Jrabc

By [9], Lemma 12, it holds

(63) mase (|6 — \ 105 — “gz )< os

In order to apply Lemma 15, we have to assume that there is a big gap between b
and c. In the following two lemmas we will show that, if we assume that b and c satisfy
some strong gap conditions, the upper and lower bounds obtained in Sections 7 and 8 can
be significantly improved. We will show in the proof of Theorem 2 that this strong gap
conditions are satisfied by the second and the fifth element of a Diophantine sextuple.
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Lemma 16 Let {a,b,c,d}, a < b < ¢ < d, be a Diophantine quadruple.
1) Ifc> 344.96%%a35, then d < 2792,
2) Ifc>296.4b'"16al4, then d < 247,

Proof. Let ad+1 =22, bd+ 1 =42, cd + 1 = z2. We apply Lemma 15 with ag = 0,
ap = a, ag = b, N = abc, M = b, ¢ = abz, p1 = sbx, po = tay. As in the proof of [9],
Corollary 1, we obtain

log (32.5a%b5¢2) log (1.7¢2(b — a)~?)
log( 16.5a11>‘.17(2—a)2) .

(64) log z <

Assume that ¢ > 344.96%°¢35. We have

1.7¢ 1—5

216 .2 24 & 2 -2 2 .
32.5a°b°c” < ¢ 9.5, 1.7¢ (b—a) < c7, 165(]])4—(1)—a)2>c 9.5,

Inserting these estimates in (64), we obtain

2.2.6321og? ¢

14.311og .
0368logc 08¢

log z <

Hence,
(65) z < 431

| 27.62
and d = ZT <c )
Assume now that ¢ > 296.4b116¢14. Then we have

32.5a%b5¢2 < 32.5a°9b71¢? < X its < (2613 L7 (b —a)? <

1.7¢ 1.7¢ 1_ 6.3 0.456
165060 ~ 16.5a07563 ~ ¢
and from (64) we obtain

and d < 2147, ]

Lemma 17 Let {a,b,c} be a Diophantine triple. Assume that v, = w, and n > 2.
1) If ¢ > max{b'16,2.97 - 1016}, then n > 0815,

2) Ifb > 4a and ¢ > max{b>? 1.5- 1013}, then n > V11,

Proof.
1) The proof is completely analogous to the proof of Lemma 10.
2) The proof is completely analogous to the proof of Lemma 11. [

Proposition 5 If{a,b,c,d} is a Diophantine quadruple such that ¢ > max{296.4 b'1-6q14,
2.97-10%} or b > 4a and ¢ > max{334.96%°a3? 1.5 - 1013}, and d > ¢, then d = d..
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Proof. Assume that d # dy. Then n > 3 and we may apply Lemma 17.
If ¢ > max{296.4b'16a14 2.97 . 1016} then n > "985 On the other hand, from (17)

we have c )
z=wy > ———— (1.999Vbe)" ! > ¢2t7
" 3.132\“/%( )
From (66) we conclude that n < 22 and it implies that ¢ < 12.97 - 10'6, a contradiction.
If b > 4a and ¢ > max{334.96”°a35, 1.5 - 10'3}, then n > "L From (65) it follows

that n <28 and ¢ < 1.5 - 1013, a contradiction. ]

Proof of Theorem 2: Let {a,b,c,d,e, f}, a <b<c<d<e< f, bea Diophantine
sextuple. By Corollary 1, we have

e > 2.695d%°b%5 > 2.695(4abc)> b*® > 344.96%5¢%° .
Ifb<4athenc>a-+b+2r > %b, and we obtain
e > 2.695 - 2.25%°b%5 (4a) 40> > 296.4p116014 |
Assume now that

(67) e>297-10' or <b<4a and e>1.5-10% > :

Then we may apply Proposition 5. We conclude that the quadruple {a,b, e, f} is regular.
It implies that f < 4e(ab+1) < €3. On the other hand, from Corollary 1 we have f > 3,
a contradiction.

It remains to consider the case when the conditions (67) are not satisfied. If e <
2.97-10'6 then d < 4 - 10%, and it is easy to find all quadruples satisfying 2.695d%°b%5 <
2.97 - 106 or b < 4a and 2.695d%5b*® < 1.5 -10'3. There are exactly 10 such quadruples:
{1,3,8,120}, {1,3,120,1680}, {1,8,15,528}, {2,4,12,420}, {3,5,16,1008}, {3,8,21,
2080}, {4,6,20,1980}, {4,12,30,5852}, {5,7,24,3432} and {6,8,28,5460}. However,
we have already mentioned that Baker and Davenport [3] proved that {1, 3,8} cannot be
extended to a quintuple. The same result was proved for the triples {1,8,15}, {1,3,120}
in [16], and for all triples of the forms {k—1,k+1,4k} and {Fox, Fogt2, Forta} (Fy, denotes
the n'! Fibonacci number) in [7, 8].

Therefore, it suffices to show that {4, 12, 30,5852} cannot be extended to a Diophantine
sextuple. But it is easy to prove, using the original Baker-Davenport method, that if d is
a positive integer such that {4,12, 30, d} is a Diophantine quadruple, then d = 5852. First
of all, in this case we have zp = z; = +1. If we apply Lemma 14 on the form (60) with
(a,b,c) = (4,12,30), we obtain m < 2-10'. Now we may apply the Baker-Davenport
reduction method [3] (see also [10], Lemma 5). In the first step of the reduction we obtain
m < 7. The second step gives m < 1 if zo = 1, and m < 2 if z9 = —1, which proves that
d = 5852. Namely, d = 5852 corresponds to zo = —1 and m =n = 2. [ |
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